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Purpose: The objectives of this study were to identify key dosimetric parameters associated with postradiation therapy lymphopenia
and uncover any effect on clinical outcomes.
Methods and Materials: This was a retrospective review of 69 patients (between April 2010 and January 2023) who underwent
radiation therapy (RT) as a part of curative intent for soft tissue sarcoma (STS) at a single academic institution. All patients with
treatment plans available to review and measurable absolute lymphocyte count (ALC) nadir within a year after completion of RT were
included.
Results:Median follow-up was 22 months after the start of RT. A decrease in lymphocyte count was noted as early as during treatment
and persisted at least 3 months after the completion of RT. On multivariable linear regression, the strongest correlations with ALC
nadir were mean body dose, body V10 Gy, mean bone dose, bone V10 Gy, and bone V20 Gy. Five-year overall survival was 60% and 5-
year disease-free survival was 44%. Advanced T-stage, chemotherapy use, use of intensity-modulated RT, lower ALC nadir, and the
development of grade ≥2 lymphopenia at nadir were associated with worse overall survival and disease-free survival.
Conclusions: Post-RT lymphopenia was associated with worse outcomes in STS. There were associations between higher body V10 Gy
and bone V10 Gy and lower post-RT ALC nadir, despite the varying sites of STS presentation, which aligns with the well-known
radiosensitivity of lymphocyte cell lines. These findings support efforts to reduce treatment-related hematopoietic toxicity as a way to
improve oncologic outcomes. Additionally, this study supports the idea that the effect of radiation on lymphocyte progenitors in the
bone marrow is more significant than that on circulating lymphocytes in treatments with limited involvement of the heart and lung.
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Introduction
The goal of radiation therapy (RT) in general is the
balance between sufficient dose for tumor cell kill while
limiting toxicity to organs at risk. Lymphocytes are partic-
ularly radiosensitive immune cells that play a vital role in
both anti-infection as well as antitumor response.1,2 There
has been a recent interest in understanding the effects of
radiation on the immune cell populations, especially with
increasing use of immunotherapy treatments, which rely
on normal lymphocyte function.

Prior studies have shown that pretreatment lympho-
cyte counts are associated with worse outcomes in numer-
ous malignancies.3 More recently, radiation-induced
lymphopenia (RIL) has been correlated with worse sur-
vival outcomes in various solid tumors.4-9 It is theorized
that lymphocyte depletion compromises host antitumor
response leading to worse treatment response.4 This idea
is supported by findings that show levels of tumor-infil-
trating lymphocytes in pathologic samples after treatment
are associated with worse survival outcomes.10-13 The
incidence and effects of RIL are less known in soft tissue
sarcoma (STS).

STS presents a unique challenge in that the location of
presentation is heterogenous, with the most common
being in the extremities followed by the retroperitoneum,
trunk, and head and neck regions.14 Jin et al15 developed
a model to estimate radiation dose to circulating blood
cells, which takes into account large blood-containing
organs such as lung, heart, body, and vessels. Their model
was validated using patients enrolled on Radiation Ther-
apy Oncology Group 0617, a clinical trial that showed
worse survival in patients with locally advanced lung can-
cer who were treated to a higher RT dose.16 Their findings
showed that higher dose to circulating blood was signifi-
cantly and independently associated with worse overall
survival (OS) and local progression-free survival. Work
by Mell et al17 also found higher bone marrow volume
receiving 10 Gy to be associated with increased rates of
grade ≥2 hematologic toxicity in patients undergoing RT
for cervical cancer. There may be additional dosimetric
factors associated with RIL in STS given the generally
lower circulating blood radiation doses and decreased use
of concurrent chemotherapy compared with thoracic and
gynecologic malignancies.
Methods and Materials
Patient selection

Institutional review board approval was collected before
the start of this study. Patients who underwent curative
management of STS at our institution between September
2009 and January 2023 were retrospectively reviewed. All
patients received RT with neoadjuvant, adjuvant, or defini-
tive intent. Patients were excluded if they did not have RT
at our institution or if they did not have complete blood
cell count within 0 to 14 months after completion of RT.
Patients underwent staging by the American Joint Com-
mittee on Cancer Staging (8th ed.) criteria.
Treatment

Treatment was a combination of surgery with neoadju-
vant or adjuvant RT, as well as definitive RT alone. Che-
motherapy indications were advanced stage disease or
rhabdomyosarcoma histology. The median total RT dose
was 50 Gy (range, 39-78 Gy) delivered in conventional 1.8
to 2 Gy fractions daily. Three dimensional conformal was
more often used before increased intensity modulated RT
(IMRT) utilization starting in 2015. In cases involving
extremities, margins of 3 to 4 cm were employed in the
superior and inferior directions, whereas 1- to 1.5-cm
margins were used radially.
Follow-up and hematologic assessments

Follow-up consisted of physical examination, complete
blood counts, and radiologic assessments done at provider
discretion. Absolute lymphocyte counts (ALC) were
assessed before start of RT (baseline), during RT (midtreat-
ment), between 0 to 4 months post-RT (3 months),
between 5 to 8 months post-RT (6 months), and between 9
to 14 months post-RT (12 months). ALC nadir was defined
as lowest lymphocyte level post-RT within 0 to 14 months
after completion of RT. Lymphopenia was graded by Com-
mon Terminology Criteria for Adverse Events v5.0 with
grade 1 (800-1000 cells/mL), grade 2 (500-799 cells/mL),
grade 3 (250-499 cells/mL), and grade 4 (<250 cells/mL).
Dosimetric analysis

Dosimetric data were calculated using RT plans. Organ
volumes were contoured individually for body, bone,
heart, and lung to calculate dose-volume histograms.
Planning treatment volume (PTV) as well as mean dose
and volume receiving 10, 20, and 30 Gy (V10, V20, V30
Gy) for individual organs were calculated.
Statistical analysis

Paired t tests were used to compare baseline ALC
with follow-up ALC measurements, and effect size was esti-
mated with Cohen’s d. OS was defined as time from RT
start to death. Disease-free survival (DFS) was defined as
time from RT start to disease recurrence, progression, or



Table 1 (Continued)

Characteristic Value

Nodal staging, no. (%)

N0 67 (97%)

N1 2 (2.9%)

Grade, no. (%)

Grade 1 8 (12%)

Grade 2 6 (8.7%)

Grade 3 55 (80%)

Histology, no. (%)
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death. Associations between lymphopenia and survival out-
comes were modeled with univariate and multivariate Cox
proportional hazards regression. Additionally, a mixed
effects Cox proportional hazards model was used to account
for serial ALC measurement and patient-level random
effects. Clinical and dosimetric parameters were evaluated
for associations with lymphocyte nadir using Spearman
rank correlation coefficient and multivariable linear regres-
sion. Receiver operating characteristics analysis was used to
determine dosimetric cutoff values for predicting ALC
nadir. Statistical analyses were performed using SPSS ver-
sion 24.0 (IBM Corp, Armonk, NY) and R version 4 (R
Foundation for Statistical Computing, Vienna, Austria).
Angiosarcoma 6 (8.7%)

Carcinosarcoma 1 (1.4%)
Results

Clear cell sarcoma 1 (1.4%)

Leiomyosarcoma 8 (12%)

Liposarcoma 18 (28%)

Dedifferentiated liposarcoma 2 (2.9%)

Myxoid liposarcoma 11 (16%)

Pleomorphic liposarcoma 4 (5.8%)

Well-differentiated liposarcoma 1 (1.4%)

Malignant peripheral nerve sheath tumor 2 (2.9%)

Myxofibrosarcoma 1 (1.4%)

Pleomorphic dermal sarcoma 3 (4.3%)

Rhabdomyosarcoma 4 (5.8%)

Spindle cell sarcoma 4 (5.8%)

Synovial sarcoma 4 (5.8%)
Demographics

Two hundred eighty-five patients with STS were
reviewed, and 69 patients met criteria to be included in
this study. Baseline demographic and disease characteris-
tics are summarized in Table 1. Median age was 59 years
(range, 23-89 years). T1 disease was present in 15% of
patients (n = 10), T2 in 45% (n = 31), T3 in 22% (n = 15),
and T4 in 19% (n = 13). There were 2 patients with node-
positive disease. Grade 1 disease was found in 12% of
patients (n = 8), grade 2 in 8.7% (n = 6), and grade 3 in
80% (n = 55). The most common histologies were liposar-
coma (26%, n = 18) and undifferentiated pleomorphic
sarcoma (22%, n = 15). Chemotherapy was given to 45%
Table 1 Baseline patient and disease characteristics

Characteristic Value

Age, median (range), y 59 (23-89)

Follow-up, median (range), mo 22 (3-142)

Sex, no. (%)

Male 41 (59%)

Female 28 (41%)

Location, no. (%)

Head/neck 16 (23%)

Upper/lower extremity 44 (64%)

Trunk 9 (13%)

Tumor staging, no. (%)

T1 10 (15%)

T2 31 (45%)

T3 15 (22%)

T4 13 (19%)

(continued on next page)

Undifferentiated pleomorphic sarcoma 15 (22%)

Unknown histology 2 (2.9%)

Chemotherapy, no. (%) 31 (45%)

Surgery, no. (%) 59 (86%)

Radiation technique

3DC, no. (%) 22 (32%)

IMRT, no. (%) 47 (68%)

Total RT dose, median (range), Gy 52 (39-78)

PTV, median (range), cc 840 (48-13,981)

ALC, median (range), cells/mL

Pretreatment 1700 (600-5100)

Midtreatment 600 (30-2200)

3 mo post-RT 900 (40-2300)

6 mo post-RT 1000 (100-4700)

12 mo post-RT 1300 (130-2300)

ALC nadir 1000 (40-2300)

Abbreviations: 3DC = 3-dimensional conformal; ALC = absolute
lymphocyte count; IMRT = intensity modulated RT;
PTV = planning treatment volume; RT = radiation therapy.
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(n = 31) of patients. Surgery was performed on 86%
(n = 59) of patients. Median total RT dose was 50 Gy
(range, 39-78 Gy) given in conventional 1.8 to 2 Gy frac-
tions daily. IMRT was used in 68% (n = 47).
ALC nadir

Complete blood cell counts for ALC nadir analysis
were available for 60 patients at pretreatment, 27 patients
at midtreatment, 53 patients at 3 months post-RT, 46
patients at 6 months post-RT, 31 patients at 12 months
post-RT, and 69 patients at ALC nadir. Median pretreat-
ment, midtreatment, 3 months post-RT, 6 months post-
RT, 12 months post-RT, and ALC nadir lymphocyte
counts were 1700 cells/mL (range, 600-5100 cells/mL), 600
cells/mL (30-2200 cells/mL), 900 cells/mL (40-2300 cells/
mL), 1000 cells/mL (100-4700 cells/mL), 1300 cells/mL
(130-2300 cells/mL), and 1000 cells/mL (40-2300 cells/
mL), respectively (Fig. 1).

ALC was decreased as early as during midtreatment
and persisted until 3 months post-RT as reflected by
larger effect sizes (d > 0.8) noted at midtreatment and 3
months post-RT timepoints (Fig. 1). Fifty-nine of 69
patients (86%) reached ALC nadir within 6 months post-
RT. Distribution of lymphopenia toxicity at ALC nadir
was 9 (13%) with grade 1, 7 (10%) with grade 2, 12 (17%)
with grade 3, and 7 (10%) with grade 4 (Fig. E1). Long-
term ALC follow-up was available for 19 of the 25 patients
who developed grade ≥2 lymphopenia. Among these 19
patients, 9 experienced a recovery in their lymphocyte
counts (ALC ≥ 1000 cells/mL), with a median time to
recovery of 9.5 months (range, 1.7-19 months).
Figure 1 Box and whisker plot showing absolute lymphocyte
6 months post-RT, 12 months post-RT, and absolute lymphocyt
sent median, the boxes represent the interquartile range, and the
Abbreviations: ALC = absolute lymphocyte count; RT = radiatio
Factors associated with development of grade ≥3 lym-
phopenia included head and neck primary disease, T3-T4
versus T1-T2 disease (odds ratio [OR], 6.2; 95% CI,
1.9-21), receipt of chemotherapy (OR, 7; 95% CI, 2.0-25),
and use of IMRT technique (OR, 12; 95% CI, 1.5-96).
Disease grade, surgery, definitive versus neoadjuvant or
adjuvant RT goal, RT dose, and PTV were not signifi-
cantly associated.
Dosimetric parameters

Strongest correlations with lower ALC nadir were
increased mean body dose (rs = 0.39; P < .01), body V10
Gy (rs = 0.36; P < .01), mean bone dose (rs = 0.51; P <
.01), bone V10 Gy (rs = 0.58; P < .01), and bone V20 Gy
(rs = 0.56; P < .01) (Table 2). Other statistically significant
correlations included body V20 Gy, body V30 Gy,
and bone V30 Gy. Lung and heart parameters as well as
total dose did not show significant correlations. PTV
approached significance (rs = 0.22; P = .07).

On multivariable linear regression, controlling for sur-
gical resection and chemotherapy use, strongest correla-
tions with ALC nadir were body V10 Gy (b = 0.38; P <
.01), bone V10 Gy (b = 0.49; P < .01), and bone V20 Gy
(b = 0.46; P < .01) (Table 2). Other statistically significant
correlations included mean body dose, body V20 Gy,
body V30 Gy, mean bone dose, and bone V30 Gy. Figure 2
shows an axial image of a treatment plan for a patient who
developed grade 3 lymphopenia.

Patients with an ALC nadir < 1000 cells/mL exhibited
worsened OS compared with those with an ALC nadir ≥
1000 cells/mL (hazard ratio [HR], 3.2; 95% CI, 1.1-9.0).
count at pretreatment, midtreatment, 3 months post-RT,
e count nadir timepoints. The lines inside the boxes repre-
whiskers represent the 95% range.
n therapy.



Table 2 Spearman rho correlation and linear regression between clinical and dosimetric parameters and absolute lym-
phocyte count nadir

Parameter Correlation, rs
Linear regression, b

Univariable Multivariable

T3-T4 vs T1-T2 - 0.44* 0.29y

High-grade disease - 0.19 -

Chemotherapy - 0.45* 0.43*

Surgery - −0.23 −0.10

Definitive vs neoadjuvant/adjuvant RT - 0.21 -

IMRT vs 3DC - 0.38* 0.31*

Total RT dose 0.21 0.21 -

PTV 0.22 0.24 -

Body mean dose 0.39* 0.39* 0.27y

Body V10 0.36* 0.36* 0.38*

Body V20 0.33* 0.33* 0.36*

Body V30 0.30y 0.29y 0.32*

Bone mean dose 0.51* 0.50* 0.37*

Bone V10 0.58* 0.58* 0.49*

Bone V20 0.56* 0.55* 0.46*

Bone V30 0.47* 0.44* 0.36y

Heart mean dose −0.15 −0.50 -

Heart V10 −0.23 −0.029 -

Lung mean dose 0.27 0.26 -

Lung V10 0.20 0.15 -

Abbreviations: 3DC = 3-dimensional conformal; IMRT = intensity modulated radiation therapy; PTV = planning treatment volume; RT = radiation
therapy.
*P < .01.
yP < .05.
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Receiver operating characteristics analysis was used to
determine the predictive accuracy of dosimetric parame-
ters for an ALC nadir < 1000 cells/mL. The area under
the curves for mean body dose, body V10 Gy, mean bone
dose, bone V10 Gy, and bone V20 Gy were statistically
Figure 2 Axial computed-tomography image of radia-
tion treatment plan showing dose wash and isodose lines
for a patient who developed grade 3 lymphopenia. Ten
Gy isodose line is in purple. Bone is contoured in magenta
and body is contoured in light green.
significant, with values of 0.68, 0.70, 0.76, 0.78, and 0.79,
respectively (Fig. E2). Optimal cutoff values were deter-
mined to be a mean body dose of 7.48 Gy, body V10 Gy
of 3355 cc, mean bone dose of 6.57 Gy, bone V10 Gy of
231 cc, and bone V20 Gy of 178 cc (Table E1).
Survival outcomes

Median follow-up was 22 months (range, 3-142
months) after start of RT. Median OS was 84 months
(95% CI, 57-110). Five-year OS was 60%. Male sex, head
and neck primary disease, chemotherapy use, and use of
IMRT technique were associated with worse OS on
Cox proportional hazard regression (Table 3). ALC at
3 months post-RT, 6 months post-RT, 12 months post-
RT, and ALC nadir as well as development of grade ≥2
lymphopenia at ALC nadir were associated with worse
OS. Pretreatment and midtreatment ALC were not associ-
ated with worse OS. On multivariate regression, account-
ing for chemotherapy use and surgical resection, ALC at 3



Table 3 Univariate Cox proportional hazards regressions of clinical factors associated with survival outcomes

Clinical factor
HR (95% CI)

Overall survival Disease-free survival

Age 1.02 (0.99-1.0) 1.0 (0.98-1.0)

Female vs male 0.32 (0.11-0.98)* 0.38 (0.18-0.83)*

T3-T4 vs T1-T2 2.8 (1.1-7.2)* 3.0 (1.5-6.0)y

High-grade disease 24 (0.032-19,000) 26 (0.34-1900)

HN vs ext, trunk 2.0 (1.2-3.3)y 1.4 (0.93-2.1)

Chemotherapy 4.6 (1.5-14)y 5.6 (2.5-13)y

Surgery 0.36 (0.12-1.1) 0.39 (0.17-0.91)*

Definitive vs neoadjuvant/adjuvant RT 2.7 (0.74-9.5) 1.4 (0.50-4.1)

IMRT vs 3DC 3.3 (1.0-11)* 3.0 (1.2-7.6)*

RT total dose 1.0 (0.98-1.1) 1.0 (0.97-1.1)

ALC (cells/mL)

Pretreatment ALC 1.0 (0.95-1.1) 1.0 (0.99-1.1)

Midtreatment ALC 1.1 (0.95-1.2) 1.1 (0.95-1.2)

3 mo post-RT ALC 1.3 (1.1-1.5)y 1.2 (1.1-1.3)y

6 mo post-RT ALC 1.2 (1.1-1.4)y 1.1 (1.0-1.2)y

12 mo post-RT ALC 1.2 (1.0-1.3)* 1.1 (1.0-1.2)

ALC nadir 1.2 (1.1-1.4)y 1.2 (1.1-1.2)y

G2-G4 lymphopenia 4.4 (1.6-12)y 3.5 (1.7-7.0)y

G3-G4 lymphopenia 5.0 (1.9-14)y 3.5 (1.7-7.2)y

Abbreviations: 3DC = 3-dimensional conformal; ALC = absolute lymphocyte count; HN = head and neck; HR = hazard ratio; IMRT = intensity mod-
ulated radiation therapy; RT = radiation therapy.
*P < .05.
yP < .01.
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months post-RT (HR, 1.2; 95% CI, 1.0-1.4), 6-months
post-RT (HR, 1.2; 95% CI, 1.1-1.4), 12-months post-RT
(HR, 1.2; 95% CI, 1.0-1.3), ALC nadir (HR, 1.2; 95% CI,
1.0-1.3), and development of grade ≥2 lymphopenia at
ALC nadir (HR, 2.5; 95% CI, 1.2-5.2) remained statisti-
cally significantly associated with OS. Kaplan-Meir curves
of OS stratified by development of grade ≥2 lymphopenia
are shown in Fig. 3A.

Median DFS was 20 months (95% CI, 0-76 months).
Five-year DFS was 44%. Male sex, T3-T4 versus T1-T2
disease, chemotherapy use, lack of surgical resection, and
use of IMRT technique were associated with worse DFS
(Table 3). Three months post-RT, 6months post-RT, and
ALC nadir as well as development of grade ≥2 lymphope-
nia at ALC nadir were associated with worse DFS. On
multivariate regression, 3 months post-RT ALC (HR, 1.1;
95% CI, 1.0-.13), 6 months post-RT ALC (HR, 1.1; 95%
CI, 1.0-1.2), ALC nadir (HR, 1.1; 95% CI, 1.0-1.2), and
the development of grade ≥2 lymphopenia at ALC nadir
(HR, 2.5; 95% CI, 1.2-5.2) remained statistically signifi-
cantly associated with DFS. Kaplan-Meir curves of DFS
stratified by development of grade ≥2 lymphopenia are
shown in Fig. 3B.
After accounting for chemotherapy use, surgical resec-
tion, and pretreatment ALC on mixed effects multivariate
regression, ALC nadir remained significantly associated
with both OS (P = .006) and DFS (P = .01).
Discussion
We found that patients with STS treated with conven-
tional radiation were at high risk for lymphopenia. Grade
≥2 lymphopenia was seen in 36% of patients in our cohort
after radiation, and the most highly associated dosimetric
parameters were bone V10 Gy and body V10 Gy. The clini-
cal significance of lymphopenia were associations with OS
and DFS, which were seen on multivariate analysis adjust-
ing for chemotherapy use and surgical resection.

Our work contributes to the increasing evidence that
RIL can have adverse consequences on treatment out-
comes in solid tumor malignancies, although this is the
first study to our knowledge in STS.4,9 In contrast to other
studies, we did not find survival outcomes to be influ-
enced by lower pretreatment ALC.18-21 These results sup-
port the monitoring of post-RT blood work as a



Figure 3 Kaplan-Meier curves of (A) overall survival and (B) disease-free survival for patients stratified by development
of grade ≥2 lymphopenia at absolute lymphocyte count nadir. Abbreviations: ALC = absolute lymphocyte count;
RT = radiation therapy.
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commonly available and easily employed biomarker for
treatment response and prognosis.

A decrease in lymphocyte count was noted as early as
midtreatment, with the majority of patients reaching ALC
nadir within 6 months post-RT. ALC at 6 and 12 months
post-RT remained lower than pretreatment levels, and
lymphopenia at these timepoints remained associated
with mortality. Among the patients who developed grade
≥2 lymphopenia and eventually recovered their lympho-
cyte counts, the median time to recovery was 9.5 months.
These findings suggest a chronic component to hemato-
poietic injury may be contributing to worsened survival.
RT is known to cause long-term sequalae in lymphoid-
containing tissues and blood vessels leading to chronic
lymphopenia.22 In STS, the lag to lymphocyte improve-
ment is likely related to the detrimental effect on bone
marrow progenitor cells, rather than lymphocytes already
released into circulation. Interestingly, the model pro-
posed by Jin et al15 was recently adapted to explain how
ultrahigh dose-rate FLASH RT might provide a means for
limiting toxicity to circulating lymphocytes because of the
minimal exposure of a given blood volume.23 However,
the limited involvement of adaptive immunity in FLASH-
irradiated tumor growth delay cast doubts on this model,
and current work here argues that total dose to the
hematopoietic stem cell compartments has a larger effect
on clinical outcome than radiation-induced ablation of
circulating lymphocytes.

The detrimental association between lymphopenia and
DFS is not necessarily self-evident. One hypothesis is that
RIL may limit the ability to give additional systemic ther-
apy or even decrease the efficacy of additional therapies.
Some work has shown RIL may hinder the effectiveness
of treatments that rely on a functional immune system,
such as immune checkpoint inhibitors.24-27

The dosimetric parameters associated with lower ALC
nadir included both mean and volumetric doses (V10 Gy)
to the body and bone. These findings are consistent with
the known radiosensitivity of lymphocyte cell lines and
suggest that radiation effects on lymphocyte progenitors
in the bone marrow may dominate those of circulating
lymphocytes for treatments with minimal contribution to
heart and lung.2,15 Prior research has demonstrated that
V10 Gy to pelvic bone marrow is a predictor of worse
hematologic toxicity in patients receiving chemoradiation
for cervical and anal cancers, and integral body dose is
associated with worse lymphopenia in patients undergo-
ing RT for lung cancer.17,28,29

This work supports ongoing initiatives to develop con-
straints to lymphoid-rich organs with the goal of improv-
ing efficacy of RT with immune checkpoint inhibitors.30

For example, a phase 1 study of stereotactic body RT in
non-small cell lung cancer is currently evaluating the use
of a lymphodepletion- predictive algorithm to decrease
circulating blood and lymphocyte dose.31 Other efforts
have focused on novel drug therapy approaches to reduce
RIL. For example, an ongoing phase 1/2 clinical trial of
chemoradiation for high-grade glioma is looking at the
safety and tolerability of a recombinant interleukin-7
drug as well as its potential to increase ALC.32 The current
study points to a clinical need and opportunity for
improved radiation and drug therapy investigations in
STS. Such techniques that may be able to lower the body
V10 Gy and bone V10 Gy include static field IMRT and
proton beam therapy.

This study is limited by its small sample size and retro-
spective design, which is susceptible to selection bias. Sur-
veillance laboratory work and imaging were ordered at
provider discretion as part of normal standard of care.
Additionally, there was significant heterogeneity within
the patient population given differences in disease charac-
teristics and presentation as well as treatment used,
including chemotherapy regimens, surgical approaches,
and differences in standard practices over 2 decades. In
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addition, further validation is necessary as we did not
consider the dose to other lymphoid-rich tissues such as
the spleen and lymph nodes as well as to other circulating
lymphocyte-containing tissues such as large blood vessels
that could also contribute to the development of
lymphopenia.19,33 Despite the relative rarity and diversity
of presentation in STS, we made efforts to create a well-
designed study through the implementation of clear inclu-
sion criteria and multivariable analysis.
Conclusion
Our study supports the use of post-RT blood counts as
a means of improving prognostication as well as efforts to
reduce treatment-related hematopoietic toxicity to
improve oncologic outcomes. Further work to mitigate
the effects of RIL include modification of RT volumes,
fractionation, lowering dose to body and bone marrow,
dose-rate modulation, and using techniques to lower inte-
gral dose for select patients. Potential dosimetric con-
straints to be considered in future studies include mean
body dose < 7.48 Gy, body V10 Gy < 3355 cc, mean bone
dose < 6.57 Gy, and bone V10 Gy < 231 cc. Nonetheless,
RIL and lower lymphocyte nadir may help identify
patients at high risk for recurrence.
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