Prevalence, pattern \& correlates of hypertension among tribal population of Kashmir, India: A cross-sectional study

Mohd Ashraf Ganie ${ }^{1}$, Tabassum Parvez², S. Arun Viswanath ${ }^{1}$, Vishnubhatla Sreenivas ${ }^{6}$, Lakshmy Ramakrishnan ${ }^{7}$, Sobia Nisar ${ }^{5}$, Tajali Sahar ${ }^{4}$, Irfan Robbani ${ }^{3}$, Shiekh Abid Ali ${ }^{4}$, Aafia Rashid ${ }^{7}$ \& Ishfaq Ahmad Wani ${ }^{4}$
Departments of ${ }^{1}$ Endocrinology, ${ }^{2}$ Obstetrics \& Gynaecology, ${ }^{3}$ Radio Diagnosis \& Imaging, ${ }^{4}$ Clinical Research Laboratory, Sher-I-Kashmir Institute of Medical Science, ${ }^{5}$ Department of Medicine, Government Medical College \& Associated Hospital, Srinagar, Jammu \& Kashmir, Departments of ${ }^{6}$ Biostatistics \& ${ }^{7}$ Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India

Received January 9, 2019

Abstract

Background \& objectives: The prevalence of hypertension is increasing among all ethnic groups across the globe with only a handful of studies from India addressing the prevalence of hypertension among tribal population. In view of paucity of data, this study was aimed at estimating the prevalence of hypertension and associated risk factors among tribal population of Kashmir, India.

Methods: This cross-sectional survey included 6808 tribals aged >20 yr (5695 Gujjars and 1113 Bakarwals) from five randomly selected districts of Kashmir. Modified WHO-STEPS surveillance questionnaire was used to collect relevant data. Hypertension was defined by Joint National Committee on Prevention, Detection, Evaluation and Treatment of Hypertension (JNC 8) criteria. Results: The mean age of our study participants was 43.12 ± 15.69 years. Overall prevalence of hypertension [95\% confidence interval (CI)] was 41.4\% (39.9-42.9\%) [men=46.7\% (44.1-49.1\%); women $=37.9 \%(35.9-39.9 \%)]$. The prevalence of prehypertension (95% CI) in our study was 35 per cent (33.7-36.6\%). Higher age [adjusted odds ratio (OR) (95\% CI): >70 yr-2.2 (1.9-2.4)], passive smoking [OR-1.3 (1.1-1.5)], family history of hypertension [OR-1.6 (1.4-1.7)] and obesity [OR-1.3 (1.1-1.6)] were significantly associated with hypertension. A weak positive correlation was observed between BP (systolic/diastolic) with haemoglobin, red blood cell count and haematocrit ($P<0.05$). Interpretation \& conclusions: Gujjar and Bakarwal tribes of Jammu and Kashmir showed high prevalence of hypertension. Hence, urgent policies and reforms are needed to tackle this silent epidemic and further studies focusing on community-based interventions are required.

Key words Age - hypertension - Kashmir - prevalence - tribal population

Hypertension, a major modifiable metabolic risk factor for CVD was ranked as the leading cause of global burden of diseases in 2010 with
four million deaths and seven per cent disabilityadjusted life years (DALYs) lost worldwide due to its complications ${ }^{1}$.In India, hypertension [high
systolic blood pressure (BP)] has been identified as one of the five major risk factors contributing to DALYs with an increase in the prevalence from 1990 to 2016^{2}. Since high BP hardly produces any symptoms, diagnosis of hypertension largely relies on screening programmes and incidental detection. Epidemiological studies in the last decade have reported varying prevalence of hypertension ranging from 17 to 47 per cent from different parts of India ${ }^{3-5}$ and a systematic review of epidemiological studies found overall prevalence of hypertension as 29.8 per cent with a significant urban-rural difference ${ }^{4}$. A large nationwide study (ICMR-INDIAB study) also reported the prevalence of hypertension as 26.3 per cent ${ }^{5}$.

In India, tribal population accounts for 104.3 million constituting 8.6 per cent of the total population as per 2011 census ${ }^{6}$. Epidemiological studies of hypertension among Indian tribes have been far and few. A meta-analysis of prevalence of hypertension in Indian tribes, which included around 20 studies published over three decades (1981-2011) showed the prevalence of only 16.1 per cent but with a significant increasing trend in prevalence with each passing decade ${ }^{7}$. This study also noted lower prevalence of hypertension among tribes from Himalayan and northeastern region as compared to other regions which was attributed to chronic hypoxic stress due to residence at higher altitude, leading to vasodilation and consequent fall in $B P^{7}$.

Only a couple of studies have reported prevalence of hypertension from Kashmir valley, and these were mostly conducted on small samples ${ }^{8,9}$. However, there is no information on the prevalence of hypertension among tribal subjects of Kashmir who are quite unique compared to tribes from other parts of India because they live at high altitude and face prolonged and harsh winter season that lasts for almost half of the year. Their food and lifestyle habits are also different from other parts of the country. This study was aimed at estimating the prevalence of hypertension and its correlates among the indigenous tribal population of Kashmir across different districts of the valley. In addition, the prevalence of prehypertension was also assessed among the study population. Though pre-hypertension has not been recognized as a separate category of BP, it has been demonstrated to be an important risk factor for developing hypertension in the future in many studies ${ }^{10}$.

Material \& Methods

This was a cross-sectional health survey conducted from January 2015 to December 2018 among the tribal population of the Kashmir Valley. Of the 12 districts of Kashmir valley housing tribal population [non-migratory tribes (Gujjars) and migratory tribes (Bakarwals)], five districts (Anantnag, Pulwama, Ganderbal, Kupwara and Srinagar) were selected randomly. The study was approved by the Institutional Ethics Committee of Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar. An informed written consent was obtained from all the participants. Individuals aged 20 yr or above residing in the selected study area who gave consent to participate in the study were included.
Study population: After random selection of districts (5/12), one tehsil followed by a block and then villages were selected based on multistage cluster sampling with probability proportional to size technique ${ }^{17}$. These villages were exclusively inhabited by tribal population, with a maximum cap of 1000 individuals per village. After liaising with village heads, panchayat members, local health authorities and religious leaders, awareness lecture about non-communicable diseases (NCDs) was organized to sensitize the target population. On the following day of the camp, the research staff approached the village residents by house-to-house survey starting randomly from one point. The individuals were handed a subject information sheet with the study protocol (in English or Urdu) that was explained to them by study team members in the presence of local volunteers who would help in interpretation. Those residing in the village for more than one year, aged 20 yr or above and furnished written informed consent were enrolled in the study. Those who refused to participate, was pregnant, could not give complete response due to physical or mental illness and in whom anthropometry or biochemical parameters could not be performed were excluded from the study.

Clinical assessment: Modified WHO-STEPS

 questionnaire ${ }^{12}$ for NCD risk factor surveillance was used to obtain socio-demographic information and to assess the risk factors of hypertension such as smoking (active or passive), indoor pollution, physical activities, housing condition, drinking water and alcoholism. The standardized English language questionnaire was translated to Urdu for easy understanding and validated. To administer the questionnaire, a face-to-face interview was conducted in localvernacular language by limited number of trained researchers proficient in tribal languages. Revised modified BG Prasad socio-economic classification scale was used to ascertain socio-economic class of the study population ${ }^{13}$. Education was categorized as high (secondary or high school, college or university) and low (primary education or no education) ${ }^{14}$.

The anthropometric measurements included measurement of weight, height and calculation of BMI as per the WHO guidelines ${ }^{15}$ and were classified as per the consensus Statement of the Association of Physicians of India ${ }^{16}$. The height in centimetre and weight in kilogram were taken as average of three readings using standard scales (SECA 213, Hamburg Germany). BP was measured on the left arm of each individual after being seated for five minutes without prior consumption of coffee or smoke using digital sphygmomanometer (OMRON Model HEM-7203). Three readings were taken 3-5 min apart, and the average of the readings was calculated and taken as the final BP measurement. A brief general physical examination was done to note any relevant findings.

Laboratory assessment: A fasting or random venous blood sample was obtained by trained phlebotomists for haemogram, liver and kidney function tests. Haemogram was measured using automated counter Swelab Alfa Autosampler(Boule Diagnostics, Sweden), while biochemical parameters were measured using fully automated biochemistry analyzer (DiaSys Respons ${ }^{\circledR}$ 910, Germany).

Definition and categorization of hypertension: Joint NationalCommitteeonPrevention, Detection, Evaluation and Treatment of high BP (JNC 8) ${ }^{17}$ classification was used for diagnosing hypertension. All the participants with a systolic BP (SBP) $\geq 140 \mathrm{mmHg}$ and/or diastolic $\mathrm{BP}(\mathrm{DBP}) \geq 90 \mathrm{mmHg}$ or who reported currently taking medication for the treatment of high BP were classified as having hypertension. Treatment of hypertension was defined as self-reported use of anti-hypertensive medication in the last two weeks. Control of hypertension was defined as pharmacological treatment of hypertension associated with $\mathrm{SBP}<140 \mathrm{mmHg}$ and DBP $<90 \mathrm{mmHg}$ as per the definition issued by the World Hypertension League Expert Committee in 2014^{18}. As per JNC8, (i) stage 1 hypertension was defined as SBP $140-159 \mathrm{mmHg}$ and/or DBP $90-99 \mathrm{mmHg}$; (ii) stage 2 hypertension was defined as SBP $\geq 160 \mathrm{mmHg}$ and/or DBP $\geq 100 \mathrm{mmHg}$; (iii) isolated systolic hypertension was defined as SBP above the cut-off designed for
hypertension with normal DBP, while isolated diastolic hypertension was defined as normal SBP with DBP above the cut-off defined for hypertension; and (iv) prehypertension was defined as SBP above 120 mmHg but less than the cut-off for hypertension and/or DBP between 80 and 89 mmHg in the absence of a diagnosis of hypertension or treatment with medication for high BP.

Categorization of haemogram: Haematological parameters were grouped as follows: total leucocyte count as $10^{9} / 1-<4.0$ (low), 4-11 (normal) and >11 (high); haemoglobin (Hb as g / dl) $-<11$ (low or anaemia), 11-14.99 (normal) and ≥ 15 (high); haematocrit (HCT as \%)-<35 (low), 35-45 (normal) and >45 (high); red blood cell (RBC) count $\left(10^{12} / \mathrm{l}\right)-<4$ (low), 4-5.5 (normal) and >5.5 (high), platelet count (PLT as $\left.10^{9} / \mathrm{l}\right)-<150$ (low) and 150-400 (normal) (reference range as per our laboratory).

Sample size was calculated using the prevalence of hypertension reported from Central Kashmir from a previous study ${ }^{8}$, which was 34.12 per cent. An absolute precision of two per cent was used to calculate sample size. Although 6808 individuals agreed to participate in the study and were enrolled, only 4038 with complete data were included for final analysis.
Statistical analysis: The data were entered in Microsoft excel and analysed using IBM-SPSS version 20.0 (SPSS Inc., Chicago, IL, USA). Chi-square's test of significance was performed to find out significance of the study results. Frequencies and percentages were calculated to summarize qualitative data. Logistic regression was applied to identify the correlates for hypertension. The odds ratio (OR) was reported with 95 per cent CI.

Results

Socio-demographic characteristics: Of a total of 6808individuals interviewed, 4038 had complete information for final analysis. The mean age of the participants was $43.12 \pm 15.69 \mathrm{yr}$ (ranging from 20 to 109 yr). The females were considerably younger than males (40.56 ± 14.41 vs. $46.97 \pm 16.73 \mathrm{yr}$). The mean BMI was $21.9 \pm 4.75 \mathrm{~kg} / \mathrm{m}^{2}$ with female participants having a slightly higher BMI (22.26 5 5.08) than their male counterparts (21.34 ± 4.15). Table I shows the socio-demographic, behavioural and clinical characteristics of the study participants. Odds of having hypertension were higher with increasing age, male sex, smoking and obesity.

Variables	Total (n)	HTN, n (\%)	P	Unadjusted OR (95\% CI)	Adjusted prevalence OR (95\% CI)
Age group (yr)					
20-29	869	165 (19)	<0.001	1.0	1.0
30-39	920	283 (30.8)		1.9 (1.5-2.4)*	1.3 (1.1-1.5)*
40-49	876	371 (42.4)		3.1 (2.5-3.9)*	1.7 (1.5-1.9)*
50-59	548	306 (55.8)		5.4 (4.2-6.9)*	$1.9(1.7-2.1)^{*}$
60-69	488	315 (64.5)		7.8 (6.0-10.0)*	2.1 (1.9-2.4)*
≥ 70	337	232 (68.8)		9.4 (7.1-12.6)*	2.2 (1.9-2.4)*
Gender					
Male	1612	753 (46.7)	<0.001	1.4 (1.3-1.6)*	1.0 (0.9-1.2)
Female	2426	919 (37.9)		1.0	1.0
Socio-economic class					
Lower	3040	1295 (42.6)	0.007	1.3 (0.9-1.8)	1.2 (0.9-1.6)
Others	998	377 (37.8)		1.0	1.0
Education status					
Low	3800	1611 (43.4)	<0.001	2.1 (1.6-2.9)*	0.9 (0.7-1.1)
High	238	61 (25.6)		1.0	1.0
Occupation					
Employed	3436	1372 (39.9)	<0.001	1.0	1.0
Unemployed	602	300 (49.8)		$1.5(1.3-1.8) *$	1.0 (0.9-1.2)
Active smoking					
Yes	969	448 (46.2)	<0.001	1.3 (1.1-1.5)*	0.9 (0.7-1.0)
No	3069	1224 (39.9)		1.0	1.0
Passive smoking					
Yes	872	399 (45.8)	0.003	1.3 (1.1-1.5)*	1.3 (1.1-1.5)*
No	3166	1273 (40.2)		1.0	1.0
Family history of HTN					
Yes	431	263 (61.0)	<0.001	2.5 (2.0-3.0)*	1.6 (1.4-1.7)*
No	2369	919 (38.8)		1.0	1.0
BMI					
Underweight	711	259 (36.4)	<0.001	1.0	1.0
Normal	1964	757 (38.5)		1.1 (0.1-1.3)	1.1 (0.9-1.2)
Overweight	531	231 (43.5)		1.3 (1.1-1.7)*	1.1 (0.9-1.3)
Obese	832	425 (51.1)		$1.8(1.5-2.2)^{*}$	1.3 (1.1-1.6)*
WC-high risk					
Yes	1755	759 (43.2)	<0.001	1.1 (1.0-1.3)	1.0 (0.9-1.2)
No	2282	913 (37.9)		1.0	1.0
Dyslipidaemia					
Yes	1423	627 (44.1)	<0.001	$1.4(1.1-1.6){ }^{*}$	1.1 (0.9-1.2)
No	972	358 (36.8)		1.0	1.0
${ }^{*} P<0.05$. HTN, hypertension; BMI, body mass index; WC, waist circumference; OR, odd's ratio; CI, confidence interval					

Burden of hypertension: Overall prevalence of hypertension was 41.4 per cent [95% confidence interval (CI): 39.9-42.9\%] with sex-specific prevalence as 46.7 per cent (95% CI: $44.1-49.1 \%$) in men and 37.9 per cent (95% CI: $35.9-39.9 \%$) in women. A total of 951 (23.6\%) individuals had normal BP, whereas 1415 (35\%) had pre-hypertension. Among the hypertensive individuals, 318 (19\%) had isolated systolic hypertension, 415 (24.8\%) had isolated diastolic hypertension, whereas 556 (33.25\%) had combined hypertension. The mean SBP was $125.40 \pm 18.75 \mathrm{mmHg}$ (ranging from a minimum of 86 to a maximum of 180 mmHg) and mean DBP was $81 \pm 11.97 \mathrm{mmHg}$ (ranging from a minimum of 50 to a maximum of 126 mmHg). Table II shows age- and sex-wise distribution of categories of hypertension. Of the 1672 hypertensives in our study, 784 were aware of having hypertension, 577 were receiving treatment for hypertension at least for two weeks at the time of participation in the study and 255 participants had their BP controlled as per study definition with anti-hypertensive regimen. The prevalence of awareness, treatment and controlled BP in the study was $46.9,34.5$ and 15.3 per cent, respectively.

Higher age, male gender, lower socio-economic class, lower level of education and unemployment were the socio-demographic factors associated with hypertension. Active/passive smoking was the only behavioural risk factor associated with hypertension in our study apart from family history of hypertension. Among the clinical parameters, increased BMI (overweight or obese) and dyslipidaemia were associated with hypertension (Table I). Univariate analysis using binomial logistic regression method was performed to calculate unadjusted OR of risk factors of hypertension identified by Chi-square test. Multivariate analysis was performed to calculate adjusted OR with 95 per cent confidence interval (Table I). Increasing age [highest adjusted OR for $>70 \mathrm{yr}-2.2$ (1.9-2.4)], passive smoking [OR-1.3 (1.1-1.5)], family history of hypertension [OR-1.6 (1.4-1.7)] and obesity [OR-1.3 (1.1-1.6)] showed significant adjusted OR for developing hypertension. Adjusted prevalence ratio was also calculated for each risk factors using logistic model with random effects and conditional method of standardization ${ }^{19}$ (Table I).
$\mathrm{Hb}, \mathrm{RBC}$ count and HCT showed significant association with BP. There was weak positive correlation between SBP with $\mathrm{Hb}(r=0.07, P=0.03)$,

RBC count ($r=0.084, P=0.01$) and HCT ($r=0.08$, $P=0.02$). Similarly, there was a weak positive correlation between DBP with $\mathrm{Hb}(r=0.09, P=0.004)$, RBC count ($r=0.102, P=0.003$) and HCT ($r=0.12$, $P=0.001$). There was significant difference between the means of normotensives compared to hypertensives with regard to RBC count, red cell distribution width (RDW) and PLT (Table III).

Discussion

The prevalence of hypertension in our study was 41.4 per cent which was higher than reports from various tribal populations from other parts of India $(16-26 \%)^{7,20}$. This was also higher than the national figures quoted by the WHO in $2015(23.5 \%)^{21}$. The results of survey conducted by The National Nutrition Monitoring Bureau (NNMB) in 2009 revealed that among the adult tribal population of India, the prevalence of hypertension was 25 per cent among men and 23 per cent among women, which was comparable to that reported for rural adults ${ }^{22}$. The altitude of villages included in our study ranged from 1585-2406 m above sea level. Although residence at higher altitude has been earlier attributed to account for lesser prevalence of hypertension ${ }^{7}$, a systematic review showed that higher altitude was associated with increased prevalence of hypertension ${ }^{23}$. In this study, the authors noted two per cent increase in prevalence of hypertension with every 100 m increase in altitude above sea level ${ }^{23}$. However, we found no correlation between altitudes of villages studied with the prevalence of hypertension from respective villages (data not shown).

Even though our study was conducted in tribal areas, the prevalence of hypertension reported was similar to the prevalence reported from urban areas in different parts of India and significantly higher than the prevalence reported from rural areas ${ }^{4,5,24-26}$. This could be due to rapid urbanization as well as the changing lifestyle of tribes. While smaller epidemiological studies of hypertension among general population from various regions of Jammu and Kashmir reported prevalence of hypertension to be around 34-57 per cent ${ }^{8,27,28}$, no study to assess the prevalence among tribals of Kashmir has been conducted before. The prevalence of prehypertension in our study was 35 per cent (male -33.3%, female -36.2%) which was in accordance with the prevalence of prehypertension noted in most of the studies from other parts of India ${ }^{3,20,25}$.

Men exhibited higher prevalence of hypertension than women in our study which was

Age group (yr)	n	BP categories	n (\%)	Mean \pm SD		Under treatment,$\mathrm{n}(\%)$
				Systolic BP	Diastolic BP	
Male						
20-29	275	Normal	94 (34.2)	108.5 ± 6.7	69.4 ± 6.5	-
		Pre-HTN	132 (48)	122.1 ± 7.4	77.9 ± 6.1	-
		HTN	49 (17.8)	131.9 ± 17.4	86.7 ± 11.3	10 (20.4)
30-39	300	Normal	79 (26.3)	107.1 ± 7.0	68.3 ± 6.2	-
		Pre-HTN	123 (41)	121 ± 9.9	79.6 ± 5.7	-
		HTN	98 (32.7)	138.2 ± 18.9	88.6 ± 10.5	23 (23.5)
40-49	320	Normal	71 (22.2)	106.5 ± 7.1	70.3 ± 5.2	-
		Pre-HTN	115 (35.9)	123.5 ± 8.6	79.2 ± 5.3	-
		HTN	134 (41.9)	139.1 ± 18.6	89.4 ± 12	43 (32.1)
50-59	251	Normal	35 (13.9)	105.8 ± 7.8	70.2 ± 4.7	-
		Pre-HTN	75 (29.9)	122.7 ± 7.7	80.1 ± 5.4	-
		HTN	141 (56.2)	142.9 ± 16.6	90.1 ± 12.2	37 (26.2)
60-69	253	Normal	22 (8.7)	108.2 ± 8.0	70.5 ± 6.3	-
		Pre-HTN	55 (21.7)	124.4 ± 8.3	80.6 ± 5.1	-
		HTN	176 (69.7)	145 ± 18.5	91.2 ± 12.1	70 (39.8)
≥ 70	213	Normal	22 (10.3)	110.4 ± 7.9	69.8 ± 6.1	-
		Pre-HTN	36 (16.9)	122.2 ± 9.5	78.2 ± 6.1	-
		HTN	155 (72.8)	146.3 ± 18.4	90.9 ± 12.6	71 (45.8)
Overall	1612			128.6 ± 19.5	82.3 ± 12.2	254 (33.7)
Female						
20-29	594	Normal	222 (37.4)	106.1 ± 7.1	68.6 ± 6.3	-
		Pre-HTN	256 (43.1)	119.1 ± 7.7	79.1 ± 5.7	-
		HTN	116 (19.5)	129.7 ± 21.2	83.8 ± 13.1	28 (24.1)
30-39	620	Normal	192 (31)	107.2 ± 7.3	69.9 ± 6.4	-
		Pre-HTN	243 (39.2)	122.6 ± 7.6	79.7 ± 6.0	-
		HTN	185 (29.8)	133.8 ± 18.8	88.0 ± 12.4	49 (26.5)
40-49	556	Normal	$` 123$ (22.1)	106.6 ± 7.0	70.2 ± 5.6	-
		Pre-HTN	196 (35.3)	121.2 ± 8.6	80.0 ± 5.5	-
		HTN	237 (42.6)	136.3 ± 18.1	88 ± 12.4	90 (38)
50-59	297	Normal	46 (15.5)	106.5 ± 5.9	69.4 ± 5.8	-
		Pre-HTN	86 (29)	121.3 ± 8.7	79.9 ± 6.2	-
		HTN	165 (55.5)	138.1 ± 19.8	89.1 ± 12.3	58 (35.2)
60-69	235	Normal	33 (14)	108.2 ± 7.0	69.4 ± 6.8	-
		Pre-HTN	63 (26.8)	123.5 ± 8.4	78.5 ± 6.6	-
		HTN	139 (59.2)	141.4 ± 19.7	90.1 ± 13.2	63 (45.3)
≥ 70	124	Normal	12 (9.7)	107.6 ± 8.9	68.8 ± 5.5	-
		Pre-HTN	35 (28.2)	125.5 ± 7.6	79.7 ± 5.5	-
		HTN	77 (62.1)	141.0 ± 19.1	89.5 ± 13.3	35 (45.5)
Overall	2426			123.3 ± 17.9	80.2 ± 11.7	323 (35.1)
SD, standard deviation; BP, blood pressure; HTN, hypertension						

Table III. Comparison of haemogram parameters between hypertensive and normotensive subgroups		
Parameter	Normotensive group, $\mathrm{n}=951$	Hypertensive group, $\mathrm{n}=1672$
TLC $\left(10^{9} / \mathrm{ll}\right)$	7.13 ± 1.94	7.09 ± 2.14
Haemoglobin (g/dl)	12.76 ± 2.25	$12.93 .1 \pm 2.35$
$\mathrm{MCH}(\mathrm{pg})$	26.34 ± 3.5	26.4 ± 3.15
$\mathrm{MCHC}(\mathrm{g} / \mathrm{dl})$	30.65 ± 1.82	30.51 ± 1.76
$\mathrm{RBC}\left(10^{12} / \mathrm{l}\right)$	4.86 ± 0.64	$4.92 \pm 0.76^{*}$
$\mathrm{MCV}(\mathrm{fl})$	85.93 ± 10.64	86.64 ± 10.52
$\mathrm{HCT}(\%)$	41.66 ± 6.78	42.50 ± 7.47
RDW (\%)	28.13 ± 25.39	$29.89 \pm 27.75^{*}$
PLT (109/l)	155.9 ± 72.92	$147.43 \pm 63.03^{*}$
MPV (fl)	12.12 ± 1.59	11.87 ± 1.53
*P $\mathrm{P}<0.05$ compared to normotensive group. TLC, total leucocyte		
count; MCV, mean corpuscular volume; RBC, red blood cell;		
MCH, mean corpuscular haemoglobin; PLT, platelet count;		
RDW, red cell distribution width; HCT, haematocrit; MCHC,		
mean corpuscular haemoglobin concentration; MPV, mean		
platelet volume		

in accordance with most epidemiological studies of hypertension ${ }^{3,5,7,10,14,20,24,25,28}$. Age was found to be the most important risk factor for hypertension with the mean systolic and diastolic BPs showing linear increase with advancing age in both sexes. Prehypertension showed reverse trend with highest prevalence noted in youngest age group, i.e. 20-29 yr. Prehypertension is one of the established risk factors for developing hypertension ${ }^{10}$; young adults in our study may be at increased risk for developing hypertension in the near future. Similar results were noted in a few other studies ${ }^{20,29}$ indicating that lifestyle diseases such as hypertension are no longer limited to elderly population.

Higher socio-economic status and higher level of education were associated with lesser prevalence of hypertension which was in accordance with results of previous studies ${ }^{30}$. Active and passive smoking were also found to be significantly associated with hypertension in our study. There was no association noted between alcoholism and hypertension which might be accounted by low prevalence of alcoholism among our study participants (1.7\%).

Obese individuals and those with increased WHR had increased prevalence of hypertension. There was also progressive increase in the prevalence of hypertension with increasing class of BMI and dyslipidaemia. Similar findings were seen in most of
the epidemiological studies of hypertension ${ }^{3-5,8,14,25,31,32}$. There was a significant positive correlation between SBP/DBP with $\mathrm{HCT}, \mathrm{Hb}$ and RBC count. Hypertensive individuals had a greater mean RBC count and RDW but lesser mean platelet count than normotensives. These findings were in accordance a previous study, but our study was not designed to assess the potential pathogenic or causal association between these haematological parameters and prevalence of hypertension.

The prevalence of awareness, treatment and controlled BP in our study was $46.9,34.5$ and 15.3 per cent, respectively. This was higher than the prevalence rate reported from rural India and comparable to the figures of urban dwellers in a meta-analysis which revealed the prevalence of awareness, treatment and control of BP as $25.3,25.1$ and 10.7 per cent, respectively, for rural Indians and 42.0, 37.6 and 20.2 per cent, respectively, for urban Indians ${ }^{4}$. Tribal population of Kashmir appeared to be doing well in this regard compared to the tribal population from rest of the country where awareness rate was as low as 8.4 per cent ${ }^{34}$.

The present study had some limitations. Majority of the study participants were illiterate which renders their response to the study questionnaire less reliable. No data were collected regarding the stress levels of participants, daily salt intake and urinary sodium excretion, all of which are important risk factors of hypertension. We also did not collect information regarding nature of treatment received by the participants who were being treated for hypertension in our study.

In conclusion, hypertension was found to be prevalent among Kashmiri tribals with high prevalence of prehypertension among the younger participants, placing them at higher risk for developing hypertension in future. Thus, urgent policies need to be devised to prevent emergence of risk factors among the tribal community of Kashmir valley, especially among the youth.

Financial support \& sponsorship: This study was funded by the Department of Science and Technology, Government of India.

Conflicts of Interest: None.

References

1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H , et al. A comparative risk assessment of
burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 : 2224-60.
2. India State-Level Disease Burden Initiative Collaborators. Nations within a nation: Variations in epidemiological transition across the states of India, 1990-2016 in the Global Burden of Disease Study. Lancet 2017; 390 : 2437-60.
3. Tripathy JP, Thakur JS, Jeet G, Chawla S, Jain S. Alarmingly high prevalence of hypertension and pre-hypertension in North India - results from a large cross-sectional STEPS survey. PLoS One 2017; 12 : e0188619.
4. Anchala R, Kannuri NK, Pant H, Khan H, Franco OH, Di Angelantonio E, et al. Hypertension in India: A systematic review and meta-analysis of prevalence, awareness, and control of hypertension. J Hypertens 2014; 32 : 1170-7.
5. Bhansali A, Dhandania VK, Deepa M, Anjana RM, Joshi SR, Joshi PP, et al. Prevalence of and risk factors for hypertension in urban and rural India: the ICMR-INDIAB study. J Hum Hypertens 2015; 29 : 204-9.
6. Office of the Registrar General \& Census Commissioner, Ministry of Home Affairs, Government of India (2011) Census of India, New Delhi; 2011. Available from: http://www. censusindia.gov.in/2011census/population_enumeration. html , accessed on August 25, 2018.
7. Rizwan SA, Kumar R, Singh AK, Kusuma YS, Yadav K, Pandav CS. Prevalence of hypertension in Indian Tribes: A systematic review and meta-analysis of observational studies. PLoS One 2014; 9 : e95896.
8. Masoodi ZA, Riyaz AM. Prevalence and determinants of hypertension in Kashmir: A cross sectional study. IOSR J Dent Med Sci 2016; 15 : 57-64.
9. Shabir D, Sajad H, Rafiq M, Ashfaq. The role of gender and their marital status in the prevalance of hypertension in Kashmiri population. Scholars J Appl Med Sci 2013; 1:975-80.
10. Prabhakaran D, Jeemona P, Ghosha S, Shivashankar R, Ajay VS, Kondal D, et al. Prevalence and incidence of hypertension: Results from a representative cohort of over 16,000 adults in three cities of South Asia. Indian Heart J 2017; 69 : 434-41.
11. Skinner J. Probability proportional to size (PPS) sampling. London: Wiley; 2006.
12. World Health Organization. The WHO STEPwise approach to non-communicable disease risk factor surveillance. Available from: https://www.who.int/teams/noncommunicable-diseases/surveillance/systems-tools/steps, accessed on September 12, 2018.
13. Mangal A, Kumar V, Panesar S, Talwar R, Raut D, Singh S. Updated BG Prasad socioeconomic classification, 2014: A commentary. Indian J Public Health 2015; 59: 42-4.
14. Neupane D, Shrestha A, Mishra SR, Bloch J, Christensen B, McLachlan CS, et al. Awareness, prevalence, treatment, and control of hypertension in Western Nepal. Am J Hypertens 2017; 30 : 907-13.
15. World Health Organization. Physical status: the use and interpretation of anthropometry. Report of a WHO expert committee. Geneva: WHO; 1995.
16. Misra A, Chowbey P, Makkar BM, Vikram NK, Wasir JS, Chadha D, et al. Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management. J Assoc Physicians India 2009; 57: 163-70.
17. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014; 311: 507-20.
18. Gee ME, Campbell N, Sarrafzadegan N, Jafar T, Khalsa TK, Mangat B, et al. Standards for the uniform reporting of hypertension in adults using population survey data: Recommendations from the World Hypertension League Expert Committee. J Clin Hypertens (Greenwich) 2014; 16 : 773-81.
19. Santos CA, Fiaccone RL, Oliveira NF, Cunha S, Barreto ML, do Carmo MB, et al. Estimating adjusted prevalence ratio in clustered cross-sectional epidemiological data. BMC Med Res Methodol 2008; 8:80.
20. Chakma T, Kavishwar A, Sharma RK, Rao PV. High prevalence of hypertension and its selected risk factors among adult tribal population in Central India. Pathog Glob Health 2017; 111 : 343-50.
21. World Health Organization. Global Health Observatory Data Repository. Geneva: World Health Organization; 2015. Available from: http://apps.who.int/gho/data/view. main.2464EST?lang=en, accessed on August 25, 2018.
22. National Nutrition Monitoring Bureau. Diet and Nutritional Status of Tribal Population and Prevalence of Hypertension among Adults - Report on Second Repeat Survey. Hyderabad: National Institute of Nutrition, Indian Council of Medical Research; 2009.
23. Mingji C, Onakpoya IJ, Perera R, Ward AM, Heneghan CJ. Relationship between altitude and the prevalence of hypertension in Tibet: A systematic review. Heart 2015; 101 : 1054-60.
24. Roy A, Praveen PA, Amarchand R, Ramakrishnan L, Gupta R, Kondal D, et al. Changes in hypertension prevalence, awareness, treatment and control rates over 20 years in National Capital Region of India: Results from a repeat cross sectional study. BMJ Open 2017; 7 : e015639.
25. Singh M, Kotwal A, Mittal C, Babu SR, Bharti S, Ram CV. Prevalence and correlates of hypertension in a semi-rural population of Southern India. J Hum Hypertens 2018; 32 : 66-74.
26. Premkumar R, Pothen J, Rima J, Arole S. Prevalence of hypertension and prehypertension in community-based primary health care program villages at central India. Indian Heart J 2016; 68 : 270-7.
27. Rani R, Mengi V, Verma A, Sharma HK. Prevalence study of hypertension among adults in an urban area of Jammu. $J S c i$ Innov Res 2014; 3:143-7.
28. Norboo T, Stobdan T, Tsering N, Angchuk N, Tsering P, Ahmed I, et al. Prevalence of hypertension at high altitude: Cross-sectional survey in Ladakh, Northern India 2007-2011. BMJ Open 2015; 5 : e007026.
29. Reddy VS, Jacob GP, Ballala K, Ravi C, Ravi B, Gandhi P, et al. Study on the prevalence of hypertension among young adults in a coastal district of Karnataka, South India. Int J Healthc Biomed Res 2015; 3 : 32-9.
30. Yang F, Qian D, Liu X. Socioeconomic disparities in prevalence, awareness, treatment, and control of hypertension over the life course in China. Int JEquity Health 2017; 16:100.
31. Gupta VK, Rai N, Toppo NA, Kasar PK, Nema P. An epidemiological study of prevalence of hypertension and its risk factors among non-migratory tribal population of Mawai block of Mandla district of Central India. Int J Community Med Public Health 2018; 5 : 957-62.
32. Gupta R, Gupta VP, Prakash H, Agrawal A, Sharma KK, Deedwania PC. 25-Year trends in hypertension prevalence,
awareness, treatment, and control in an Indian urban population: Jaipur Heart Watch. Indian Heart J 2018; 70: 802-7.
33. Shimizu Y, Sato S, Koyamatsu J, Yamanashi H, Nagayoshi M, Kadota K, et al. Possible mechanism underlying the association between higher haemoglobin level and hypertension in older Japanese men. Geriatr Gerontol Int 2017; 17 : 2586-92.
34. Ministry of Tribal Affairs, Government of India. Report of the high-level committee on socio-economic, health and educational status of tribal communities of India. Available from: https://ruralindiaonline.org/en/library/resource/report-of-the-high-level-committee-on-socio-economic-health-and-educational-status-of-the-tribals-of-india/, accessed on August 25, 2018.
