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Effects of symmetry breaking 
of the structurally‑disordered 
Hamiltonian ensembles 
on the anisotropic decoherence 
of qubits
Hong‑Bin Chen

It is commonly known that the dephasing in open quantum systems is due to the establishment 
of bipartite correlations with ambient environments, which are typically difficult to be fully 
characterized. Recently, a new approach of average over disordered Hamiltonian ensemble is 
developed and shown to be capable of describing the nonclassicality of incoherent dynamics based 
on inferring the nonclassical nature of the correlations. Here we further extend the approach of 
Hamiltonian ensemble in the canonical form to the realm of structural disorder. Under the variable 
separation of the probability distribution within the Hamiltonian ensemble, the geometrical structure 
is easily visualized and can be characterized according to the degree of symmetry. We demonstrate 
four degrees and investigate the effects of different types of symmetry breaking on the incoherent 
dynamics. We show that these effects are easily understood from the emergences of additional terms 
in the master equations, leading to rather general master equations and, consequently, going beyond 
the previous frameworks of pure dephasing or isotropic depolarization.

Exposed to the inevitable interactions with the huge surrounding environments, any quantum systems generi-
cally undergo incoherent dynamical processes and gradually lose their  quantumness1–5, constituting the primary 
obstacle in the developments of frontier quantum  technologies6–14. Therefore, it is crucial to characterize, control, 
and eliminate the sources of decoherence. One of the main causes of the incoherent dynamical nature arises from 
the damage to the system-environment correlations established during their interactions. However, due to the 
huge environmental degree of freedom, it is infeasible to fully access these bipartite correlations. This renders 
a general, and precise, description of how the correlations are destroyed highly nontrivial. Consequently, their 
incoherent effects on the reduced system dynamics are taken into account in terms of a family of completely posi-
tive and trace-preserving (CPTP) dynamical linear  maps15–18. Moreover, there are several alternative techniques 
for characterizing CPTP maps have been developed, such as the Kraus  operators19, the process  matrices20, and 
the Choi-Jamiołkowski  isomorphism21,22.

Besides the system-environment interactions, incoherent dynamics can also arise from a completely different 
mechanism. Recently, a promising approach, referred to as Hamiltonian ensemble (HE), has been  developed23,24. 
HE is initially dedicated to the investigation of disordered systems and classical  noises25–28, which are described 
by an ensemble of Hermitian operators parameterized by some random variables obeying a specified probability 
distribution. Irrespective of the unitarity of a single realization generated by each member Hermitian operator, 
the time-evolved state ρ(t) undergoes a dephasing dynamics after the ensemble-averaging procedure over all 
unitary  realizations23,24. Furthermore, it has been pointed out that the incoherent dynamical behavior is inti-
mately related to the properties of the probability  distribution23. Based on this insight, the probability distribution 
encapsulated within the HE has attracted exclusive focus in the characterization of dephasing dynamics, and 
been promoted to be the canonical Hamiltonian ensemble representation (CHER) of dynamical processes in the 
frequency  domain29,30. Additionally, the CHER has been shown to be a versatile approach in the quantification 
of process  nonclassicality29.
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However, due to the difficulty imposed by the non-abelian algebraic structure underlying the canonical HE, 
most of the aforementioned works relied on significant simplifications to circumvent it. For example, the spectral 
disorder appealed to HEs consisting of diagonal operators, leading to the pure  dephasing23. The process nonclas-
sicality was  exemplified24 and  quantified29 under the same framework of Cartan subalgebra. Furthermore, the 
attempt going beyond the framework of pure dephasing was the unitarily invariant disorder, which was studied 
by incorporating the spectral disorder with the Haar measure integral, leading to the isotropic  depolarization23. 
Whereas, the most drawback of this unitary invariance approach lies in the deviation from the canonical form, 
giving rise to the issue of double counting of each member Hermitian operator. It is also worth noting that there 
are efforts devoting to the decomposition of pure dephasing into random unitary (RU) representation with 
static probability  distribution31. However, the generator is still time-dependent, rather than the canonical form.

To cure this issue, as well as to go further beyond the above two frameworks of pure dephasing and isotropic 
depolarization, here we study the canonical HE of structural disorder along with different degrees of symme-
try. This not only enables us to explore more general types of qubit dephasing dynamics in terms of HE in the 
canonical form, but also demonstrates the effects of symmetry breaking of the geometrical structure on the qubit 
incoherent dynamics. The unitarily invariant disorder is shown to be a special case of the spherical symmetry. 
We have reduced the continuous spherical symmetry to three lower levels, until the discrete one of simultane-
ous reflectional symmetries. Each symmetry breaking gives rise to an additional disturbance complicating the 
dynamics, including the anisotropic decay rates, the effective level spacing, and the off-diagonal decay rates. 
Following this line, the pattern of any further generalization can be deduced. Finally, we stress that to understand 
attainable qubit dynamics is important, particulary when we try to find the right type of HE for a physical process.

Hamiltonian ensemble in the spherical coordinates
We begin with presenting the general HE in the canonical form and exploring the corresponding ensemble-
averaged dynamics for a qubit. Generically, any Hermitian operators acting on a qubit system are elements in 
the u(2) Lie algebra of the form Ĥ�� = (�0 Î + �x σ̂x + �y σ̂y + �z σ̂z)/2 . However, as �0 plays no role in describing 
the qubit dynamics due to the commutativity [̂I , σ̂j] = 0 , we can restrict ourselves to the traceless operators in 
the su(2) Lie algebra with �0 = 0.

Here we consider the Hamiltonian ensemble {(p��, Ĥ��)}�� of canonical form parameterized by �� ∈ R
3 , where 

each member Hamiltonian Ĥ�� ∈ su(2) is associated with a probability p�� of occurrence. Since the su(2) Lie 
algebra is non-abelian, the corresponding unitary time-evolution operator Û�� = exp(−iĤ��t) is rather difficult 
to be dealt with in these parameters. Crucially, along with the change of variables to the spherical coordinates 
�x = ω sin θ cosφ , �y = ω sin θ sin φ , and �z = ω cos θ , the HE can be recast into

where �n = (sin θ cosφ, sin θ sin φ, cos θ) ∈ R
3 is the directional unit vector and σ̂ denotes the three Pauli matri-

ces. Accordingly, each operator Û�� = cos(ωt/2)̂I − i sin(ωt/2)�n · σ̂ is explicitly expressed in the spherical coor-
dinates and leads to a unitarily-evolved single realization

provided an initial state ρ0.
In view of the member Hamiltonian encapsulated within the HE (1), as well as the single realization (2), we 

can observe a separation between the radial coordinate, ω , and the solid angular coordinates, (θ ,φ) . Accordingly, 
we will further assume a separable probability distribution

into two positive real functions P(ω) and �(θ ,φ) . We will show that many interesting properties can be conveni-
ently studied with the help of this separation; particularly, the symmetry is easily exhibited by the geometrical 
structure of �(θ ,φ) . One should note that, it is p�� a legitimate probability distribution and normalized to unity ∫
p��d

3�� =
∫ ∫

p(ω, θ ,φ)ω2dωd� = 1 with d� = sin θdθdφ ; while this is not the case for P(ω) or �(θ ,φ) indi-
vidually. We therefore assume that 

∫∞
0 P(ω)ω2dω = 1/ξ and 

∫
�(θ ,φ)d� = ξ due to the separability. This 

guarantees the normalization condition for p(ω, θ ,φ).
Based on the separability, the ensemble-averaged dynamics under the structurally-disordered HE (1) is 

given by

where, for convenience, we have introduced the radial expectation �f (ω)�P =
∫∞
0 f (ω)P(ω)ω2dω with respect to 

P(ω) , nj the three components of �n , the 1st directional moment �nj�� =
∫
nj�(θ ,φ)d� , and the 2nd directional 

moment �njnk�� =
∫
njnk�(θ ,φ)d� . It should be noted that, in the last term of Eq. (4), there are only three 

square terms of the 2nd directional moment left, due to an appropriate orthogonal transformation. This means 
that, for any given HE configuration admitting variable separation (3), one is possible to redefine a new set of 
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axes of the geometry by using a basis transformation to eliminate the crossing terms 〈njnk〉� with j  = k . Conse-
quently, without loss of generality, we can start from the dynamical linear map (4) and ignore the crossing terms 
in the following. This significantly simplifies the complexity of the problem. Further details on the orthogonal 
transformation are discussed in Methods.

On the other hand, the density matrix for a qubit system ρ = (̂I + �ρ · σ̂ )/2 is also an element in the u(2) Lie 
algebra parameterized by the corresponding Bloch vector �ρ ∈ R

3 . Therefore, the properties of the dynamical 
linear map (4) can be fully understood from its action on the generators of the u(2) Lie algebra:

where

and εjkl = 1 if (j, k, l) is an even permutation of (1, 2, 3), −1 if an odd permutation, and 0 otherwise. From the first 
line of Eq. (5), we can see that Et is unital. This can be understood if we note that the HE is a special case with 
time-independent probability distribution and member Hamiltonian of a superset of RU. Due to the unitality, the 
decohering behavior of Et is of the type of depolarization, captured by the second line of Eq. (5). From the later, 
we can see that the decohering behavior of Et depends highly on the structure and the symmetry of p(ω, θ ,φ) 
via the radial expectations and the directional moments. On the other hand, this also reflects the notion of 
 CHER29,30, which conceives the (quasi-)distribution function as the characteristic representation of a dynamics.

Accordingly, we will investigate the dynamical behavior of Et along with different degrees of symmetry of the 
probability distribution exhibited by the solid angular part �(θ ,φ).

Spherical symmetry
We first consider the case of spherically symmetric probability distribution with �(θ ,φ) = 1/4π . Fig. 1a 
shows its visualization with the distance between the surface and the origin indicating the value of �(θ ,φ) 
in solid angular coordinates (θ ,φ) . As �(θ ,φ) is a constant, the geometry forms a sphere; therefore, the HE 
is of spherical symmetry, which is the highest symmetry can be exhibited. It is straightforward to verify that ∫∞
0 P(ω)ω2dω =

∫
�(θ ,φ)d� = 1 , the 1st directional moments �nj�� = 0 , and the 2nd directional moments 

�njnk�� = δjk/3 , satisfying the diagonal condition of Eq. (4).
Under such highly symmetric geometry, from Eq. (5), the ensemble-averaged dynamics is given by

which is a statistical mixture between the completely mixed state and the initial state ρ0 along with a time-varying 
wight w(t) = (2�cosωt�P + 1)/3 . Therefore, the initial state will gradually lose its coherence. Moreover, this 
incoherent dynamical behavior is governed by the master equation of isotropic depolarization

(5)
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Figure 1.  Decoherence under the HE with spherically symmetric probability distribution. (a) Visualization of 
the solid angular part �(θ ,φ) = 1/4π of the probability distribution. As �(θ ,φ) is a constant, the geometry 
is a sphere of radius 1/4π . (b) Time-evolution of the decay rates γ (t) for the Gaussian (black solid curve), the 
exponential cutoff (red dotted curve), and the reciprocal square (blue dashed cruve) radial functions. Their 
behaviors are different to each other, as explained in the main text. The decay rates temporarily go down to 
negative values in some time periods, indicating transitions between indivisibility and full divisibility of the type 
of random unitary. (c) The purities Tr[ρ2(t)] governed by the isotropic depolarization with pure initial states for 
the three radial functions. There is a rivival in the time period of negative decay rate. Additionally, the final value 
of the purities is 5/9, rather than 1/2, reflecting that the final state is not the completely mixed state.
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with decay rate γ (t) = −ẇ(t)/2w(t) ; namely, the three Pauli decay channels share identical decay rate. The 
derivation of the master equation from Eq. (5) is outlined in Ref.23,32–34. Additionally, the decohering dynamics 
of this isotropic depolarization can also be well-understood by the purity

It is worthwhile to note that, the spherical symmetry qualitatively reproduces the unitarily invariant disorder 
for  qubit23, which is studied by means of incorporating the spectral disorder with the Haar measure distributed 
uniformly over whole solid angular coordinates. However, one of the drawbacks of this approach is the occur-
rence of double counting of each member Hamiltonian operator. For example, both of the two identical members 
ωσ̂z/2 and exp(−iπσ̂x/2)(−ωσ̂z/2) exp(iπσ̂x/2) contribute individually to the ensemble-average procedure. On 
the other hand, the HE in the canonical form rules out this circumstance by considering positive radial coordi-
nate exclusively. Therefore, quantitative differences can be seen when we further take the radial part P(ω) into 
account in the following. To further clarify this situation and to exemplify the isotropic depolarization, we will 
carry out several types of distribution functions. As the solid angular part �(θ ,φ) has been specified according 
to the symmetry, we will characterize the distribution functions with the radial part P(ω).

As a comparative study, we consider the Gaussian radial function defined as

for ω ≥ 0 . Note that the standard deviation ωc controls the width of the distribution and therefore plays 
similar role of cutoff frequency. The functional form is specified according to the normalization condition ∫∞
0 PG(ω)ω

2dω = 1 and therefore the coefficient is slightly different from the usual one. For the Gaussian radial 
function PG(ω) , one can analytically evaluate

This allows us to evaluate the mixing weight wG(t) = (2�cosωt�PG + 1)/3 and the decay rate in Eq. (8):

If compared with the one obtained by the unitarily invariant disorder for  qubit23, we can find that Eq. (12) is 
lesser by a factor 2, indicating that the HE in the canonical form rules out the circumstance of double counting. 
The numerical results are shown in Fig. 1b. It can be seen that, γG(t) is initially increasing, then followed by a 
sharp descent to negative values, and finally approaching zero asymptotically from below. Additionally, the time 
evolution of the purity with pure initial state Tr[ρ2(t)] =

[
w2
G(t)+ 1

]
/2 is shown in Fig. 1c. The purity initially 

decays very approaching the completely mixed state due to the increasing γG(t) ; afterwards, it rises again and 
saturates to the value of (w2

G(t → ∞)+ 1)/2 , indicating that the final state deviates from the completely mixed 
state. This property can also be observed in the following two examples and will be discussed latter.

Next, we consider an alternative cutoff in exponential form defined as

satisfying the normalization condition 
∫∞
0 PEC(ω)ω

2dω = 1 . ωc is the cutoff value. With this exponential cutoff, 
we have

the mixing weight wEC(t) = (2�cosωt�PEC + 1)/3 , and the decay rate in Eq. (8):

From Fig. 1b, γEC(t) exhibits a similar behavior to γG(t) , but even sharper oscillation. Consequently, this is also 
the case for the purity Tr[ρ2(t)] =

[
w2
EC(t)+ 1

]
/2 shown in Fig. 1c. This is due to the fact that PEC(ω) pos-

sesses a long wing over high ω domain, leading to a rapid spreading of random unitary rotation and shorter 
coherence time.

As a third example, we consider a radial function of different type. The reciprocal square

for ω ∈ [0,ωc] , is defined on a finite interval rather than infinite length. Again the functional form is specified 
by the normalization condition 

∫ ωc
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2dω = 1 . Then the radial expectation
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leads to the mixing weight wRS(t) = (2�cosωt�PRS + 1)/3 and the decay rate in Eq. (8):

Due to the finite domain of PRS(ω) , the decay rate γRS(t) exhibits a long oscillating tail as shown in Fig. 1b. This 
behavior is very different from γG(t) and γEC(t) , and renders the purity Tr[ρ2(t)] =

[
w2
RS(t)+ 1

]
/2 oscillating 

as well after the initial descent.
It is evident from the above three examples that, whenever the decay rates γ (t) go down to negative values, 

there is a revival of the purity Tr[ρ2(t)] in the time period of negative decay rate. We can even clearly observe 
this phenomenon from the long oscillating tails in the reciprocal square example. This can be explained as a 
typical transition between indivisibility and full  divisibility34–37 of the type of  RU38,39.

On the other hand, although the dynamics is governed by the master equation (8) of isotropic depolarization, 
the final state is generically not the completely mixed state. This can be realized by observing that the purity satu-
rates to a value of 5/9, rather than 1/2 in Fig. 1c. This does not imply the violation of unitality of the ensemble-
averaged dynamics under canonical HE. Since �cosωt�ω3/3 → 0 when t → ∞ in these examples, we have the 
steady mixing weight w(t → ∞) = 1/3 and, consequently, the final state ρ(∞) =

[
2(̂I/2)+ ρ0

]
/3 , a constant 

mixture between the completely mixed state and the initial state ρ0.
We have shown that the spherically symmetric probability distribution qualitatively reproduces the unitarily 

invariant disorder for qubit and leads to the master equation of isotropic depolarization with identical decay 
rate of the three Pauli decay channels. To demonstrate the versatility of the canonical HE in characterizing the 
incoherent dynamics beyond isotropic depolarization, we will further reduce the degree of symmetry and explore 
its effects on the incoherent dynamical behaviors.

Simultaneous azimuthal and reflectional symmetries
To release the spherical symmetry, we consider the HE exhibiting simultaneously the azimuthal symmetry and 
the reflectional symmetry about the x-y plane. Specifically, we will consider the two examples of unbalanced 
regimes; namely the bagel-shaped �(θ ,φ) = π−2 sin θ and the dumbbell-shaped �(θ ,φ) = (3/4π) cos2 θ . Under 
these symmetries, it is straightforward to see that the 1st directional moments vanish again, �nj�� = 0 , and 
the 2nd x- and y-directional moments are equal, �n2x�� = �n2y�� . However, in contrast to the case of spherical 
symmetry, they may not necessarily equal to the 2nd z-directional moment 〈n2z〉� ; meanwhile, without loss of 
generality, we assume that the diagonal condition of Eq. (4) is still hold, i.e., �njnk�� = 0 for j  = k.

After determining the directional moments according to the symmetries, the action of ensemble-averaged 
dynamical linear map in Eq. (5) is significantly simplified as

Since the spherical symmetry is no longer hold, the actions of Et on the three generators are different. Conse-
quently, the incoherent dynamical behavior is governed by the master equation of anisotropic depolarization

with decay rates γj(t) =
[
ḟj(t)/2fj(t)

]
−∑

k �=j ḟk(t)/2fk(t) associated to the corresponding Pauli decay chan-
nels. Moreover, due to the azimuthal symmetry, we have �n2x�� = �n2y�� , fx(t) = fy(t) , and, consequently, 
γx(t) = γy(t) = −ḟz(t)/2fz(t) . Each decay rate can be considered as a competition between 

[
ḟj(t)/2fj(t)

]
’s, which 

are determined by the 2nd directional moments. Accordingly, we will consider the two unbalanced regimes, 
�n2x�� = �n2y�� > ξ/3 > �n2z�� and �n2x�� = �n2y�� < ξ/3 < �n2z�� . Moreover, the profile of purity now depends 
on the initial state ρ0 = (̂I + �ρ0 · σ̂ )/2:

Bagel‑shaped solid angular function. We first show the former by considering the case of a bagel-
shaped solid angular part with �(θ ,φ) = π−2 sin θ . Its visualization is shown in Fig. 2a, from which it is obvi-
ous that �(θ ,φ) exhibits simultaneously the azimuthal symmetry and the reflectional symmetry about the x-y 
plane. With the specified functional form, we can explicitly compute �n2x�� = �n2y�� = 3/8 , �n2z�� = 1/4 , and 
ξ =

∫
�(θ ,φ)d� = 1 , satisfying the required relationship �n2x�� = �n2y�� > 1/3 > �n2z�� . In fact, this relation-

ship can also be inferred from the visualization of �(θ ,φ) before explicit computations.
Now we revisit the three radial functions, the Gaussian PG(ω) (10), the exponential cutoff PEC(ω) (13), and 

the reciprocal square PRS(ω) (16). We first verify that 
∫∞
0 P(ω)ω2dω =

∫
�(θ ,φ)d� = 1 guarantees the nor-

malization condition for p(ω, θ ,φ) , and the radial expectation 〈cosωt〉P with respect to the three radial functions 
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0
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have been shown in Eqs. (11), (14), and (17), respectively. Then the incoherent dynamical behavior can be fully 
understood and the decay rates γj(t) in the master equation (20) can also be computed explicitly. The analytical 
expressions of γj(t) are given in Methods. We show the numerical results with respect to the radial functions 
in Fig. 2.

Figure 2b shows γx(t) (solid curves) and γz(t) (dashed curves) for the Gaussian (black) and the exponential 
cutoff (red) radial functions. Note that, each of the sharp descents of γx(t) for the Gaussian and the exponential 
cutoff under spherical symmetry (cf. Fig. 1b) now splits into two prominent singularities under lower symme-
try. This renders the behavior of γz(t) = −

[
ḟx(t)/fx(t)

]
− γx(t) singular as well. Finally, they again approach 

zero asymptotically. The results for the reciprocal square radial function are shown in Fig. 2c. In contrast to the 
former, both γx(t) and γz(t) are regular. It can be seen that γx(t) shows similar temporal behavior to the one 
under spherical symmetry (cf. Fig. 1b), whereas γz(t) possesses more zeros. Additionally, it is interesting to note 
that the amplitude of γx(t) is larger than γz(t) , reminiscent of the relationship 〈n2x〉� > 〈n2z〉� we are considered. 
Similar analogy can be observed in the latter example. In fact, this analogy provides some insights into the effects 
of symmetry breaking on the decay rates, and will be discussed latter.

The numerical results of purity are shown in Fig. 3 for initial state �ρ0 = (sinϑ0, 0, cosϑ0) with ϑ0 = 0 (solid 
curves), π/4 (dotted curves), and π/2 (dashed curves), respectively. For ϑ0 = 0 , the time evolution is solely 
determined by fz(t) [cf. Eq. (19)], which in turn fully determines γx(t) and γy(t) . Therefore, the profile of purity 
completely reflects the behavior of γx(t) in Fig. 2. It is obvious that positive (negative) γx(t) results in lowering 
(rising) purity, respectively; meanwhile, the singularity of γx(t) leads to a full die-out of purity followed by a 
revival. On the other hand, it is more involved for ϑ0 = π/2 . Now fx(t) dominates the time evolution. This leads 
to a competition between γx(t) and γz(t) . The singular effects of γz(t) are quenched by γx(t) due to the regime 
〈n2x〉� > 〈n2z〉� and therefore the purity is always finite.

Dumbbell‑shaped solid angular function. For the second regime we consider the case of a dumbbell-
shaped solid angular part with �(θ ,φ) = (3/4π) cos2 θ . Its visualization is shown in Fig. 4a and clearly satis-
fies the desired simultaneous symmetries. In this case the 2nd directional moments are �n2x�� = �n2y�� = 1/5 , 
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Figure 2.  Decoherence under the HE with bagel-shaped geometry. (a) Visualization of the solid angular part 
�(θ ,φ) = π−2 sin θ of the probability distribution. The bagel-shaped geometry exhibits the azimuthal and 
reflectional symmetries simultaneously; meanwhile, this leads to the regime �n2x�� = �n2y�� > 1/3 > �n2z�� . (b) 
The decay rates γx(t) (solid curves) and γz(t) (dashed curves) for the Gaussian (black) and the exponential cutoff 
(red) radial functions. Each γx(t) exhibits two singularities and finally approaches zero asymptotically. (c) The 
decay rates γx(t) (solid curves) and γz(t) (dashed curves) for the reciprocal square radial function. γx(t) shows a 
similar oscillating behavior; while γz(t) possesses more zeros. Additionally, the amplitude of γx(t) is larger than 
γz(t) , reflecting the relationship 〈n2x〉� > 〈n2z〉�.
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Figure 3.  The purities Tr[ρ2(t)] for initial state �ρ0 = (sinϑ0, 0, cosϑ0) with ϑ0 = 0 (solid curves), π/4 (dotted 
curves), and π/2 (dashed curves), respectively. For ϑ0 = 0 , strong relation can be observed between the purity 
and γx(t) in Fig. 2. Positive (negative) γx(t) results in lowering (rising) purity, respectively; and the singularity 
of γx(t) leads to a full die-out of purity followed by a revival. While the case of ϑ0 = π/2 is more involved. The 
profile of purity is a result of the competition between γx(t) and γz(t) . Under the regime 〈n2x〉� > 〈n2z〉� , the 
singular effects of γz(t) are quenched by γx(t) and therefore the purity is always finite.
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�n2z�� = 3/5 , and ξ =
∫
�(θ ,φ)d� = 1 , satisfying the required relationship �n2x�� = �n2y�� < 1/3 < �n2z�� . 

Similarly, we adopt the same radial functions again. The analytic expressions are given in Methods. We show the 
numerical results in Fig. 4.

Figure  4b shows the results of γx(t) (solid curves) and γz(t) (dashed curves) for the Gaussian (black) and 
the exponential cutoff (red) radial functions. Under this regime γx(t) ’s are finite with amplitudes smaller than 
the ones under spherical symmetry [cf. Fig. 1b], whereas γz(t) ’s are still singular, reflecting the relationship 
〈n2x〉� < 〈n2z〉� as well. On the other hand, γx(t) for the Gaussian exhibits a similar temporal behavior to the one 
under spherical symmetry; while γx(t) for exponential cutoff exhibits an additional mild rising from negative 
and finally approaches zero asymptotically from above. The results for the reciprocal square radial function are 
shown in Fig. 4c. We can see that both of the decay rates exhibits the same temporal behavior and, consequently, 
possess the same zeros. Meanwhile, We again see the same analogy between the amplitudes of γj(t) ’s and the 
relationship 〈n2x〉� < 〈n2z〉�.

The profile of purity shown in Fig. 5 basically obeys the same logic as that in Fig. 3. However, as here we 
consider the opposite regime, smaller amplitude of γx(t) implies larger purity for ϑ0 = 0 . The singular effects of 
γz(t) are now dominant in the competition with γx(t) and therefore lead to a full die-out of purity for ϑ0 = π/2.

It has been pointed out that, for qubit pure dephsing, the dephasing rate is dominated by the variance of the 
probability distribution within  HE23. On the other hand, provided the simultaneous symmetries considered 
here, the 2nd directional moments play the role of variance alone the specified directions. Consequently, the 
asymmetry goes into play via them, as reflected by the decay rates, and gives rise to the analogy. This point can 
be understood from the decay rates γj(t) in Eq. (20), along with fj(t) in Eq. (6). Furthermore, according to the 
symmetries under consideration, we have �n2x�� = �n2y�� �= �n2z�� . This implies these two regimes and demon-
strates striking difference in the dynamical behavior. In the following, we will further reduce the symmetry by 
considering the azimuthal symmetry exclusively and explore the effects of 1st directional moment.
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Figure 4.  Decoherence under the HE with dumbbell-shaped geometry. (a) Visualization of the solid 
angular part �(θ ,φ) = (3/4π) cos2 θ of the probability distribution. The dumbbell-shaped geometry 
exhibits the azimuthal and reflectional symmetries simultaneously; meanwhile, this leads to the regime 
�n2x�� = �n2y�� < 1/3 < �n2z�� . (b) The decay rates γx(t) (solid curves) and γz(t) (dashed curves) for the 
Gaussian (black) and the exponential cutoff (red) radial functions. γx(t) ’s are finite with smaller amplitudes, 
whereas γz(t) ’s are singular. Furthermore, γx(t) for the exponential cutoff approaches zero asymptotically from 
above after a mild rising. (c) The decay rates γx(t) (solid curves) and γz(t) (dashed curves) for the reciprocal 
square radial function. Both of the decay rates exhibits the same temporal behavior. Finally, in these plots, we 
can see the analogy between the amplitudes of γj(t) ’s and the relationship 〈n2x〉� < 〈n2z〉�.
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Figure 5.  The purities Tr[ρ2(t)] for initial state �ρ0 = (sinϑ0, 0, cosϑ0) with ϑ0 = 0 (solid curves), π/4 (dotted 
curves), and π/2 (dashed curves), respectively. Aforementioned relation between the purity and γj(t) ’s in Fig. 4 
can also be observed. However, due to the regime 〈n2x〉� < 〈n2z〉� considered here, smaller amplitude of γx(t) 
implies larger purity for ϑ0 = 0 . While for the case of ϑ0 = π/2 , the singular effects of γz(t) are dominant and 
therefore lead to a full die-out of purity.
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Azimuthal symmetry
In the presence of the azimuthal symmetry, it has been shown in the previous examples that the 1st x- and y-direc-
tional moments vanish, �nx�� = �ny�� = 0 , and the 2nd x- and y-directional moments are equal, �n2x�� = �n2y�� . 
Crucially, in the absence of reflectional symmetry about the x-y plane, the 1st z-directional moment is typically 
non-vanishing, �nz�� �= 0 . For example, we will consider a solid angular part of three-dimensional cardioid with 
�(θ ,φ) = (1− cos θ)/4π . Its visualization is shown in Fig. 6a.

According to the directional moments determined by the symmetry under consideration, the action of 
ensemble-averaged dynamical linear map in Eq. (5) can be explicitly written as

In the presence of 〈nz〉� , we have one more additional radial expectation 〈sinωt〉P ; meanwhile, the incoherent 
dynamical behavior is governed by the master equation

In deriving the above master equation, we have used the facts that �n2x�� = �n2y�� and fx(t) = fy(t) ; therefore, 
γx(t) = γy(t) = −ḟz(t)/2fz(t) . Note that the most prominent difference of Eq. (23) from the previous examples 
is the presence of an effective level spacing ω(t) = �nz��

[
fx(t)(

d
dt �sinωt�P)− ḟx(t)�sinωt�P

]
/D(t) with 

D(t) = f 2x (t)+ �nz�2��sinωt�2P  .  Addit iona l ly,  t he  de c ay  rate  γz(t) = −
[
fx(t)ḟx(t)/D(t)

]
− γx(t)

−
[
�nz�2��sinωt�P( d

dt �sinωt�P)/D(t)
]
 is also altered in the presence of finite 〈nz〉� . Both of ω(t) and the variation 

of γz(t) are results of the lack of the reflectional symmetry about the x-y plane.
Instead of the unbalanced regimes considered in the two previous examples, now we demonstrate a balanced 

one with �n2x�� = �n2y�� = 1/3 = �n2z�� to simplify the complexity. We consider a solid angular part of three-
dimensional cardioid with �(θ ,φ) = (1− cos θ)/4π . Its visualization is shown in Fig. 6a. We can verify that the 
desired balanced regime is satisfied, and compute �nx�� = �ny�� = 0 and �nz�� = −1/3 . With the same radial 
functions, we can determine the effective level spacing ω(t) and the decay rate γj(t) in the master equation (23). 
In addition to 〈cosωt〉P , now we need one more radial expectation 〈sinωt〉P . The analytical expresstions with 
respect to the three radial functions are given in Methods.

Thanks to the balanced regime under consideration, we find that γx(t) = γy(t) and they are exactly the same 
as those under spherical symmetry; while this is not the case for γz(t) due to the breaking of the reflectional 
symmetry. We therefore show the numerical results of ω(t) and γz(t) in Fig. 6b,c, respectively. For the Gauss-
ian radial function (black solid curve), ω(t) begins with a negative value. After a shallow drop, a sharp peak is 
followed, then going down to negative again, and finally approaching zero asymptotically from below. For the 
exponential cutoff (red dotted), the line shape is similar to that of Gaussian but an overturned one. However, 
for the reciprocal square (blue dashed curve), ω(t) exhibits a long oscillating tail due to the finite domain of 
PRS(ω) . On the other hand, it is interesting to note that, the overall line shape of γz(t) is similar to the one under 
spherical symmetry, but an additional drop before reaching the peaking value. The similarity is a consequence 
of the balanced regime, according to the aforementioned analogy. However, the asymmetry is also influential 
by perturbing γz(t).

(22)






Et{�I} = �I
Et{σ̂x} = fx(t)σ̂x + �sinωt�P�nz��σ̂y
Et{σ̂y} = fy(t)σ̂y − �sinωt�P�nz��σ̂x
Et{σ̂z} = fz(t)σ̂z

,

(23)
∂

∂t
ρ(t) = −i

[
ω(t)

2
σ̂z , ρ(t)

]
+

3∑

j=1

γj(t)

2

[
σ̂jρ(t)σ̂j − ρ(t)

]
.

(a) (b) (c)

0 4 8 12 16
-3

-2

-1

0

1

2

3

4

0 4 8 12 16
-1.2
-0.8
-0.4

0

0.8

1.6

2.4

3.2

Reciprocal square

Exponential cutoff

Gaussian

Reciprocal square

Exponential cutoff

Gaussian

Figure 6.  Decoherence under the HE with the geometry of 3D cardioid. (a) Visualization of the solid angular 
part �(θ ,φ) = (1− cos θ)/4π of the probability distribution. This geometry exhibits the azimuthal symmetry 
exclusively; meanwhile, this leads to the balanced regime �n2x�� = �n2y�� = 1/3 = �n2z�� . (b) The averaged level 
spacing ω(t) for the Gaussian (black solid curve), the exponential cutoff (red dotted curve), and the reciprocal 
square (blue dashed cruve) radial functions. Its presence is a result of the lack of the reflectional symmetry 
about the x-y plane. (c) The decay rate γz(t) for the Gaussian (black solid curve), the exponential cutoff (red 
dotted curve), and the reciprocal square (blue dashed cruve) radial functions. The line shape is similar to the 
one under spherical symmetry appended by an additional drop before the peaking value, which is a result of the 
asymmetry.
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Simultaneous reflectional symmetries
Finally, we consider a more asymmetric case by reducing the continuous azimuthal symmetry to a discrete one, 
i.e., the simultaneous reflectional symmetries about the x-z and y-z planes. In this case, we can only deduce the 
vanishment of the 1st x- and y-directional moments, �nx�� = �ny�� = 0 . The three 2nd directional moments 
are generically different due to the lack of the azimuthal symmetry.

Given the vanishing 1st x- and y-directional moments, the action of ensemble-averaged dynamical linear 
map in Eq. (5) is formally the same as Eq. (22) under azimuthal symmetry. Whereas the corresponding master 
equation

possesses two more decay channels with the off-diagonal decay rates

where D(t) = fx(t)fy(t)+ �nz�2��sinωt�2P . It is clear that their presences are a result of the azimuthal symmetry 
breaking. As this is the lowest degree of symmetry considered here, Eq. (24) is the most general master equation 
we have demonstrated. It can be reduced to all the previous ones if the corresponding symmetries are recovered.

To exemplify this case of low symmetry, we consider a solid angular part of kneaded cardioid with 
�(θ ,φ) = (1− cos θ)(1+ a cos 2φ)/4π , where 0 ≤ a ≤ 1 describes the degree of lateral asymmetry of the 
geometry. Its visualization is shown in Fig. 7a with a = 0.3 . Due to the φ-dependence, the geometry appears to 
be subject to stress along the y-axis, and then expanding along the x-axis. Therefore the azimuthal symmetry is 
broken and merely the simultaneous reflectional symmetries are left. For this �(θ ,φ) , we have �nz�� = −1/3 , 
�n2x�� = (2+ a)/6 , �n2y�� = (2− a)/6 , and �n2z�� = 1/3 . Along with the radial expectations 〈cosωt〉P shown in 
Eqs. (11), (14), and (17), as well as 〈sinωt〉P in Methods, the numerical results of γxy(t) (25) are shown in Fig. 7.

The results for the Gaussian radial function are represented in Fig. 7b by black (solid and dashed) curves with 
varying lateral asymmetry a. As expected, γxy(t) is gradually vanishing with decreasing a (i.e., more symmetric 
geometry), reflecting the fact that γxy(t) is a result of azimuthal symmetry breaking. In contrast, γxy(t) becomes 
more prominent when a is large. The negative peak even splits into two singularities at a = 0.3 , as indicated by 
the black dashed curve. Moreover, the results for the exponential cutoff radial function are represented by red 
(solid and dashed) curves with varying a. It can be seen that the overall tendency is the same as Gaussian but 
an overturned one. The curves show a positive peak at an earlier time; meanwhile, the exponential-cutoff case 
shows singularities at a larger value of a = 0.7 , as indicated by the red dashed curve.

On the other hand, the results for the reciprocal square radial function are represented in Fig. 7c by blue 
curves with varying a. The tendency toward vanishment with decreasing a can also be seen; whereas, in contrast 
to the other two radial functions, the deformation of the line shape with a is even, without showing singular-
ity, even if a is large. Moreover, akin to the other decay rates with the same reciprocal square radial function, 
γxy(t) also exhibits an oscillating tail, after the negative main peak. Crucially, from these results of Gaussian and 
reciprocal square radial functions, there is a distinct property the off-diagonal decay rate γxy(t) can be observed 

(24)
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+
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(25)γxy(t) = γyx(t) = −�nz��[fx(t)− fy(t)] ddt �sinωt�P
2D(t)

+ �nz��[ḟx(t)− ḟy(t)]�sinωt�P
2D(t)

,
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Figure 7.  Decoherence under the HE with the geometry of kneaded cardioid. (a) Visualization of the solid 
angular part �(θ ,φ) = (1− cos θ)(1+ a cos 2φ)/4π with lateral asymmetry a = 0.3 . The azimuthal symmetry 
is broken due to the φ-dependence, and merely the simultaneous reflectional symmetries about the x-z and y-z 
planes are left. (b) The decay rate γxy(t) for the Gaussian (black) and the exponential cutoff (red) radial functions 
with different lateral asymmetry a. As γxy(t) is caused by the azimuthal symmetry breaking, it is gradually 
vanishing when a is decreasing and, contrarily, becomes more prominent for a more asymmetric geometry. 
As indicated by the dashed curves, the negative peaks even split into two singularities at a = 0.3 and 0.7 for 
Gaussian and exponential cutoff radial functions, respectively. (c) The decay rate γxy(t) for the reciprocal square 
radial function with different lateral asymmetry a. Similar tendency toward vanishment with decreasing a can 
also be seen. However, for the reciprocal square, γxy(t) do not exhibit singularity even if under large asymmetry.
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as well. To guarantee the complete positivity of the dynamical linear map Et , the short time behavior of all the 
digonal decay rates γj(t) associated to the Pauli decay channels is rising at beginning. Any negative values can 
only emerge after a period of positive values. However, γxy(t) is possible to have a short time behavior of descent 
to negative at beginning. We stress that this does not imply the violation of complete positivity as the eigenvalues 
of the Kossakowski matrix K = [γjk(t)] exhibit a short time behavior of rising to positive at beginning.

Conclusion and discussion
In summary, we have explored the incoherent dynamics of qubits raised from the ensemble average over the 
canonical HE of structural disorder. Under the variable separation (3) of the probability distribution within the 
HE into the radial and the solid angular parts, the structural disorder can be characterized in accordance with 
the degree of symmetry of the solid angular geometry. The effects of asymmetry are particularly manifest via the 
corresponding master equation in the Lindblad form.

In this work we have considered three radial functions; namely, the Gaussian, the exponential cutoff, and the 
reciprocal square. We first show the most symmetric case of spherical symmetry, leading to the master equa-
tion of isotropic depolarization. It is worthwhile to note that the canonical HE of spherical symmetry not only 
reproduces the results of unitarily invariant disorder for  qubit23, but also resolves the issue of double counting. 
Further versatility of the canonical HE in describing various types of incoherent dynamics beyond isotropic 
depolarization is revealed by considering asymmetric cases. In addition to the spherical symmetry, we have also 
demonstrated three lower degrees of symmetry. We can observe the effects caused by the symmetry breaking of 
different types via the master equation in the Lindblad form, including the singularities of the decay rates, the 
effective level spacing, and the off-diagonal decay rates. Generally speaking, the more asymmetric the geometry 
is, the more terms emerge.

Notably, the asymmetry goes into play via the 1st and 2nd directional moments, which in turn determine 
the aforementioned terms in the master equation. The effective level spacing ω(t) emerges in the presence of 1st 
directional moments, which are caused by the reflectional symmetry breaking. They denote the mean values 
alone the specified directions. While the time dependence of ω(t) is determined by the 2nd directional moments 
and the radial expectations, characterizing the overall asymmetry and the radial disorder, respectively. On the 
other hand, the behaviors, particularly the time dependence, of the decay rates are also intimately related to 
the directional moments. This can be easily understood from the analogy between the relationship of the 2nd 
directional moments (balanced/unbalanced regimes) and the amplitudes of the decay rates. Moreover, the pres-
ence of 1st directional moments will further complicate the decay rates. Finally, the highly asymmetric case gives 
rise to the emergence of off-diagonal decay rates. Interestingly, very similar conclusions have been drawn under 
the framework of qubit pure  dephasing23, where it has been shown that ω(t) is given by the mean value and the 
asymmetry of the distribution, while the dephasing rate is given by the variance and the kurtosis.

Finally, it is worthwhile to note that the variable separation (3) can be further released by considering corre-
lated radial and angular coordinates, leading to even more general joint probability distributions p(ω, θ ,φ) . For 
example, expansion in terms of spherical harmonics Yl,m(θ ,φ) has been demonstrated in Ref.30. Furthermore, 
this problem can also be investigted from the viewpoint of RU, which is highly related to HE. Since the RU rep-
resentation is a useful tool in the study of open system  dynamics31,38,39, considerable efforts have been devoted 
into the investigation of UR  decomposition40–42. For example, master equation in the same form as Eq. (20) is 
derived by mixing fluctuating Gaussian noise along different  angles39.

On the other hand, it is know that any qubit or qutrit phase damping dynamical mpas are  RU43,44. However, 
neither the RU-decomposition nor the extreme points for higher dimensional cases are unclear. These prob-
lems can in general merely be numerically  implemented43. Therefore, the canonical HE would not only provide 
insights into the effects of higher asymmetry beyond the framework of existing RU representation, but also 
establish a systematic approach to single out the attainable subset, and substantially simplify the problem of 
RU-decomposition. This underpins the significance of our approach.

Methods
Orthogonal transform of the 2nd directional moments. According to the last term of Eq. (2) in the 
main text, there should be 9 terms in the last summation of Eq. (4):

Since the 9 terms of 2nd directional moment �nj′nk′ �� forms a symmetric matrix, it can be diagonalized with an 
appropriate orthogonal matrix û = [uj′j] such that

This corresponds to a basis transformation σ̂j =
∑3

j′=1 uj′jσ̂j′ and a rotation nj =
∑3

j′=1 uj′jnj′ of the directional 
unit vector. The later is necessary in the first summation of Eq. (4).

Decoherence under simultaneous azimuthal and reflectional symmetries. As explained in the 
main text, given the probability distribution p(ω, θ ,φ) = P(ω)�(θ ,φ) with the solid angular part �(θ ,φ) exhib-

(26)
3∑

j′ ,k′=1

�nj′nk′ ��σ̂j′ρ0σ̂k′ .

(27)�nj′nk′ �� =
3∑

j,k=1

uj′jδjk�n2j ��uk′k .
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iting simultaneously the azimuthal symmetry and the reflectional symmetry about the x-y plane, we can com-
pute the decay rates

in the master equation (20) of anisotropic depolarization, where fj(t) = �cosωt�P
(
ξ − �n2j ��

)
+ �n2j ��/ξ . In 

these expressions, we have used the facts that �n2x�� = �n2y�� and fx(t) = fy(t) due to the azimuthal symmetry.

Decay rates for bagel‑shaped geometry. Given the solid angular part �(θ ,φ) = π−2 sin θ , we can 
further compute �n2x�� = �n2y�� = 3/8 , �n2z�� = 1/4 , and ξ =

∫
�(θ ,φ)d� = 1.

To fully determine the probability distribution p(ω, θ ,φ) = P(ω)�(θ ,φ) , we revisit the three radial functions 
defined in Eqs. (10), (13), and (16) in the main text. Then the radial expectation 〈cosωt〉P with respect to the three 
radial functions are shown in Eqs. (11), (14), and (17), respectively. Combining all the necessary information 
above, we obtain the decay rates for Gaussian PG(ω)

for exponential cutoff PEC(ω)

and for reciprocal square PRS(ω)

respectively. The numerical results are shown in Fig. 2.

Decay rates for dumbbell‑shaped geometry. Given the solid angular part �(θ ,φ) = (3/4π) cos2 θ , 
we can further compute �n2x�� = �n2y�� = 1/5 , �n2z�� = 3/5 , and ξ =

∫
�(θ ,φ)d� = 1 . Given the same radial 

functions again, then we have the same radial expectations 〈cosωt〉P as shown in Eqs.  (11), (14), and (17), 
respectively. We can compute the decay rates for Gaussian PG(ω)

for exponential cutoff PEC(ω)

and for reciprocal square PRS(ω)

respectively. The numerical results are shown in Fig. 4.

Radial expectations for the three radial functions. In the absence of the reflectional symmetry, we 
encounter an additional radial expectation 〈sinωt〉P in Eq. (22), which is necessary in determining the effective 
level spacing and the decay rates. We can compute 〈sinωt〉P analytically for Gaussian PG(ω)

for exponential cutoff PEC(ω)

(28)
{
γx(t) = γy(t) = −ḟz(t)/2fz(t)

γz(t) = −
[
ḟx(t)/fx(t)

]
+

[
ḟz(t)/2fz(t)

]
= −

[
ḟx(t)/fx(t)

]
− γx(t)

(29)






γx(t) = γy(t) = 3ωc
ωct[3−(ωct)

2]
6[1−(ωct)2]+2 exp [(ωct)2/2]

γz(t) = 5ωc
ωct[3−(ωct)

2]
5[1−(ωct)2]+3 exp [(ωct)2/2]

− γx(t)

,

(30)






γx(t) = γy(t) = 6ω2
c t

[3−(ωct)
2][1+(ωct)

2]+2[1−6(ωct)
2+(ωct)

4]
3[1−6(ωct)2+(ωct)4][1+(ωct)2]+[1+(ωct)2]

5

γz(t) = 20ω2
c t

[3−(ωct)
2][1+(ωct)

2]+2[1−6(ωct)
2+(ωct)

4]
5[1−6(ωct)2+(ωct)4][1+(ωct)2]+3[1+(ωct)2]

5 − γx(t)

,

(31)






γx(t) = γy(t) = 3ωc
sinωct−(ωct) cosωct
6(ωct) sinωct+2(ωct)2

γz(t) = 5ωc
sinωct−(ωct) cosωct
5(ωct) sinωct+3(ωct)2

− γx(t)
,

(32)






γx(t) = γy(t) = ωc
ωct[3−(ωct)

2]
2[1−(ωct)2]+3 exp [(ωct)2/2]

γz(t) = 4ωc
ωct[3−(ωct)

2]
4[1−(ωct)2]+exp [(ωct)2/2]

− γx(t)

,

(33)






γx(t) = γy(t) = 4ω2
c t

[3−(ωct)
2][1+(ωct)

2]+2[1−6(ωct)
2+(ωct)

4]
2[1−6(ωct)2+(ωct)4][1+(ωct)2]+3[1+(ωct)2]

5

γz(t) = 16ω2
c t

[3−(ωct)
2][1+(ωct)

2]+2[1−6(ωct)
2+(ωct)

4]
4[1−6(ωct)2+(ωct)4][1+(ωct)2]+[1+(ωct)2]

5 − γx(t)

,

(34)






γx(t) = γy(t) = ωc
sinωct−(ωct) cosωct
2(ωct) sinωct+3(ωct)2

γz(t) = 4ωc
sinωct−(ωct) cosωct
4(ωct) sinωct+(ωct)2

− γx(t)
,

(35)�sinωt�PG(ω) =
∫ ∞

0
sinωtPG(ω)ω

2dω =
√

2

π
ωct + e−

(ωc t)
2

2
[
1− (ωct)

2
]
erfi

(
ωct√
2

)
,
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and for reciprocal square PRS(ω)

respectively.
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