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Abstract

Rationale: Restoration of adequate standing balance after stroke is of major importance for functional recovery.

POstural feedback ThErapy combined with Non-invasive TranscranIAL direct current stimulation (tDCS) in patients

with stroke (POTENTIAL) aims to establish if cerebellar tDCS has added value in improving standing balance perform-

ance early post-stroke.

Methods: Forty-six patients with a first-ever ischemic stroke will be enrolled in this double-blind controlled trial within

five weeks post-stroke. All patients will receive 15 sessions of virtual reality-based postural feedback training (VR-PFT) in

addition to usual care. VR-PFTwill be given five days per week for 1 h, starting within five weeks post-stroke. During VR-

PFT, 23 patients will receive 25 min of cerebellar anodal tDCS (cb_tDCS), and 23 patients will receive sham stimulation.

Study outcome: Clinical, posturographic, and neurophysiological measurements will be performed at baseline, directly

post-intervention, two weeks post-intervention and at 15 weeks post-stroke. The primary outcome measure will be the

Berg Balance Scale (BBS) for which a clinical meaningful difference of six points needs to be established between the

intervention and control group at 15 weeks post-stroke.

Discussion: POTENTIAL will be the first proof-of-concept randomized controlled trial to assess the effects of VR-PFT

combined with cerebellar tDCS in terms of standing balance performance in patients early post-stroke. Due to the

combined clinical, posturographical and neurophysiological measurements, this trial may give more insights in underlying

post-stroke recovery processes and whether these can be influenced by tDCS.
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Introduction and rationale

Impaired standing balance after stroke is common and
has a significant impact on fall events, independence in
activities of daily living and perceived disability.1,2

Prospective cohort studies suggest that most improve-
ments in standing balance and walking ability occur
within the first five to eight weeks post-stroke.3,4

There is strong evidence of enhanced homeostatic
forms of neuroplasticity during this time window,
including upregulation of gene expression of growth
promoting factors, such as brain derived nerve growth
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factors (BDNF) followed by growth inhibiting factors.5

Human motor learning in this critical time window may
be facilitated by transcranial direct current stimulation
(tDCS) which is believed to specifically target synapse-
based learning by enhancing the turnover of the
secretion of BDNF.6 tDCS is thought to induce polar-
ity-driven alterations of membrane potentials and effi-
cacy modulations of specific neuronal receptors in the
underlying brain tissue.6 These dynamic neural modu-
lations are evident not only in motor performance,7–9

but also in intrinsic functional network connectivity
that manifest in neurophysiological recordings of cor-
tical brain activity.10 Neural changes while performing
balance tasks are mostly reflected by a change in theta
(4–7Hz), and alpha power (7.5–12.5Hz).11,12 A higher
alpha power reflects increased learning speed and an
optimal concentration level.13 Decreased alpha activity
is also generally seen in patients after stroke.14 Theta
power activity is associated with an emerging state
of concentration and optimal error control and found
to increase with increasing complexity of balance
tasks.11,15 Although a general deceleration of EEG sig-
nals is associated with poor functional outcome after
stroke, conflicting results regarding a correlation of
increased theta power activity with post-stroke func-
tion are found.16–18 Next to an alteration in power
spectral density, asymmetry between the hemispheres
(low Brain Symmetry Index) has been associated with
poor clinical function and disability six months post-
stroke and is believed to reflect the clinical neurological
condition of acute stroke patients.19,20 To study these
changes in cortical activation patterns in post-
stroke recovery, and the potential influence tDCS
may have on these processes, repetitive EEG measure-
ments in both a resting state and during postural
balance tasks are required.21–23

The cerebellum with its distinct role in feedback-
based learning could be a promising target for
tDCS.8,24 The cerebellum is involved in motor adapta-
tion via long-term depression-like plasticity of Purkinje
cells mediated by activation of predominantly climbing
fibers.25–27 Via cortico-cerebellar connections, it is
involved in optimization of timing of movements by
comparing a copy of efferent and afferent informa-
tion, which may be enhanced by tDCS.28–31 From a
detailed anisotropic head model study a known optimal
configuration to apply cerebellar tDCS (cb_tDCS) is
available.32

We recently found an instantaneous positive effect of
a postural feedback-based tracking task combined with
anodal cb_tDCS on standing balance performance in a
small group of patients with a chronic stroke (N¼ 15)
when stimulated on the ipsi-lesional cerebellar hemi-
sphere as compared to sham.33 Moreover, it has been
proposed that anodal cb_tDCS may counteract the

effect of crossed cerebellar diaschisis, which induces
a disbalance in cerebellar brain inhibition by a decrease
in activity of Purkinje cells.34 Anodal cb_tDCS
might positively interfere with this process when
applied early.34,35

‘‘POstural feedback ThErapy combined with Non-
invasive TranscranIAL direct current stimulation in
patients with stroke’’ (POTENTIAL) aims to establish
whether virtual reality-based postural feedback training
(VR-PFT) combined with anodal cb_tDCS is more
effective than VR-PFT with sham cb_tDCS in improv-
ing standing balance, starting within five weeks
post-stroke. Clinical measurements are needed to estab-
lish the clinical relevance of cb_tDCS, while posturo-
graphical and neurophysiological measurements are
required to gain understanding into underlying
mechanisms of standing balance performance and
recovery post-stroke.36 We hypothesize that: patients
receiving VR-PFTþcb_tDCS will show a clinically
meaningful improvement of 6 points or more on the
Berg Balance Scale (BBS) at 15 weeks post-stroke
when compared to patients receiving VR-PFTþ sham.
A significantly larger decrease over time in center of
pressure (CoP) parameters is expected after VR-
PFTþcb_tDCS as compared to VR-PFTþsham. We
also hypothesize that these posturographical improve-
ments will be accompanied by neurophysiological
changes evident in normalization in EEG-based theta
and alpha power spectral density and cortical asymme-
tries between hemispheres.

Methods

Study design

POTENTIAL is a double-blind randomized controlled
trial, with 15 intervention sessions of 1 h during three
weeks and a follow-up period until 15 weeks post-
stroke. Forty-six patients with a first-ever ischemic
stroke will be enrolled within five weeks post-stroke.
The study has been approved by the local Medical eth-
ical committee (NL52021.029.15), is registered in the
Dutch trial register (NTR5261) and designed according
to the criteria of the CONSORT 2010 statement.37

A flowchart of the study procedures can be found in
Figure 1.

Patient population

Inclusion criteria are displayed in Figure 1.

Randomization and blinding procedure

Patient, assessors, and therapists will be blinded to
treatment allocation. Block randomization per
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Figure 1. Flowchart of the patient inclusion and study procedures. BBS: Berg Balance Scale; MMSE: Mini Mental State Examination;

HADS: Depression Scale.
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participating center with blocks of six (last block of
four) will be used. Concealed allocation will be effectu-
ated with an online randomization tool (Julius Center,
Utrecht, The Netherlands) performed by an independ-
ent administrator who will convey the randomization
into the tDCS software per patient. The group alloca-
tion is secured by a code only known to the independ-
ent administrator.

Intervention

Training and measurements will take place at the
rehabilitation facility where patients reside or receive
outpatient therapy. Fifteen VR-PFT sessions, applied
five days per week for 1 h will be started within five
weeks post-stroke, in addition to usual care. Subjects
will be randomized by an independent administrator,
into either VR-PFT plus active cb_tDCS (N¼ 23) or
VR-PFT plus sham (N¼ 23). VR-PFT will be given
by trained physical therapists on a balance workstation
(Motek, Amsterdam, The Netherlands). The balance
workstation consists of a customized software setup
with a computer and 42 inch flat screen TV on a
frame. VR software applications will be implemented
in which visual feedback is given regarding center of
gravity or trunk movements during several tasks requir-
ing active control of posture and balance in a virtual
environment (D-flow, Motek, Amsterdam, The
Netherlands), see Supplementary Table 1.

Cb_tDCS application

tDCS will be applied starting 5min before and during
the first 20min of each training session. The stimulation
will be delivered by a portable stimulator (Starstim�,
Neuroelectrics, Barcelona, Spain) through a pair of
3.14 cm2 electrodes filled with a conducting gel, see
Figure 2.

The anodal electrode will be placed 3 cm lateral of the
inion towards the affected leg side, the cathodal electrode
over the buccinator muscle. A 1.5mA constant current
will be applied in the cb_tDCS-group for 25min with a
ramp up and down phase of 30 s. The sham-group will
receive a 0.5mA ramp up of 30 s followed by a ramp
down of 30 s, 24min of 0mA current ending with a
0.5mA ramp up of 30 s and a ramp down of 30 s.
Sham stimulation is a common procedure in tDCS
research as an effective and reliable blinding method.38

Measurement outline

Assessments will be carried out prior to treatment alloca-
tion (baseline assessment, T0) as well directly after the
intervention (T1), repeated two weeks after the end of the
intervention (T2) and at 15 weeks post-stroke (T3). The

clinical measures are performed by the researchers
according to recommended guidelines39 covering the
three domains of the International Classification of
Functioning, Disability and Health (ICF).40

Primary outcome measure

The main outcome parameter is the BBS, which assesses
balance performance and consists of 14 test items in
which the patient is asked to maintain a number of
standing positions and to perform a number of balance
tasks of increasing difficulty. The test is reliable and valid
in stroke patients.41 A 6-points change is considered a
clinical relevant difference.42

Secondary outcome measures

The secondary measures performed are: Fugl-Meyer
Motor Scale lower extremity,43 Motricity Index arm
and leg,44 Erasmus modifications to the Nottingham
Sensory Assessment of both legs,45 Fall history, 10-m
walk test,46 Falls Efficacy Scale,47 Nottingham
Extended Activities of Daily Living,48 and Stroke
Impact Scale version 3.0.49

Patient descriptors: age, date of stroke, affected side,
Bamford classification, comorbidities, handedness, and
smoking habits will be recorded at T0.

Figure 2. Head cap with portable wireless tDCS stimulator.
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Posturographic assessment

Ground reaction forces will be measured to assess
standing balance performance, see Figure 3 for the
complete setup. A monitor providing VF is positioned
at eye-height in front of two force platforms, one foot
positioned on each plate (Motek, Amsterdam, The
Netherlands).

The following conditions will be tested:

(1) Sit eyes open: to obtain the resting state activity of
the brain, four times 60 s of EEG will be recorded
while the patient is seated and is asked to look at a
dot in front of him/her. Two minutes will be rec-
orded at the beginning and 2min at the end of the
session.

(2) Quiet stance eyes-open/ eyes-closed: the patient
will be asked to stand on the force platforms.
Five trials with eyes open and five trials with eyes
closed will be recorded for 60 s.

(3) Tandem stance: the patient is asked, to hold the
most difficult position that is feasible to perform
for minimally 30 s. Five trials will be performed.

(4) Anterior-posterior and medio-lateral limits of
stability: the patient is asked to shift his/hers CoP

forward-backward and sideways as much as pos-
sible shown by a moving dot on a video screen
while maintaining the same foot position.

Posturographic outcome measures

CoP time series will be used to calculate qualitative
measures of standing balance performance. For the
quiet stance conditions we will determine: mean ampli-
tude, amplitude variability, range, velocity, variability
of the velocity and a composite-score of the above-
mentioned parameters representing standing balance
performance.33,50 The anterior-posterior and medio-
lateral limits will be used to determine the area of the
patients limits of stability.

Neurophysiological assessment and outcome
measures

During the quiet stance conditions and sitting task,
32-channel EEG will be recorded. Electrodes will be
placed onto the skull using a head cap according to
the international 10-20 system (TMSI International,
Enschede, The Netherlands). Line noise will be reduced
via bandpass filters and artefacts will be removed by
an independent component analysis approach.51 The
Fieldtrip toolbox for MEG and EEG analysis will
serve to estimate power spectral densities.52 Spectral
power in the theta band (4–7Hz), alpha band
(7.5–12.5Hz), and the beta band (12.5–30Hz) will be
calculated. Asymmetry between hemispheres will be
quantified with the Brain Symmetry Index.19,53

Sample size calculation

Sample size of this phase II study was calculated using a
two-sided alpha of 0.2 with a power of 80% to correctly
identify a potentially beneficial intervention.54,55

Previous studies among (sub)acute ischemic stroke
patients have reported BBS values with a mean of
(M):10, standard deviation (SD):1056 and median
(med):12, interquartile range (IQR):2–22.57 VR-PFTþ
cb_tDCS provides benefit over VR-PFT if the improve-
ment on the BBS over time is 6 points larger at
15 weeks post-stroke.42 In order to find a 6-points dif-
ference in improvement, with a SD of 11, 19 patients
per group are needed. Using a 15% inflation to allow
for non-parametric testing, and allow for a 10% loss to
follow-up, we will need to enroll 23 patients per group.

Statistical analysis

The BBS as the main outcome parameter of this study
will be analyzed with a Mann-Whitney U test to

Figure 3. Balance workstation with double force platforms,

visual feedback with concurrent EEG.
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establish a possible difference between the cb_tDCS
and the sham group. The null hypothesis will be
rejected if the cb_tDCS group shows a larger increase
in BBS score between T0 and T3, as compared to the
sham group with a probability value lower than 0.05.
The difference between the groups need to be 6 points
or larger to be clinically meaningful.

Secondary outcome measures will be analyzed using
a mixed-model approach to establish statistical differ-
ences over time and between stimulation groups. This
model will include factor time (T0, T1, T2, T3) and
stimulation group (cb_tDCS versus sham) for which
T0 and sham will be used as contrast. The distribution
of the data or residuals of the models will be tested for
normality using the Shapiro–Wilk test and by visual
inspection of the histogram when appropriate. When
normality of the residual is not met or in case of ordinal
data and transformation to meet these criteria do not
apply, a non-parametric equivalent will be used. The
null hypothesis will be rejected if the corresponding
probability value in the cb_tDCS group in measure-
ment T3 is lower than 0.05 for the BBS as the main
outcome parameter of this study.

Study organization and funding

Patients will be included in Reade rehabilitation centre
Amsterdam and Vogellanden rehabilitation centre
Zwolle, the Netherlands. Research coordination and
analyses will be conducted at Amsterdam UMC. The
study is funded by the Brain Foundation of the
Netherlands.

Discussion

This trial will contribute to further understanding of
underlying post-stroke recovery processes and whether
these can be influenced by tDCS. Thereby it will add to
a current lack of translational models of preclinical to
human studies which are needed for instance to explain
the large individual variability previously observed in
tDCS studies.33,58,59 As has been recommended by the
series of rehabilitation roundtable papers of the leading
experts in the field, we will combine clinical, posturo-
graphical and neurophysiological measurements, and
conduct the follow-up measurement at a fixed time
point to enhance understanding of post-stroke
recovery.21,22,60–63

Summary and conclusions

This proof of concept double blind, sham controlled trial
will show whether VR-PFT combined with anodal
cb_tDCS is more effective than VR-PFT with sham in
improving standing balance, measured with the BBS,

started within the critical time window for homeostatic
neuroplasticity within five weeks post-stroke.
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