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Environmental cues associated with rewards can acquire motivational properties. However, there is considerable variation in

the extent to which a reward cue gains motivational control over behavior, depending on the individual and the form of the

cue. When a discrete cue is paired with food reward, it acquires greater control over motivated behavior in some rats (sign-

trackers, STs) than others (goal-trackers, GTs) as indicated by the propensity to approach the cue, the willingness to work

to obtain it, and its ability to reinstate reward-seeking behavior. Here, we review studies that employ this ST/GT animal

model to investigate characteristics of individuals that are especially susceptible to reward cue-elicited behavior and the in-

volvement of dopamine and acetylcholine neuromodulator systems in the susceptibility to cue-induced drug relapse. First,

we discuss individual differences in the attribution of incentive salience to different forms of reward cues and the involve-

ment of the mesolimbic dopamine system. We then discuss individual differences in cognitive/attentional control and the

contributions of the cholinergic system in processing reward cues. It is suggested that in STs a propensity to attribute mo-

tivational properties to a drug cue is combined with poor attentional control in the face of these cues, making them par-

ticularly vulnerable to transition from casual/experimental patterns of drug use to addiction and to cue-induced relapse.

Drug addiction is a chronically relapsing disorder inwhich a strong
desire for drugs often leads to drug seeking and taking behavior de-
spite significant adverse consequences, and often in the face of an
expressed desire to abstain. Thismaladaptive behavior is associated
with both increased reactivity to drugs and drug-related cues as
well as poor cognitive/inhibitory control over behavior, especially
in the presence of such cues (Ehrman et al. 1992; Childress et al.
1999; Jentsch and Taylor 1999; Field and Cox 2008; Epstein et al.
2009; Preston et al. 2009). This combination is thought to be the
primary reason that individuals suffering from addiction have
such difficulty abstaining from drug use, and even when they are
successful, they remain vulnerable to relapse after months or years
of abstinence. Relapse is not only a core feature of addiction, but it
remains themost important and difficult clinical problem in addic-
tion treatment. Drug relapse data show that more than 85% of in-
dividuals relapse to drug use following treatment (Brandon et al.
2007).

The role of drug cues in relapse is highlighted by reports that
cues that have been associated with drug use not only unduly at-
tract attention toward them (Field and Cox 2008) but evoke crav-
ing and autonomic arousal (Ehrman et al. 1992; Avants et al.
1995; Preston et al. 2009). There is some debate in the literature
as to the extent to which cue-evoked craving is casually related to
relapse. Some studies report a clear association between craving
and cocaine relapse (Weiss et al. 2003; Rohsenow et al. 2007;
Paliwal et al. 2008) while others have found no relationship
(Weiss et al. 1995). But, most of these studies were performed in
the laboratory setting. More recent studies performed in the “real
world”—during the daily life in the drug user’s normal environ-
ment—have demonstrated a strong association between craving
produced by exposure to drug-associated cues and subsequent
drug use (Epstein et al. 2009; Preston et al. 2009), which can be ex-
acerbated by stress (Preston et al. 2017a,b).

There is, however, considerable variation in the extent to
which drug cues acquire control over behavior. This is due, in

part, to individual variation in the extent towhich reward cues cap-
ture attentional resources and the degree of executive (attentional)
control an individual has over their behavior in the presence of
such cues as well as the propensity to attribute incentive motiva-
tional properties to such cues. In this review, we discuss preclinical
studies investigating underlying sources of this individual varia-
tion including a bias for top-down (“cold”) versus bottom-up
(“hot”) processing of reward cues and the role of two major neuro-
modulator systems—dopamine (DA) and acetylcholine (ACh).

Individual variation in the propensity to attribute

incentive salience to reward cues

Incentive stimuli
The importance of drug cues in addiction (Stewart et al. 1984) has
led to considerable interest in understanding how such cues ac-
quire incentive-motivational properties (incentive salience), and
thus their ability to act as incentive stimuli capable of evoking
complex emotional and motivational states (Robinson and
Berridge 1993; Milton and Everitt 2010; Cardinal et al. 2002). It
is now well established that when a cue (conditioned stimulus,
CS) is associated with a reward (unconditioned stimulus; US), it
can come to not only evoke a conditioned response (CR), but under
some conditions, it can acquire incentive motivational properties.
Thus, the cue (CS) acquires the ability to act as an incentive
stimulus. Incentive stimuli have three defining characteristics:
(i) they are attractive, biasing attention toward them and eliciting
approach into close proximity with them (conditioned approach);
(ii) they are desired in that they will reinforce new instrumental
responses to get them (i.e., they act as conditioned reinforcers);
and (iii) they evoke a conditionedmotivational state that can insti-
gate reward-seeking behavior or energize ongoing seeking behavior
(conditioned motivation). Although these three defining
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characteristics of an incentive stimulus are dissociable, providing
“three routes to relapse” (Cardinal et al. 2002; Milton and Everitt
2010), they often act in concert to motivate/control drug-seeking
behavior and may do so either implicitly or explicitly (Robinson
and Berridge 1993).

Sign and goal trackers
Studies on variation in the extent towhichCSs acquiremotivation-
al properties have focused on rats that learn different CRs when
a food cue (CS, often insertion of an lever) is pairedwith food deliv-
ery (the US). In these studies, the CS is located at a different place
than the food cup. With repeated pairings of a lever-CS and
food-US, some animals (sign-trackers, STs) learn to approach and
interact with the lever-CS itself (i.e., they learn a sign-tracking
CR). In contrast, others (goal-trackers, GTs) learn a goal-tracking
CR, consisting of approaching and exploring the food cup during
the CS period while awaiting food delivery (Zener 1937; Hearst
and Jenkins 1974; Boakes 1977). The remaining animals are classi-
fied as intermediates (INs) because they show both sign-tracking
and goal-tracking behavior, typically vacillating between these
CRs within trials and between trials. Most of the studies discussed
below did not include INs as the primary interest was comparing
rats that strongly differed in their propensity to attribute incentive
salience to food cues.

One reason different individuals acquire different CRs is
because, although the CS evokes a CR in both STs and GTs, it ac-
quires the attractive properties of an incentive stimulus preferen-
tially in STs (Robinson and Flagel 2009; Robinson et al. 2014).
This interpretation is supported by other studies showing that
not only is a food cue more attractive in STs than GTs, but it is
also a more effective conditioned reinforcer (Robinson and Flagel
2009; Yager and Robinson 2010; Meyer et al. 2012) andmore effec-
tive in producing a conditioned motivational state that reinstates
reward-seeking behavior (Saunders and Robinson 2010). Recent re-
ports suggest similar variation exists in humans (Mahler and de
Wit 2010; Styn et al. 2013; Garofalo and di Pellegrino 2015;
Versace et al. 2016; Joyner et al. 2018).

The form of the CS matters
In most of the studies using STs and GTs, the CS is an illuminated,
retractable, and manipulable lever, although similar individual
variation in CRs is observed using a discrete light as the CS
(Boakes 1977; Yager and Robinson 2013). Nevertheless, it has be-
come clear that the specific features of a CS, including its modality,
spatial arrangement, localizability, whether it includes motion,
and the duration the CS–US interval influences the form of the
CR (Holland 1977, 1980; Cleland and Davey 1983; Silva et al.
1992;Weiss et al 1993; Costa and Boakes 2007) as well as the extent
to which a CS is attributed with incentive salience (Meyer et al.
2014; Beckmann and Chow 2015; Singer et al. 2016a). For exam-
ple, in rats, an auditoryCS (e.g., tone) only results in a goal-tracking
CR and a tone-CS is attributed with less incentive salience than a
lever-CS (Holland 1977; Meyer et al. 2014; Beckmann and Chow
2015). Furthermore, by isolating the different modalities of the
lever-CS (sound, visible movement, illumination), there is evi-
dence that the nature of CRs varied based on the different proper-
ties of a CS (Singer et al. 2016a). Thus, despite being predictive of
the same reward and presented in the same environment, the
form and properties of the CS matter in regards to the extent to
which it is attributed with incentive salience.

DA and incentive stimuli
There is considerable evidence that the mesolimbic DA system
plays a central role in the attribution of incentive salience to cues

associated with both drug (for review, see Jasinska et al. 2014)
and nondrug rewards (Flagel et al. 2011a; Lopez et al. 2015).
Given that STs are more prone to attribute incentive salience to re-
ward cues than GTs, it was hypothesized that DA would play a
greater role in the acquisition and expression of a sign-tracking
CR than a goal-tracking CR. Indeed, systemic administration of a
DA antagonist impaired both the acquisition and expression of
sign-tracking but not goal-tracking (Danna and Elmer 2010;
Flagel et al. 2011b), and blocking DA neurotransmission in the
NAc core was sufficient to degrade performance of a sign-tracking,
but not a goal-tracking, CR (Di Ciano et al. 2001; Parkinson et al.
2002; Saunders and Robinson 2012). Additionally, the transfer of
a phasic DA signal from receipt of an unexpected reward to the
CS (predictor of reward; lever) was seen in rats that learn a sign-
tracking CR, but not in rats that learn a goal-tracking CR (Flagel
et al. 2011b; Singer et al. 2016a). These studies suggest that DA is
not necessary for learning the CS–US association because both
STs and GTs learn the association. Rather, DA is necessary for at-
tributing incentive salience to reward cues, which happens prefer-
entially in STs. Thus, DA plays amore important role in controlling
behavior in STs than GTs (Danna and Elmer 2010; Flagel et al.
2011b; Saunders and Robinson 2012; Beckmann and Chow
2015; Chow et al. 2016; Singer et al. 2016a).

mPFC dopamine and Pavlovian drug cue processing
Incentive cue processing also requires prefrontal circuitry, particu-
larly the mPFC (Stepien 1974; Kalivas and Volkow 2005). Imaging
studies with individuals suffering from cocaine addiction reveal
that the presentation of cocaine cues increases activation of the
prefrontal cortex (Childress et al. 1999; Kilts et al. 2001), and the
magnitude of this increased activation is predictive of the levels
of reported craving and risk for relapse (Childress et al. 1999).
Preclinical studies of drug relapse also show that prefrontal cortical
regions contribute increased drug stimuli-evoked relapse (Cicco-
cioppo et al. 2001; Zavala et al. 2008). It is important, therefore,
that in animals DA release in the mPFC has been implicated in
the reinstatement of drug-seeking behavior (Fuchs et al. 2007).
Intra-PFC infusions of DA or DA receptor agonists elicit drug seek-
ing, whereas DA receptor antagonists attenuate it (Park et al. 2002;
Capriles et al. 2003; Fuchs et al. 2007; See 2009).

Pitchers et al. (2017a) investigated potential individual differ-
ences in prefrontal DA levels in response to the presentation of a
Pavlovian cue (discrete light) formerly paired with cocaine infu-
sions (Pitchers et al. 2017a). In line with DA transmission in the
NAc core (Flagel et al. 2011b; Singer et al. 2016b), it was hypothe-
sized that increased cortical extracellular DA levels would be asso-
ciated with presentation of an incentive stimulus. STs and GTs
underwent Pavlovian training in which a discrete, localizable light
cue (CS) was either paired or explicitly unpaired with an IV infu-
sion of cocaine (US). Over 14 d of Pavlovian cocaine training, STs
(but not GTs) approached the Pavlovian cocaine cue suggesting
that it was attributed with incentive salience in STs but not GTs.
Following an abstinence period, STs and GTs were exposed to the
Pavlovian cocaine cue (under extinction conditions) during
4-min blocks separated by 8-min periods void of cue presentations,
while dialysatewas collected from themPFC.During this cue expo-
sure test, the cue formerly paired with cocaine increased DA in STs
but not GTs, and the magnitude of the increase in DA in STs pre-
dicted how avidly STs approached the cue during this test (for de-
tails see Pitchers et al. 2017a).

Cortical DA appears to be involved in the processing of moti-
vational attributes of cocaine cues in rats (Pitchers et al. 2017a) and
humans (Milella et al. 2016). When experiencing a high motiva-
tional state, there is a positive correlation between NAc and
mPFC activation (Moscarello et al. 2007), which suggests that these
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brain regionsmay act in concert to produce incentivemotivational
states (Carr et al. 1999; Milella et al. 2016; Otis et al. 2017).
Prefrontal DA levels are speculated to be involved in the attractive-
ness of associated cues and stability of the cue-directed responding
behavior (e.g., cue approach behavior) (Ellwood et al. 2017).
Ventral striatal DA levels, on the other hand, may energize
cue-associated behaviors, including instrumental responses to ob-
tain cue access (e.g., test for conditioned reinforcement) or be in-
volved with value-based decision making (Roesch et al. 2007;
St. Onge et al. 2012). The involvement of the mesolimbic DA sys-
tem, including increased DA levels in the mPFC and NAc core, me-
diating incentive stimulus-spurred behavior is consistent with
sign-tracking behavior being controlled by DA and reflecting the
output of an automatic, “bottom-up,” or “hot” motivational pro-
cess (Sarter and Phillips 2018).

Individual variation in the influence

of contextual cues

The propensity to attribute incentive salience to a food cue predicts
the extent to which a discrete cocaine cues acquires the three prop-
erties of an incentive stimulus (discussed above). Thus, STs attri-
bute greater motivation value to a discrete cocaine cue (e.g., a
light) than GTs (Flagel et al. 2010; Saunders and Robinson 2010;
Yager and Robinson 2013). However, another class of cues that ac-
quires substantial control over behavior is one that signals reward
availability, such as a context or occasion-setter (i.e., discriminative
stimulus, DS). Like a discrete cue, a contextual stimulus is known to
elicit a conditionedmotivational state that can renewdrug-seeking
behavior in humans (O’Brien et al. 1992; Foltin and Haney 2000;
Mayo et al. 2013) and rats (McFarland and Ettenberg 1997;
Crombag and Shaham 2002; Fuchs et al. 2005). Interestingly, a
drug-paired context was found to exert greater control over behav-
ior in GTs compared to STs, as indicated by a greater level of condi-
tioned hyperactivity in a drug context and greater context-induced
renewal of cocaine-seeking behavior (Saunders et al. 2014). In line
with these findings, GTs also show greater context fear condition-
ing compared to STs (Morrow et al. 2015).

More recently, several experiments investigated the influence
of an occasion setter (referred to as a DS in an instrumental or op-
erant setting) on behavior of STs andGTs (Ahrens et al. 2016; Kawa
et al. 2016; Pitchers et al. 2017b,c). Occasion setters provide higher
order discriminative or contextual-like information that predicts a
positive relationship between a stimulus (e.g., CS) or response (e.g.,
nose poke) and an outcome (e.g., drug infusion). The ability a cue
(house light) that signaled periods of reward or nonreward on con-
ditioned respondingwas compared in STs andGTs. During the first
training session, GTs’ behavior during reward and nonreward peri-
ods differed dramatically as they rapidly decreased responding (less
goal-tracking CRs) during nonreward periods yet resumed making
goal-tracking CRs during reward periods. In contrast, STs did not
modify their behavior between reward and nonreward periods dur-
ing the first training session as they continued to make sign-
tracking CRs throughout the session. With more training, STs
learned to modify their behavior, like GTs, between reward and
nonreward periods (for details see Ahrens et al. 2016). It seems like-
ly that STs were slower to extinguish their CR compared to GTs
because they were less aware of the informative cues in the envi-
ronment (e.g., occasion setter) and consequently, were delayed
in learning about the changing reward conditions.

In a related experiment, the degree of DS control over drug-
seeking behavior in STs and GTs was tested (Pitchers et al.
2017b). In this study, rats were trained to self-administer cocaine
using an Intermittent Access (IntA) drug self-administration proce-
dure duringwhich all animals learned to discriminate two spatially

distinct light cues that either signaled drug available (DS+) or drug
not available periods (DS−). When the DS+ was on, a nose-poke re-
sponse resulted in a cocaine infusion, whereas when the DS− was
on, a nose-poke had no consequence. As also found in other
IntA studies (Kawa et al. 2016; Pitchers et al. 2017c), both STs
and GTs learned to discriminate DS+ versus DS− periods at similar
rates,making significantlymore active responses during drug avail-
able compared to no drug available periods. After 14 d of IntA train-
ing, animals underwent extinction training (no cue, no cocaine)
before a reinstatement test that involved brief DS+ presentations.
Compared to STs, the DS+ evoked significantly more drug-seeking
responses in GTs (for details see Pitchers et al. 2017b).

It has become clear that not all animals process motivational-
ly salient information similarly,whichmay contribute to such cues
spurring different behavior in different individuals (for review, see
Robinson et al. 2014; Sarter and Phillips 2018). The studies re-
viewed to this point suggest that discrete reward cues exert greater
control over behavior in STs via the engagement of “hot” incentive
motivational processes mediated by the mesolimbic DA circuit
(Flagel et al. 2011b; Saunders et al. 2013; Singer et al. 2016b). In
contrast, GTs appear to bemore capable of incorporating higher or-
der cues, including contextual stimuli and occasion setters, that
may require “top-down” or “cold” cognitive processing to modify
behavior appropriately based on situational demands (for review,
see Sarter and Phillips 2018).

Susceptility to cue-evoked behavior: beyond

incentive salience

The above section emphasizes how individual variation in the pro-
pensity to attribute incentive salience to drug cues may predispose
some individuals to relapse. However, as emphasized by so-called
dual-systems views of addiction, behavior is often the result of a
competition for control between “bottom-up” and cue-driven
(“hot”) psychological processes versus more deliberative, “top-
down,” and goal-oriented (“cold”) cognitive processes (e.g.,
Jentsch and Taylor 1999; Mcclure and Bickel 2014; Bickel et al.
2016; Sarter and Phillips 2018). Thus, relapse to drug usemay result
from the excessive attribution of motivational properties to drug
cues and impaired or biased processing of drug-associated cues.
Therefore, in the discussion of individual variation in the propen-
sity to relapse it is important to emphasize that STs and GTs also
differ on measures of cognitive (attentional) control over behavior
(Lovic et al. 2011; Paolone et al. 2013; Koshy Cherian et al. 2017;
Sarter and Phillips 2018).

Individual variation in attentional control
To investigate the attentional capacities of STs and GTs, Paolone
et al. (2013) evaluated performance on a task requiring sustained
attention that has been validated in humans (Demeter et al.
2008), rats (McGaughy and Sarter 1995; Demeter et al. 2008),
andmice (St. Peters et al. 2011). The task involves signal (illumina-
tion of a central panel light; 25, 50, or 500msec lightON) andnon-
signal (no illumination) trials. Following a signal (or nonsignal)
event, two levers on either side of light are deployed until a re-
sponse on either lever is made or up to 4 sec if no response is
made (trial omission). A response on one lever indicates a signal
was detected, and a response on the other lever indicates no signal
was detected. Correct responses (hits, correct rejections) on each
trial are reinforced, while incorrect responses (misses, false alarms)
are neither reinforced nor punished. On this task, poor cognitive
control of attention is characterized by distractibility, attentional
lapses, impulsive action, low motivation, or attentional fatigue
(see Fig. 1 in Sarter and Paolone 2011).
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Both STs and GTs improved their task performance over time
until reaching asymptotic performance levels. However, STs per-
formed more poorly at the beginning of training, and despite im-
proving over time, their task performance remained lower than
GTs even after 75 d of training. This relatively poor performance
by STs was characterized by a lower hit rate during reoccurring
shifts between periods of good performance to periods of poor
(or near-chance) performance within a session. In fact, perfor-
mance was negatively correlated with strong sign-tracking be-
havior (according to earlier Pavlovian conditioned approach
training). The relative number of correct rejections or trial omis-
sions did not differ between STs and GTs indicating that STs and
GTs were similarly motivated to perform the task (for details, see
Paolone et al. 2013). STs and GTs were also tested on a more
attention-demanding version of task involving the introduction
of a distractor (houselight flashing ON/OFF at 0.5 Hz). While the
distractor was on, all animals performed the task at near-chance
levels. However, following removal of the distractor GTs quickly re-
covered task performance to predistractor levels, whereas STs re-
mained at low, near-chance levels for the remainder of the
session (Kim et al. 2016). Overall, STs, compared to GTs, have
weakened cognitive control over attention indicated by their in-
ability to sustain periods of good performance (attentional laps-
es/fluctuations) and limited recovery of performance during a
post-distractor period.

Individual variation in impulsivity
Given that STs (relative to GTs) have particular difficulty resisting
discrete reward cues, it was investigatedwhether STs weremore im-
pulsive than GTs using two tests of impulsive action: two-choice
serial reaction time task (2-CSRTT) and a differential reinforcement
of low rates of responding (DRL) task. During both tests, STs proved
to be more impulsive than GTs as they demonstrated a greater ten-
dency to make premature responses (not waiting the appropriate
length of time between trials) resulting in them being less efficient
in obtaining rewards. In fact, a greater propensity to make sign-
tracking CRs during Pavlovian conditioned approach training pos-
itively correlated with greater number of premature responses (for
details, see Lovic et al. 2011). A potential explanation for greater
impulsivity in STs is their bias toward stimulus-driven responses.
However, an alternate, but not mutually exclusive, explanation is
that STs may be impulsive because they possess relatively poor
“top-down” control over behavior. This latter explanationwas sug-
gested by STs’ inability to recover task performance after a distrac-
tor (discussed above) and to suppress premature and inappropriate/
competitive responses.

Susceptility to cue-evoked behavior: beyond DA

As discussed above, STs appear to be influenced by discrete cues
paired with rewards and process their environment via “hot” DA
incentive salience systems. In contrast, GTs appear to better incor-
porate more complex contextual information, which may be due
to better attentional control over behavior and being less prone
to impulsive action. Since there is evidence that cortical choliner-
gic neurotransmission is modulated as a function of “top-down”
control (for review, see Sarter and Paolone 2011), we investigated
potential differences in frontal cortical cholinergic activity in STs
and GTs.

The relatively poor attentional control demonstrated by STs
was associated with relatively low cortical cholinergic neuromodu-
lation (Paolone et al. 2013). Despite no differences in basal levels of
cortical ACh between STs and GTs, STs have a relatively unrespon-
sive cholinergic neuromodulatory system compared to GTs (Koshy
Cherian et al. 2017). More specifically, STs’ BF cholinergic neurons

have an attenuated capacity to release cortical ACh upon stimula-
tion, potentially due to unresponsive cellular trafficking of the cho-
line transporter (CHT) to the synapse (Koshy Cherian et al. 2017).
Presynaptic CHT is the rate-limiting step for the synthesis of ACh
(Ennis and Blakely 2016). It is a major determinant of the capacity
of cholinergic neurons to sustain release of ACh (Sarter et al. 2016),
as a CHT inhibitor was found to attenuate increases in prefrontal
ACh. As a result, we tested the hypothesis that low levels of cholin-
ergic activity are involved in the development of sign-tracking
behavior using the same inhibitor. When the CHT inhibitor was
administered during Pavlovian conditioned approach testing, it in-
creased the likelihood of animals developing a sign-tracking CR
(for details, see Koshy Cherian et al. 2017).

mPFC acetycholine and Pavlovian drug cue processing
In addition to DA levels, Pitchers et al. (2017a) also measured pre-
frontal ACh levels in response to presentations of a Pavlovian co-
caine cue (discrete light). In direct contrast to prefrontal DA
levels (discussed above), a Pavlovian cocaine cue did not influence
prefrontal ACh levels in STs. Thus, STs’ cue approach behavior
appeared to be mediated via DA mechanisms and the absence
ACh may have augmented the bias toward cue-driven behavior.
Conversely, presentations of the Pavlovian cue increased prefron-
tal ACh levels in GTs, but not DA, despite no detected changes in
behavior, including locomotor activity during or after cue presen-
tation. Thus, increased ACh levels did not appear to be connected
to a specific behavior (like DA with cue approach in STs). Instead,
the increase in cue-evoked ACh, indicative of recruitment of
the cholinergic cognitive system, may have mediated GTs’ resis-
tance to behavioral control by the Pavlovian cue (for details, see
Pitchers et al. 2017a).

In summary, there was a double dissociation in the effect of a
cocaine cue on prefrontal DA and ACh in STs and GTs. A cocaine
cue increased prefrontal DA but not ACh in STs, but increased
ACh but not DA in GTs. Together, the DAergic and noncholinergic
processing of drug cues by STs may mediate their susceptibility to
discrete cue-directed behavior. It is possible that the lack choliner-
gic response permitted the elevation of DA and consequently, ap-
proach to the cue. Alternatively, the cholinergic and non-DAergic
processing of drug cues by GTs may be indicative of higher order
processing of the stimulus situation. Thus, a bias for “top-down”
processing of cues might provide GTs with the ability to depriori-
tize a Pavlovian cue allowing them to override the potentially mal-
adaptive and automatic response of approaching it.

mPFC ACh and discriminative stimuli
A better functioning BF-cortical cholinergic system may not only
make GTs resistant to power of simple reward-predictive cues
(CSs), but it may increase their ability to process more complex
stimuli (compared to STs). A DS, unlike a CS, precedes both the
behavioral response and any drug effect, so it may require a rela-
tively complex analysis to properly guide behavior. Thus, it was hy-
pothesized that the processing of DSs by GTs may depend on
cholinergic mechanisms.

To test this hypothesis, rats were trained using the IntA co-
caine self-administration procedure described above, in which
there were periods of drug availability interspersed with periods
of nonavailability, signaled by DSs (discrete lights) (Zimmer et al.
2012). After IntA and subsequent extinction training, STs and
GTs received infusions of the cholino-specific toxin 192 IgG-
saporin to partially (∼50%) remove BF cholinergic neurons, pri-
marily in the nucleus basalis of Meynert. Next, a reinstatement
test involving DS+ presentations was conducted under extinction
conditions to quantify drug-seeking behavior. Both STs and GTs
with reduced BF cholinergic neurons were able to perceive the
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cue (all animals oriented to it) and remember the cue-reward asso-
ciation (number of responses were greater than last extinction
session). However, the DS+ was differentially imbued withmotiva-
tional properties by STs and GTs. In STs, the DS+ produced only
low levels of drug seeking, potentially due to their already relatively
unresponsive cholinergic systems (Paolone et al. 2013; Koshy
Cherian et al. 2017), and they were unaffected by the cholinergic
lesions in the BF. In contrast, in GTs the ability of the DS+ to evoke
significantlymore drug-seeking behavior (compared to STs) was se-
verely disrupted by loss of BF cholinergic neurons (for details, see
Pitchers et al. 2017b).

It is interesting to compare prefrontal cholinergic transmis-
sion in GTs in response to CSs versus contextual stimuli. With a
CS, prefrontal ACh was associated with a lack of behavioral re-
sponse—a resistance to the automatic approach to the cue.
Whereas, with a DS, cholinergic input to the prefrontal cortex
was necessary for the cue to induce drug seeking. In both condi-
tions, it seems that the drug-associated cue was inserted into the
cortical circuitry to mediate a cognitive expectation of drug (its
availability). As a result, GTs appear to act accordingly in both sit-
uations whether it was to do nothing (since no action was required
to obtain reward under Pavlovian conditions) or have pertinent en-
vironmental cues produce a state of heightened motivation or
craving.

Summary and conclusions

STs have a bias for cue-driven (“hot”) psychological processing as
their reward cue-associated behavior is mediated by prefrontal
and ventral striatal DA and a relatively unresponsive cholinergic
system (Flagel et al. 2011b; Saunders and Robinson 2012; Chow
et al. 2016; Singer et al. 2016b; Koshy Cherian et al. 2017;
Pitchers et al. 2017a). Their susceptibility to cue-induced drug re-
lapse may be a result from the excessive attribution of incentive
properties to drug cues, poor attentional control, and a propen-
sity for impulsive action. GTs, on the other hand, have a bias for
cognitive or controlled (“cold”) psychological processing. Their
goal-directed behavior in the face of cues depends on cholinergic
neurotransmission and is not dependent on DA (Flagel et al.
2011b; Saunders and Robinson 2012; Singer et al. 2016b;
Koshy Cherian et al. 2017; Pitchers et al. 2017a,b). GTs’ bias
for more cognitive cholinergic processing seems to minimize po-
tentially maladaptive behavior driven by a reward cue, which
does not only empower GTs to more appropriately navigate their

environment, but it may also make them less susceptible to
cue-induced relapse to drug use (see Fig. 1 for a summary of
results).

Taken together, it is clear that STs and GTs process motiva-
tionally salient information in different ways that, in part, depend
on reward-cue associated changes in extracellular prefrontal DA
and ACh levels. It remains to be tested whether elevations of the
prefrontal ACh directly limit increases in DA transmission in
GTs, or vice versa (in STs). From a clinical perspective, it will be crit-
ical to better understand the DAergic and cholinergic mechanisms
and their interactions in mediating the susceptibility to drug re-
lapse in order to identify novel pharmacological targets capable
of reducing the likelihood of ever-present threat of relapse.
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