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Our study attempted to identify hub genes related to isocitrate dehydrogenase (IDH) mutation in glioma and 

develop a prognostic model for IDH-mutant glioma patients. In a first step, ten hub genes significantly associated 

with the IDH status were identified by weighted gene coexpression analysis (WGCNA). The functional enrichment 

analysis demonstrated that the most enriched terms of these hub genes were cadherin binding and glutathione 

metabolism. Three of these hub genes were significantly linked with the survival of glioma patients. 328 samples 

of IDH-mutant glioma were separated into two datasets: a training set ( N = 228) and a test set ( N = 100). Based on 

the training set, we identified two IDH-mutant subtypes with significantly different pathological features by using 

consensus clustering. A 31 gene-signature was identified by the least absolute shrinkage and selection operator 

(LASSO) algorithm and used for establishing a differential prognostic model for IDH-mutant patients. In addition, 

the test set was employed for validating the prognostic model, and the model was proven to be of high value in 

classifying prognostic information of samples. The functional annotation revealed that the genes related to the 

model were mainly enriched in nuclear division, DNA replication, and cell cycle. Collectively, this study provided 

novel insights into the molecular mechanism of IDH mutation in glioma, and constructed a prognostic model 

which can be effective for predicting prognosis of glioma patients with IDH-mutation, which might promote the 

development of IDH target agents in glioma therapies and contribute to accurate prognostication and management 

in IDH-mutant glioma patients. 
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As the most common primary intracranial tumor, glioma represents
ore than 80% of malignant brain tumors [40] . Glioma originates from

lial cells and is a relatively rare tumor with significant mortality and re-
urrence rate [64] . Chemotherapy, radiotherapy and surgical excision
re the common treatments for glioma [55] . The invasive growth of
lioma blurs the boundaries of peripheral nerve tissue, which compli-
ates the surgical removal of glioma [8] . Since glioma is one of cen-
ral nervous system diseases, the lack of targeted treatment would eas-
ly cause serious side-effects, thus hampering the therapeutic efficacy.
n recent years, despite substantial progress in the understanding of
he molecular pathogenesis and the development of multimodal treat-
ents of glioma, the prognosis of patients with gliomas remains dismal

 39 , 52 ]. 
Isocitrate dehydrogenase (IDH) mutation is widely used as a molec-

lar biomarker in glioma, which has been paid a strong clinical atten-
ion [10] . Several studies found that IDH mutations are also linked to
ther cancers, including acute myeloid leukemia and cholangiocarci-
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oma [ 42 , 47 ]. However, significant diagnostic and prognostic relevance
f IDH mutation has been only proven in glioma [46] . Recently, the
orld Health Organization (WHO) has included the IDH mutational sta-

us into the classification of gliomas [34] . IDH mutation mostly occurs
n lower grade glioma (LGG) and about 5% of primary glioblastomas
GBM), but absent in the other primary brain tumors. Therefore, we
peculated that the genes associated with the IDH mutation might be
sed as potential biomarkers for glioma diagnosis. In recent years, more
nd more studies on the core genes and mechanisms that regulate IDH
utations in gliomas have emerged (Y. Q. [ 33 , 65 ]). Li et al. indicated

hat, in glioma, MEGF10 is markedly correlated with IDH mutation [30] .
everal recent studies have revealed therapeutic targets of IDH-mutant
GG by bioinformatics analysis [ 29 , 65 ]. Nevertheless, most of the stud-
es on IDH mutation in glioma were concentrated on LGG; the expres-
ion pattern and predictive value of IDH-related genes in subjects with
lioma remain to be further elucidated. 

As one of the widely used R libraries, weighted gene co-expression
etwork analysis (WGCNA) is important because it has a big merit in the
iscovery of gene modules containing genes with analogous expression
lueprints, called co-expressed genes, that are associated with a given
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eature [28] . After the modules are identified, the correlation between
he modules and clinical traits can be easily evaluated by using eigen-
ene network methodology. This powerful tool has been commonly ac-
nowledged and successfully applied to various diseases such as prostate
ancer [6] , ischemic stroke [62] and Type 2 diabetes mellitus [15] . 

Novel technologies have empowered and accelerated the accumu-
ation of patient data in recent years. However, with a character of
igh-throughput, these datasets are often cross-sectional, noisy, sparse,
nd lack of statistical power, rendering conventional data analytical
pproaches unable to mine useful biological insights from these data.
achine learning, an integral part of computational biology, is being

ncreasingly adopted for analyzing health-care and biomedical data to
ddress some of these challenges. In the last decade, machine learning
lgorithms have gained popularity in medicine and scientific research
 35 , 58 , 75 ]. A study conducted by Zhang and co-workers successfully
iscriminated hepatocellular carcinoma tissues from cirrhosis tissues by
stablishing a computational model based on machine learning method
75] . Hammond et al. revealed different roles of A 𝛽, tau, and neurode-
eneration in Alzheimer’s disease development by using the random for-
st machine learning method [19] . In the selected datasets, machine
earning methods are capable of identifying statistically significant pat-
erns that could provide predictions with good accuracy. 

The current study sought to identify the hub genes correlated with
DH mutation and establish a prognostic model for glioma patients
ith IDH-mutation. A total of ten hub genes were discovered by using
GCNA, which showed strong correlation with survival of glioma pa-

ients. By using bioinformatics analysis and machine learning methods,
e identified a 31 gene-signature which was used to establish a prognos-

ic model based on the profile of IDH-mutant glioma patients from TCGA
atabase. The results of this study indicated two novel subtypes of IDH
utation with distinct molecular and clinical characteristics and pro-

ided a robust model for predicting the prognosis of IDH-mutant glioma
atients. 

aterials and methods 

ata collection and processing 

In brief, gene expression RNA-seq of glioma samples were down-
oaded from TCGA database along with clinical and subtype information
f corresponding patients. A total of 669 samples, containing 515 sam-
les of LGG patients and 154 samples of GBM patients were extracted
or identification of hub genes associated with IDH status. The flowchart
or this part of analysis was depicted in Figure S1 . 

For identifying gene signature of IDH-mutant glioma and establish-
ng prognostic model, gene expression and subtype data of 328 IDH-
utant glioma samples were downloaded from TCGA database and split

nto two sets: a training set ( N = 228) and a test set ( N = 100). 

GCNA construction and key module identification 

Before constructing WGCNA, outlier samples were detected by us-
ng the standardized connectivity (Z.K) method as proposed before, and
he samples with a Z.K score < − 2 were screened as outliers [38] . In
 network, the Z.K score represents the overall strength of connections
etween a given node and all of the other nodes. After eliminating 27
utlier samples, the expression data profile was used for network gen-
ration by the R library WGCNA [28] . Initially, the soft-thresholding
or network construction was determined: first, the similarity amid two
o-expressed genes (m, n) was set as S mn = |cor (m, n) |. Meanwhile,
orrelation of gene adjacency was conducted using a power function
pickSoftThreshold function of WGCNA): a mn = power (S mn , 𝛽) = |S mn | 

𝛽 .
hen, after setting the power value in the range of 1 to 30, average con-
ectivity and scale freedom were detected by a gradient method. The
odules were generated by hierarchical average linkage clustering ap-
roach. The modules were assigned to different colors for visualization
nd a cut line of 0.25 was set to combine the similar expression mod-
les. The genes assembled into the gray module were removed in the
ollowing analysis. The module with first rank absolute MS was defined
s the key module that was significantly associated with the clinical trait
e studied. 

dentification of transcription factors 

In order to further understand the regulatory information of the key
odule, transcription factors (TFs) were identified by the comprehen-

ive web-based tool Enrichr ( http://amp.pharm.mssm.edu/Enrichr/ ).
he TFs-target genes interactome was generated after importing key
odule genes into Enrichr, and the visualization of their regulatory net-
ork was performed by using Cytoscape 3.4.0 software. 

nalysis of hub genes associated with IDH status 

Hub genes were identified by the module connectivity. First, full
eighted network of the key module was exported for extracting the
btained gene network. Then, the subnetworks were generated with
CODE in Cytoscape. Finally, subnetwork genes displaying high mod-

le membership (MM), high gene significance (GS) and high weight in
he correlation network were screened as the hub genes. The correla-
ion of the hub genes and IDH status was validated by the Wilcoxon test
p-value cutoff = 0.05). Moreover, further analyses (overall survival (OS)
nalysis and disease-free survival (RFS) analysis) for the hub genes were
erformed in Gene Expression Profiling Interactive Analysis (GEPIA)
 http://gepia.cancer-pku.cn/ ). 

onsensus clustering 

Based on the comparison of gene expression profile, the R package
CancerSubtypes ” [69] was applied to conduct consensus clustering for
etermining subgroups of IDH mutant glioma. The cumulative distri-
ution function (CDF) and consensus matrices were used to assess the
ptimal number (k) of subgroups. Then the survival analysis of sub-
roups was performed by the “survival ” R package and visualized by
he “survminer ” package. 

creening of differential expressed genes (DEGs) 

The IDH-mutant glioma samples were assigned to cluster1 or clus-
er2 according to the result of consensus clustering analysis. Next, the R
limma ” package was run for screening of DEGs, with P value < 0.05 and
log (fold change) (FC) | > 2 as cutoff criteria. The “ComplexHeatmap ”
ackage was used to visualize the expression heatmap of DEGs in R. 

ene signature identification and prognostic model establishment 

With the aim of computing the predictive significance of the identi-
ed DEGs, the univariate Cox regression analysis was performed. After-
ard, the DEGs with high predictive significance (p-value cutoff= 0.05)
ere used for feature selection by using the least absolute shrinkage
nd selection operator (LASSO). Additionally, the candidate prognostic
odel was established via different machine learning models and the

ccuracy of each model was gaged by performing the receiver charac-
eristic operator curve (ROC) analysis. Then the model which showed
he highest value of area under curve (AUC) among all candidate mod-
ls was selected as the prognostic model for further analysis. The risk
core was calculated by LASSO based on the gene expression level and
egression coefficients. 

valuation of the prognostic model 

After calculating the risk scores, the median risk score was set as a
hreshold to divide patients of test set ( N = 100) into two groups: low-

http://amp.pharm.mssm.edu/Enrichr/
http://gepia.cancer-pku.cn/
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isk patients and high-risk patients. The overall survival (OS) was evalu-
ted by means of the Kaplan–Meier survival analysis accompanied with
 two-sided log-rank test. Pathological and molecular differences among
oth risk groups were assessed using the Wilcoxon and Kruskal-Wallis
ests. The visualization of this process was implemented in the R pack-
ge "ggpubr". P < 0.05 was considered statistically significant. 

unctional enrichment analysis 

Using ClusterProfiler (R package), we performed functional gene en-
ichment analysis to reveal the functional role of the identified genes.
riefly, using the gene lists as input, the results of the enriched terms of
he Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
KEGG) pathways were generated after running clusterProfiler. The ad-
usted P-value < 0.05 was chosen as the threshold for the identification
f significant GO terms and pathways. 

esults 

dentification of the hub genes related to IDH status by WGCNA 

To find the key module associated with IDH status in glioma, WGCNA
as performed based on 669 tumor samples from TCGA database. By
sing Z.K method, a total of 27 outlier samples were detected and re-
oved. After eliminating the outlier samples, the sample dendrogram

nd trait heatmap were constructed ( Fig. 1 A ). As shown in Fig. 1 B , the
etwork had a relatively high-average connectivity when the scale in-
ependence was 0.85. In this case, 𝛽 = 24 was retained as the power
hreshold and 20 modules were generated after hierarchical clustering
nalysis ( Fig. 1 C ). Then, the modules whose eigengenes showed corre-
ation above 0.75 (cut line for merging of modules = 0.25) were merged
Y. [5] ), and ten modules were finally obtained. The eigengene adja-
ency heatmap was shown in Fig. 1 D and indicated that modules were
ndependent from each other. As shown in Fig. 1 E and Figure S2 , the
yan module was most credibly associated with IDH status ( r = − 0.87,
 = 4e-198). For this reason, for a more in-depth analysis, we chose the
yan module as the model module to explore the genes most associated
ith IDH status. 

The scatter plots of GS for IDH status vs. MM in the cyan module
ere depicted in Fig. 2 A . In the cyan module, a total of six TFs (KLF4,
P63, SOX2, TP53, FOSL2 and SMC3) were identified, and the TF-target

nteractome was displayed in Fig. 2 B . There were 572 genes in the cyan
odule. Setting cut-off value as MM ≥ median and GS ≥ median, 81

enes were obtained. Afterward, full weighted network of the cyan mod-
le was exported to extract subnetworks using MCODE in Cytoscape.
en subnetwork genes displaying high MM, high GS and high weight,
hich included GPX8, CCDC109B, IGFBP2, LINC00152, LOC541471,
ETTL7B, S100A4, EMP3, CLIC1, and TAGLN2, were screened as the

ub genes ( Fig. 2 C ). Boxplots of hub genes based on IDH status were
s indicated in Fig. 2 D , and we observed that all the hub genes were
arkedly influenced by the IDH status in glioma ( P < 0.0001). Mean-
hile, we found that the expressions of these hub genes were also
arkedly different between cases with and without IDH mutation in

oth LGG and GBM ( Figure S3 and S4 ). The most significant functional
erms were as shown in Table S1 . Functional annotation revealed that
hese ten hub genes were mainly involved in cadherin binding, insulin-
ike growth factor binding, glutathione metabolism, and arachidonic
cid metabolism. 

alidation of the hub genes in the GEPIA 

LOC541471 is a long non-coding gene. There was no survival data
bout it in GEPIA. As shown in Figure S5A , LGG patients with up-
egulated hub genes had a remarkably shorter survival time. In the
eanwhile, except for IGFBP2, LINC00152 and S100A4, the expres-

ion of the other six hub genes showed no significant association
ith the survival time of GBM patients ( Figure S5B ). The disease-free
urvival (RFS) analysis exhibited a result similar to the OS analysis
 Figure S6 ). 

lassification of IDH-mutant subtypes based on consensus clustering 

Based on the gene profile and clinical phenotype information of 669
lioma patients (including IDH mutant and IDH wild type patients),
he above analyses uncovered a set of hub genes which were closely
elated to IDH status, providing a novel insight of the mechanism of
DH mutation in glioma. To further identify molecular subtypes or new
lioma markers for monitoring IDH-mutant glioma patients accurately,
e classified IDH-mutant subtypes in glioma by consensus clustering.
he flowchart of gene signature identification and prognostic model
onstruction was displayed in Figure S7 . A total of 228 samples in the
raining set were employed for the consensus clustering to obtain the
DH-mutant subtypes. As shown in Fig. 3 A-C , to guarantee high corre-
ation within the group, consensus clustering divided the patients into
wo distinctive clusters based on a slow growth rate of CDF value. The
eatmap of the two clusters ( Fig. 3 E ) revealed an important difference
n the prognosis between samples of these two clusters ( Fig. 3 D ), sug-
esting that the patients of cluster1 had significantly poorer prognosis
n comparison with those of cluster2. The average silhouette of the two
lusters were 0.93 and 0.88 respectively, indicating the high degree of
eparation of the two clusters ( Fig. 3 F ). The clinical characteristics of
he two clusters were summarized in Table 1 . As we can see, the pa-
ients in cluster1 were significantly associated with older age (82.7%,
 = 7.14e-07), astrocytomas (75%, P = 3.96e-04), and high grade (100%,
 = 3.43e-03). Consistent with the result of survival analysis, cluster1
as strongly correlated with poor clinical outcome ( P = 1.18e-03). These

esults suggested that the two subtypes based on the IDH mutation may
rovide guidance for clinicians on personalized treatments and diag-
oses by identifying differences in prognosis for each epigenetic sub-
ype. 

dentification of DEGs between IDH mutant subtypes 

Samples divided according to the two clusters were employed for
dentifying DEGs by using the “limma ” R package. The volcano plots for
ll genes and the heatmap of the genes with the most significant differ-
ntial expression were shown in Fig. 4 A and 4 B . A total of 283 DEGs
etween the samples in cluster1 and cluster2 were identified under the
riteria of P value < 0.05 and |log FC| > 2. Among these DEGs, 155
ere highly-expressed in cluster1 (downregulated in cluster2) while 128
EGs were lowly-expressed (upregulated in cluster2). After intersecting

he key module genes identified by WGCNA with the DEGs, a total of
1 genes were obtained ( Fig. 4 C ), which suggested that these 21 genes
ere not only associated with IDH status but also related to IDH mutant

ubtypes. However, no hub gene was found in the intersection result.
hen we performed the functional enrichment annotation for the DEGs.
s shown in Fig. 4 D , the genes up-regulated in cluster1 were mainly

nvolved in the process of cell division including organelle fission, nu-
lear division and chromosome segregation; we also found that these
enes were equally implicated in cellular processes such as cell cycle
nd cellular senescence. The p53 signaling pathway was also associated
ith these DEGs. For the genes downregulated in cluster1, enrichment in

ransport-related processes including substrate-specific channel activity
ere the most prevalently recorded ( Fig. 4 F ). The function enrichment
f the 21 intersection genes was also conducted. The results were listed
n Table S2, indicating that these genes were mainly enriched in posi-
ive regulation of receptor-mediated endocytosis, regulation of protein
rocessing and regulation of protein maturation. 
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Fig. 1. Identification of the key module significantly associated with IDH status (mutant and wild type) by weighted gene co-expression network analysis (WGCNA). 

(A) Sample dendrogram and trait heatmap after excluding 27 outlier samples, based on the expression data of glioma patients in TCGA, which contained 515 LGG 

and 154 GBM samples. (B) Determination of soft-thresholding power ( 𝛽) by analyzing (left) scale-free fit index and (right) mean connectivity; 24 was the most 

fit soft-thresholding power value in this study. (C) Dendrogram of consensus module eigengenes. The eigengenes groups (20) were merged according to merging 

threshold (the red line) due to their similarity; bottom: gene dendrogram was acquired after clustering the dissimilarity. A total of ten modules were finally generated. 

(D) Heatmap plot of the adjacencies of modules, suggesting modules were independent from each other; red represents positive correlation while blue represents 

negative correlation. (E) Heatmap of the correlation between different traits of glioma and module eignegenes. Each row and column correspond to a consensus 

module and trait, respectively. The correlations (with the p values described below) of each trait and module eigengenes were depicted in the corresponding cell. 

The cells are colored according to the correlation (red, positively correlated; blue, negative correlated), the intensity of the color is related to the strength of the 

correlation. The cyan module was the most significantly correlated with IDH status ( r = 0.87, p = 4e-198). 

Table 1 

Characteristics of IDH-mutant glioma patients in cluster 1 and 2 from training set. 

Features N Cluster 1 Cluster 2 P-value 

Total 228 96 132 

Age Young ( < 50) 176 87 89 7.14e- 

07 Old ( ≥ 50) 52 9 43 

Gender Male 130 57 73 0.5418 

Female 98 39 59 

Histology Glioblastoma 3 3 0 3.96e- 

04 Astrocytoma 70 53 17 

Oligodendroglioma 100 10 90 

Oligoastrocytoma 55 30 25 

Grade G2 118 40 78 3.43e- 

03 G3 107 53 54 

G4 3 3 0 

Vital 

Status 

Alive 178 65 113 1.18e- 

03 Dead 50 31 19 
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Fig. 2. Analysis of hub genes in the cyan module. (A) Scatter plot of module eigengenes related to IDH status in the cyan module. (B) The regulatory network of 

TF-target gene in the cyan module. Red diamonds symbolize the TFs, and purple nodes symbolize the genes. (C) The network of hub genes, suggesting the hub genes 

exhibited high connectivity with other genes. (D) Boxplots of the hub genes showing the expressions of all the hub genes exhibited statistical discrepancy between 

IDH mutant ( N = 432) and IDH wild type ( N = 237) (WT) of glioma patients. 

Note: TF, transcription factor. 
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onstruction of prognostic model for IDH-mutant glioma patients 

By using a univariate Cox regression, we found that all the DEGs be-
ween the cluster1 and cluster2 subtypes were significantly linked with
S of IDH-mutant glioma patients in the training set. Thus, prognosis
ene signature were identified based on these 283 DEGs. Through the
ASSO regression algorithm, a signature of 31 genes was finally ob-
ained ( Fig. 5 A-C ). Among 31 genes in the signature, only CD97 was
dentified in WGCNA as an IDH status-related gene ( Fig. 5 D ). Then, the
1-gene signature was applied to construct prognostic models by using
ifferent machine learning approaches including back-propagation neu-
al network (BPNN), support vector machine (SVM), convolutional neu-
al network (CNN), eXtreme Gradient Boosting (Xgboost), random for-
st (RF), and LASSO. As shown in Figure S8 , the model constructed by
ASSO showed the highest accuracy of prognosis in IDH-mutant glioma
atients, with an AUC of 0.8743. 

alidation of the prognostic model on the test set 

Based on machine learning method (LASSO), the risk scores for IDH-
utant glioma patients were computed. The median risk score was con-

idered as the risk score threshold for grouping IDH-mutant patients in
he test set as two patient groups (low-risk group and high-risk group).
efore validating the prognostic model established based on the 31-gene
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Fig. 3. The consensus clustering of IDH-mutant glioma samples classification in the training set ( N = 228). (A) The cumulative distribution function (CDF) of the 

consensus matrix for k with range of 2 to 10. (B) Delta Area Plot showed the change of area under the CDF curve with diverse k values. (C) Color-coded heat map 

corresponding to the consensus matrix for k = 2 obtained by applying consensus clustering. (D) Survival analysis of IDH-mutant glioma patients from Cluster 1 and 

2. (E) Heat map of the two clusters. (F) Silhouette plot used to examine the degree of separation of clusters. 
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ignature, the correlation among the risk scores of this signature and
he clinicopathological features of patients was evaluated. As shown in
ig. 6 A-D , a high discrepancy in the risk scores was noted amid pa-
ients sorted by age ( P = 0.045), WHO grade ( P = 0.025) and histology
 P = 0.038), while the patient gender did not show a correlation with the
isk scores ( P = 0.33). In ROC curve analysis based on the risk model,
ge, grade, and histology, we found that only the risk model showed
igh efficiency in predicting vital status ( Fig. 6 E) and distinguishing
luster1 from cluster2 ( Fig. 6 F) . The prognostic model was validated
ased on the test set ( Fig. 7 ). The OS of subjects with high-risk scores
as obviously shorter relatively to patients with low-risk scores ( P <
.0001, Fig. 7 A ). As shown in Fig. 7 B and 7 C , we found that whether
he patients were old (age ≥ 50) or young, patients of the high-risk group
howed a lower OS compared to those of the low-risk group. Next, we
aged the value of the prognostic model based on the glioma WHO grade
I and III, respectively. For the patients with WHO grade II or III, the
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Fig. 4. Differential expressed genes (DEGs) analysis for IDH-mutant glioma patients from Cluster 1 and 2, with a threshold of log 2 |FC| > 1 and P < 0.05. (A) Volcano 

plot of DEGs identification. (B) Heatmap of the top 50 DEGs. (C) The Venn diagram showed that a total of 22 common genes between the key module genes and 

DEGs. (D) Functional enrichment annotation of the up-regulated genes and (E) down-regulated genes. The size of the circle indicates the number of genes and the 

y-axis represents the terms of GO and KEGG pathway. The color of the circle showed the p.adjusted value of each term. The redder the color the higher the p.adjusted 

value. 

Note: FC, fold change; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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igh-risk group patients displayed a strong correlation with shorter OS
ompared with the low-risk group patients ( P = 0.011 and P = 0.0074,
ig. 7 F and 7 G ). Additionally, we also investigated the predictive value
f the model in IDH-mutant glioma patients which were divided by dif-
erent types of histological features. As shown in Fig. 7 H-J , the high-
isk group patients had a bad prognosis in both the oligoastrocytoma
atients ( P = 0.046) and oligodendroglioma patients ( P = 0.0032), but
howed no significant difference in the astrocytoma patients ( P = 0.8). 

unctional enrichment of the 31-gene prognostic signature 

To further explore the mechanism of the 31-gene prognostic signa-
ure for IDH-mutant patients, the GO and KEGG functional enrichment
as performed. Initially, by using Pearson correlation analysis, we iden-

ified the genes positively ( R > 0.5 and P < 0.0001) and negatively ( R
 − 0.5 and P < 0.0001) correlated with the risk sore of gene signature.
hen, the results were displayed in Fig. 8 . The functional analysis of
he positively related genes indicated that these genes were those driv-
ng the biological processes of nuclear division, chromosome segrega-
ion and DNA replication ( Fig. 8 A ). In the cellular component ontology,
he positively related genes were significantly enriched in chromoso-
al region and spindle ( Fig. 8 B ). The GO terms of ATPase activity and

atalytic activity acting on DNA were significantly enriched molecular
unctions ( Fig. 8 C ). Cell cycle was the most mainly enriched pathways
esulting from the KEGG pathway analysis ( Fig. 8 D ). Notably, the most
nriched terms of genes negatively related to risk score were organelle
ssion and nuclear division in the biological process, nuclear envelope
nd chromosomal region in cellular component, catalytic activity acting
n DNA and helicase activity for molecular function, and cell cycle and
anconi anemia pathway in the KEGG pathway database ( Fig. 8 E-H ). 

iscussion 

Glioma is the most common primary intracranial tumor with vary-
ng malignancy grades I-IV [17] . IDH is identified as a major prognostic
arker which is significantly related to tumor grade in glioma. IDH mu-
ation occurs in the majority of LGG (WHO grade II/III), but in only 5%
apparently – primary glioblastomas (WHO grade IV) (GBM) [46] . In
his study, we applied WGCNA to screen out ten hub genes associated
ith IDH status and constructed a prognostic model for IDH-mutant pa-

ients via bioinformatics and machine learning tools. 
Initially, we applied WGCNA to unearth the main modules and hub

enes associated with IDH status in gliomas (LGG and GBM). For simi-
ar samples with low connectivity, the power ( 𝛽) estimation would in-
ate the output [37] . Thus, the outlier samples with low connectivity
ere detected and removed by Z.K method before constructing a co-

xpression network. The Z.K examination of all samples confers both the
exibility and the efficacy required for analyzing large datasets by iden-
ifying and removing outliers [38] . IDH status was most significantly
orrelated with the cyan module, thus the cyan module was selected
s the key module. After filtering GS and MM value, a total of ten hub
enes (GPX8, CCDC109B, IGFBP2, LINC00152, LOC541471, METTL7B,
100A4, EMP3, CLIC1, and TAGLN2) were obtained and all of them
ere significant in distinguishing IDH status in glioma. Besides, since

DH mutation occurrence is quite disproportionally distributed in LGG
nd GBM, we validated whether these genes were true surrogates for
DH status in glioma by comparing their expressions from samples with
nd without IDH mutation in LGG and GBM, respectively. The results
evealed increased expression levels of these hub genes in IDH wild
ype samples, suggesting that these hub genes could be used as true
urrogates for IDH status. Previous studies demonstrated that the IDH
ild type patients generally have poorer clinical outcome than the IDH
utant patients [3] . Our results are in line with the published studies,

howing that genes correlated with IDH wild type status are expected
o be associated with worse prognosis. Then, we found that these hub
enes were all cancer-related genes, and many studies reported that
ome of them had significant correlation with glioma. Xu et al. iden-
ified CCDC109B as an oncogene and a prognostic marker in human
liomas; they also revealed that the expression of CCDC109B was reg-
lated by HIF1 𝛼 [68] . Yao et al. found that HIF1 𝛼 is associated with
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Fig. 5. Identification of gene signatures by LASSO regression approach based on training set from IDH-mutant glioma patients. (A) Cross-validation for choosing 

tuning parameter of LASSO model; (B) LASSO coefficient profiles of 283 genes. (C) Coefficient values for the 31 genes by LASSO. Note: LASSO, least absolute 

shrinkage and selection operator. (D) The Venn diagram showed that only one common gene between the key module genes and signature genes. 
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ypoxia and acidity in wild type but not IDH1-mutant gliomas [72] . As
nown, IDH1 mutation has been linked with a better prognosis in glioma
atients [ 61 , 71 ]. Analogously, our results showed that CCDC109B up-
egulated expression was significantly connected with IDH1 wild type
nd poor prognosis. Thus, we speculated that HIF1 𝛼 might play a key
ole in the relation of CCDC109B with IDH mutation in glioma. Several
esearchers prompted that IGFBP2 is implicated in glioma cell prolifera-
ion, migration and invasion, which was also a prognostic biomarker in
BM [ 2 , 43 , 45 ]. A recent study conducted by Yuan and his co-workers
roved that the expression of IGFBP2 was related to the occurrence of
DH1 mutation [74] . LOC541471 was reported to be involved in the
xidative phosphorylation of GBM, which was significantly associated
ith overall survival (X. [4] ). EMP3 is one of the molecular markers
ssociated with clinical outcome in glioma [16] . Interestingly, EMP3
verexpression is most detected in GBM, but the majority of LGG sam-
les showed low or no expression of EMP3, which is the opposite of the
DH mutation [12] . Besides, Mellai et al. indicated that hypermethyla-
ion of EMP3 was strongly associated with IDH mutation [36] . CLIC1 is
 regulator involved in the aggressive aspects of numerous solid tumors
ncluding glioma [44] . Peretti et al. found that the expression level of
LIC1 was correlated with poor prognosis of GBM [44] . Djuric and his
olleagues found that CLIC1 was enriched in IDH wild type glioma cells
36] . Han et al. identified TAGLN2 as a possible predictive biomarker
riving the tumorigenesis in gliomas [20] . A recent study demonstrated
hat increased TAGLN2 expression may be related to invasion and poor
rognosis in IDH wild type gliomas [1] . Combining these previous lit-
rature with our findings, we supposed that such hub genes make a
ontribution in the correlation of prognosis with IDH status in glioma.
ubsequent functional enrichment of such hub genes revealed that the
ajority of these genes were significantly enriched in cadherin binding,

nsulin-like growth factor binding, glutathione metabolism, and arachi-
onic acid metabolism. Increasing studies suggested that IDH mutation
s closely related to glutathione metabolism [ 7 , 13 ]. Recently, several
tudies highlighted the value of glutathione metabolism as the novel
herapeutic target of IDH-mutant glioma [ 57 , 73 ]. Based on the results
f functional annotation, we anticipated that hub genes identified herein
ere involved in the glioma IDH mutation via glutathione metabolism

elated pathways. 
In order to clarify the mechanisms beneath IDH mutations in glioma,

e built a TF-gene interactome based on genes in the cyan module. All
he TFs we identified (KLF4, TP63, SOX2, TP53, FOSL2, SMC3) are sig-
ificantly related to tumor progression, which suggested a correlation
etween IDH mutation and glioma progression. Several studies indi-
ated that KLF4 can play a role in suppressing tumors in various human
ancer types by regulating cell-cycle genes [ 26 , 63 , 76 ]. KLF4 also plays
 central role in the prevention of Epithelial to mesenchymal transition
EMT) and metastasis [59] . TP63 was reported to promote squamous
ancer progression by activating both MEK/ERK1/2 and PI3K/AKT axes



Y. Jia, W. Yang, B. Tang et al. Translational Oncology 14 (2021) 100979 

Fig. 6. Association between the gene signature and the pathological characteristics in test set from IDH-mutant glioma patients. The risk scores distribution in glioma 

patients stratified by (A) age, (B) gender, (C) WHO grade, (D) histology. Receiver characteristic operator curves (ROC) showed the predictive efficiency of the risk 

signature in (E) vital status and (F) Cluster 1/2. 

Fig. 7. Verification for significance of the prognostic model derived risk scores in test set from IDH-mutant glioma patients. (A) Kaplan–Meier survival curves for all 

samples that assigned into high- and low-risk scores groups. Kaplan–Meier survival curves for patients with (B) age ≥ 50 (old), (C) age < 50 (young), (D) female, (E) 

male, (F) Grade 2, (G) Grade 3, (H) astrocytoma, (I) oligoastrocytoma, and (J) oligodendroglioma that assigned into low- and high-risk scores groups. The yellow 

line represents high risk scores group, while the blue line represents low risk scores group. 
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Fig. 8. Functional enrichment analysis for the prognostic model related genes. GO terms and KEGG pathway enrichment analyses for the (A-D) positively related 

genes and (E-H) negatively related genes. The size of the circle indicates the number of genes and the y-axis represents the terms of GO and KEGG pathway. The 

color of the circle showed the p.adjusted value of each term. The redder the color the higher the p.adjusted value. 

Note: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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25] . SOX2 has been implicated in growth, tumorigenicity, drug resis-
ance, and metastasis in the majority of cancers, which included cervi-
al cancer, pancreatic cancer, breast cancer and glioma (C. [ 22 , 24 ]; K.
 32 , 49 , 53 ]). Magali et al. indicated that TP53 mutations are indicators
f bad prognosis in several cancers [17] . FOSL2 has been reported to in-
uce TGF- 𝛽 expression which is related to a diversity of biological and
ellular processes, including cell proliferation, differentiation, apopto-
is, and migration [48] . Reports on SMC3 involvement in cancers are
carce but our study conveyed its probable involvement in gliomagene-
is. 

As for the Kaplan-Meier survival analysis, the results demonstrated
hat the expression of IGFBP2, LINC00152 and S100A4 were negatively
ssociated with OS and RFS in glioma patients, suggesting these three
enes might be oncogenes in glioma. The expressions of other hub genes
ere pointedly related to the survival time of LGG but not GBM patients.

According to the above results, we supposed that the hub genes
ight be involved in the prognosis of glioma. Therefore, we further

stablished a prognostic model based on the expression profile of IDH-
utant glioma patients. To identify the signature associated with IDH
utation for establishing prognostic model, we performed consensus

lustering, followed by differentially expressed genes analysis and uni-
ariate Cox regression. Consensus clustering, an algorithm for classifi-
ation of cancer subtype, provides quantitative and visual stability evi-
ence based on repeated subsampling and clustering for calculating the
umber of unsupervised clusters in a dataset [66] . Two clusters were
dentified in this study, which were proven to be significantly related to
atient survival. The comparison of patients from the two clusters also
howed statistical difference in age, WHO grade, histology and progno-
is, suggesting these two clusters might represent two novel IDH-mutant
ubtypes that reflected different features. Our study revealed that the
verall survival rate of cluster 1 was remarkably lower than that of clus-
er 2 ( P = 0.0025). As reported, patients with oligodendroglioma have
 generally better prognosis than those with astrocytoma [14] . Consis-
ent with published data, our results showed that the majority of as-
rocytoma (75%) are in cluster1 and the majority of oligodendroglioma
90%) are in cluster2. Notably, the distribution of the young patients
with younger age at diagnosis ( < 50)) in the two clusters was roughly
he same; however, 82.7% of old patients were classified into cluster2. 

Next, we screened out DEGs between these two clusters, and the
esult for functional annotation suggested that the up-regulated genes
overexpressed in patients from cluster1) affected patient survival via
he regulation of the cell division related process. As known, abnormal
ell division is one of the important features in tumors [ 11 , 18 ], and in-
reasing studies emphasized the accumulation of cell divisions is one
f the most important biological causes of cancer [ 60 , 67 ]. These genes
verexpressed in patients from cluster1 were also mainly enriched in
rucial pathways in cancer progression, such as the cell cycle, cellular
enescence, and p53 signaling pathways. These results of functional an-
otation might explain why the prognosis of patients from cluster1 was
oorer than those from cluster2. We also intersected DEGs with genes
n the cyan module to seek the genes which were related to not only
DH status, but also IDH mutation subtypes. However, among 21 in-
ersected genes, none was hub gene. We speculated that although the
xpressions of hub genes were closely related to whether glioma pa-
ients are accompanied by IDH mutations, they might not relate to the
ifferent phenotypes under IDH mutation. Based on this, the expression
f hub genes may be mainly associated with wild type IDH status in
lioma. Then, by using the univariate Cox regression analysis and LASSO
egression method based on the DEGs, a signature of 31 genes was iden-
ified. Among such 31 genes, some of them have been incriminated in
he progression of various cancers. The overexpression of HMGA1 gene
s always found in cancer, and its high levels portend a poor prognosis
n diverse tumors [ 9 , 56 ]. Pang et al. reported HMGA1 as a key gene con-
rolling malignancy, proliferation, invasion, and angiogenesis of glioma
41] . Several studies revealed an association between increased CD97
xpression and poor survival in glioma patients [ 27 , 50 ]. As we men-
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ioned above, the cyan module was significantly related to IDH status.
t is worth mentioning that CD97 is a gene in the cyan module. No clear
elationship between the expression of CD97 and IDH mutation has been
reviously described but studies have suggested that both may relate to
nvasion in glioma ( [21] ; L. C. [ 23 , 51 ]), yet the mechanism remains
bscure. ESR2 is a tumor suppressor gene and its role was reported in
he context of GBM and other cancers (J. [ 31 , 54 ]). Additionally, Xu
t al. revealed that CCNY regulates cell cycle in glioma [70] . Besides,
ost of the other signature genes, such as CYP3A5, DCBLD1, ADD3 and
DAMTS, have been proven to be cancer related genes. These published
ata verified the value of signature gene in glioma prognosis. Although
here is no hub gene in the 31 genes that made up the signature, the pre-
ictive model composed of the signature was capable of predicting the
rognosis of patients with IDH mutations in glioma. Based on the test
et, we investigated the efficiency of the prognostic model and revealed
hat the high-risk group had low OS, implying the predictive model we
uilt could effectively predict prognosis in IDH-mutant glioma patients.
e also found that patients at high risk were older patients and WHO

rade IV patients, which was consistent with the above findings as the
ld patients or patients with WHO grade IV commonly mean poor prog-
osis. 

Furthermore, GO and KEGG analysis were performed based on the
enes significantly correlated with 31-gene signature for exploring the
iological function of this signature. The results showed the 31-gene sig-
atures were closely related to basic cancer related biological processes,
ncluding cell cycle, nuclear division, and DNA replication. 

There are some limitations in this study. First, our study was en-
irely focused on data mining and data analysis, and the results lacked
erification by experimental data. Further experiments are required to
onfirm the findings of this study. Second, the data applied to analyze
n our study was downloaded from TCGA which is a public database, so
ome significant patient information might lack in this study. The lack
f such data may produce some deviations. 

In summary, this study identified a total of ten hub genes which were
ssociated with wild type IDH status in glioma, providing important in-
ormation for future development and application of IDH target agents
n glioma therapies. Moreover, the current study, for the first time, es-
ablished a prognostic model with high accuracy for IDH-mutant glioma
atients, which might have important clinical implications for accurate
rognostication and management in IDH-mutant glioma patients with
arious epigenetic subtypes. 
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