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Metronomic chemotherapy offsets HIFa
induction upon maximum-tolerated dose in
metastatic cancers
Luana Schito1,2,3,*,† , Sergio Rey1,2,†, Ping Xu3, Shan Man3, William Cruz-Muñoz3 &

Robert S Kerbel3,4,**

Abstract

Conventional maximum-tolerated dose (MTD) chemotherapy relies
on periodic, massive cancer cell ablation events followed by treat-
ment-free intermissions, stereotypically resulting in resistance,
relapse, and mortality. Furthermore, MTD chemotherapy can
promote metastatic dissemination via activation of a transcrip-
tional program dependent on hypoxia-inducible factor (HIF)-1a
and (HIF)-2a (hereafter referred to as HIFa). Instead, frequent low-
dose metronomic (LDM) chemotherapy displays less adverse
effects while preserving significant pre-clinical anticancer activity.
Consequently, we hereby compared the effect of MTD or LDM
chemotherapy upon HIFa in models of advanced, metastatic colon
and breast cancer. Our results revealed that LDM chemotherapy
could offset paralog-specific, MTD-dependent HIFa induction in
colon cancers disseminating to the liver and lungs, while limiting
HIFa and hypoxia in breast cancer lung metastases. Moreover, we
assessed the translational significance of HIFa activity in colorectal
and breast TCGA/microarray data, by developing two compact, 11-
gene transcriptomic signatures allowing the stratification/identifi-
cation of patients likely to benefit from LDM and/or HIFa-targeting
therapies. Altogether, these results suggest LDM chemotherapy as
a potential maintenance strategy to stave off HIFa induction
within the intra-metastatic tumor microenvironment.
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Introduction

Hypoxia (low O2) is a pervasive microenvironmental feature of solid

cancers, associated with disease progression and poor survival due

to metastatic dissemination and resistance to cancer therapies

(Schito & Semenza, 2016; Rey et al, 2017; Schito, 2019). Mechanisti-

cally, hypoxia is transduced to the nucleus of cancer cells by the

activation of a transcriptional program mediated by hypoxia-indu-

cible factor (HIF)-1a and (HIF)-2a (henceforth referred to as HIFa)
(Schito & Semenza, 2016). In particular, both hypoxia and HIFa
have been linked to therapy resistance, metastatic progression, and

mortality in a variety of cancers, including colon and breast carcino-

mas, wherein the efficacy of conventional maximum-tolerated dose

(MTD) chemotherapy is rather limited in late-stage, metastatic

disease (Shimomura et al, 2013; Dekervel et al, 2014; Schito & Rey,

2017), a condition often managed via maintenance chemotherapy.

We have previously suggested that MTD chemotherapy could aggra-

vate intra-tumoral hypoxia through HIFa-dependent mechanisms

counteracting cancer cell killing (Rey et al, 2017). In this context,

we hypothesized that low-dose metronomic (LDM) chemotherapy, a

modality with advantageous safety, tolerability, and possibly thera-

peutic profiles when administered as maintenance, might serve as a

tool to offset intra-tumoral HIFa levels caused by conventional MTD

chemotherapy (Cao et al, 2013; Samanta et al, 2014; Simkens et al,

2015; Kerbel & Shaked, 2017; Bisogno et al, 2018). In order to test

this hypothesis, we performed the first side-by-side comparison of

oral LDM cyclophosphamide + capecitabine, a doublet regimen

previously evaluated in advanced breast cancers (Dellapasqua et al,

2008), as opposed to an equivalent MTD regimen. Further, we

implemented automated HIFa quantification algorithms in ortho-

topic models of advanced colon and breast cancers that repro-

ducibly metastasize to the liver and lungs (Teicher et al, 1990;

Hackl et al, 2013; Shaked et al, 2016). Our data show that LDM

chemotherapy can offset paralog-specific, MTD-triggered HIFa
induction in colon adenocarcinomas disseminating to the liver and
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lungs, while limiting intra-metastatic hypoxia in breast cancer lung

nodules. In addition, we explored the translational potential of these

pre-clinical findings by utilizing statistical modeling and bioinfor-

matics to generate two compact HIFa gene signatures designed to

uncover the prognostic consequences of HIFa activation in colon

and breast cancer patients. The data herein presented suggest that

maintenance LDM chemotherapy may improve overall chemother-

apy outcomes by offsetting HIFa upregulation upon conventional

MTD regimens, while providing two novel transcriptomic tools

allowing the identification of cancer patients with high HIFa trans-

activity, and thus potentially amenable to combinatorial LDM and/

or HIFa targeting.

Results

LDM chemotherapy offsets HIF-1a induction in colon cancers

Quantitative analysis of orthotopic human (HT29) primary colonic

adenocarcinomas showed that doublet LDM cyclophosphamide

+ MTD capecitabine increased median nuclear HIF-1a protein levels

by 12-fold compared to vehicle-treated controls (P = 3.9 × 10�3;

Fig 1A and Appendix Fig S1A); by contrast, switching to a doublet

LDM cyclophosphamide+capecitabine regimen blocked �97% of HIF-

1a induction (P = 2 × 10�3; Fig 1A and Appendix Fig S1A). Notably,

both nuclear and cytoplasmic HIF-2a levels were unaffected by

chemotherapy (Fig 1B and Appendix Fig S1B), thus suggesting a

paralog-specific effect. We did not observe chemotherapy-dependent

induction of CA9, a known HIF-1a target commonly utilized as a proxy

molecular readout for hypoxia and HIFa activity (Fig 1C). These data

suggest cell-autonomous effects and the need for caution whenever

CA9 is used as a substitute for HIFa activity in hypoxic cancers.

Furthermore, HIF-1a induction by doublet LDM cyclophos-

phamide + MTD capecitabine was not due to differences in tumor

volume, since luminescence plots displayed comparable slopes and

absolute values at endpoint (Appendix Fig S2A), overall signal

doubling times of �15 days (Appendix Fig S2B), and comparable

cross-sectional areas among treatments (Appendix Fig S2C and D);

likewise, no significant correlations were observed among HIF-1a,
HIF-2a and CA9 expression (Appendix Fig S3A–C).

Since HIF-1a activation triggers cell cycle arrest in vitro (Hubbi

et al, 2013), we functionally validated these in vivo data using

machine-learning algorithms measuring Ki67-dependent prolifera-

tion. Our results uncovered an inverse correlation between HIF-1a
and nuclear Ki67 (Fig 1D), an effect that was not observed for HIF-

2a or CA9 (Appendix Fig S3D and E). Of note, we did not observe

significant effects exerted by MTD or LDM chemotherapy regimens

upon Ki67 per se (Fig 1D), although the mean proliferative index in

all tumors was 29.2% [range: 7.6–89.5%; n = 29], consistent with

our observations of similar primary tumor volumes, thereby

expected to result in similar O2 diffusion distances and hence

hypoxic fractions.

LDM chemotherapy offsets HIF-1a induction in colonic
metastases to the liver

At endpoint, liver metastatic nodule diameters derived from primary

colonic tumors followed a log-normal distribution (Fig 2A). Using

the median diameter of vehicle-treated metastases (970 lm) as a

reference, only doublet LDM cyclophosphamide+capecitabine treat-

ment induced a significant decrease in colon-derived metastatic liver

nodule size by automated morphometric analysis (P = 0.0299 by

chi-square test; Fig 2A).

We next assessed the effect of MTD and LDM doublet chemother-

apy on HIFa in the same advanced metastatic, preclinical colon

cancer setting. Consistent with primary tumor data, doublet LDM

cyclophosphamide + MTD capecitabine increased HIF-1a in liver

metastases by 2.5- fold (P = 3.1 × 10�2; Fig 2B and Appendix Fig

S4A), an induction that was blunted by doublet LDM cyclophos-

phamide+capecitabine (�95% decrease, P = 8 × 10�4), equivalent

to a reduction of � 87% as compared to vehicle-treated controls

(P = 5.3 × 10�3; Fig 2B and Appendix Fig S4A). These data suggest

that LDM chemotherapy can attenuate HIF-1a induction in liver

metastases independently of diffusion-limited hypoxia and in the

presence of equivalent metastatic burdens. By contrast, MTD and

LDM chemotherapy schemes did not modulate liver metastatic HIF-

2a levels (Appendix Fig S4B and C), wherein expression was

predominantly cytoplasmic (Appendix Fig S4D). In addition, HIF-1a
and HIF-2a expression within liver metastases or their peri-

metastatic parenchyma was not correlated (Appendix Fig S4E).

Notwithstanding, automated quantitative analysis of the non-

malignant peri-metastatic rim of colon metastases to the liver

[median thickness: 213 lm (range: 49–353 lm)] revealed a strik-

ing log-linear correlation, wherein metastatic HIF-1a or -2a levels

predicted paralog expression in the surrounding parenchyma,

therefore suggesting a hitherto unrecognized effect of the

intra-metastatic environment upon surrounding, non-malignant

hepatocytes (Fig 2C and D).

LDM chemotherapy offsets HIFa induction in colon and breast
cancer metastases to the lung

Not unlike their clinical counterparts, experimental colon cancers

disseminated to the lungs, wherein nodule size distribution was log-

normal, similarly to liver metastases, albeit presenting significantly

smaller nodular diameters (Fig EV1A). The median cross-sectional

diameter of colon cancer lung metastases in vehicle-treated controls

was �175 lm; remarkably, metastatic diameter was significantly

decreased by LDM monotherapy with capecitabine (�44%) or

cyclophosphamide (�53%) as compared to vehicle controls

(P < 0.05 by one-way ANOVA and chi-square tests; Fig EV1A). By

contrast, MTD capecitabine increased lung nodule sizes by �1.5-

fold versus vehicle (P = 0.012; Fig EV1A). Furthermore, all

chemotherapy combinations, except for LDM capecitabine, signifi-

cantly increased HIF-2a expression by various degrees (P < 0.05

versus vehicle; Fig EV1B and Appendix Fig S5A). In particular,

doublet LDM cyclophosphamide + MTD capecitabine increased

HIF-2a expression by 33.4-fold (P < 10�4; Fig EV1B), an effect that

was blunted by �81% in the doublet LDM cyclophos-

phamide+capecitabine group (P = 0.044; Fig EV1B). Importantly,

intra-metastatic HIF-2a expression increased as a function of nodule

size (Fig EV1C), thereby suggesting dependency upon diffusion-

limited hypoxia. Contrary to the liver microenvironment, HIF-1a
expression in lung metastases was not significantly modulated by

chemotherapy (Fig EV1D and Appendix Fig S5B), nonetheless

revealing a positive correlation with nodular diameter, similarly to
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Figure 1. LDM chemotherapy selectively offsets HIF-1a levels in experimental colon cancers.

A HIF-1a levels in HT29 primary tumors. Left: vehicle-treated controls. Middle/left: Doublet LDM cyclophosphamide + capecitabine (LDMCTX + LDMCPB). Middle/right:
LDM cyclophosphamide + MTD capecitabine (LDMCTX + MTDCPB). Inset, high-magnification image of the region marked with a green asterisk (*). Right: Quantification
of the effect of monotherapies or doublet LDM/MTD regimens on HIF-1a+ area. F5,12 = 8.791 and P = 0.001 for overall treatment by Brown–Forsythe ANOVA;
*P = 0.046 versus vehicle; #P < 0.0001 versus LDMCTX + MTDCPB by Benjamini, Krieger, and Yekutieli post hoc test.

B HIF-2a levels in HT29 primary tumors. Left: Example of immunostaining in vehicle-treated controls. Inset, high-magnification image of the region marked with a
green asterisk (*). Right: Quantification of the effect of monotherapies or doublet LDM/MTD regimens on HIF-2a+ area. F5,18 = 1.215 and P = 0.3424 (not significant)
for overall treatment by Brown–Forsythe ANOVA.

C CA9 levels in HT29 primary tumors. Left: Example of immunostaining in vehicle-treated controls. Inset, high-magnification image of the region marked with a green
asterisk (*). Right: Quantification of the effect of monotherapies or doublet LDM/MTD regimens on CA9+ area. F5,11 = 2.466 and P = 0.0961 (not significant) for overall
treatment by Brown–Forsythe ANOVA.

D Correlation between HIF-1a levels and proliferation indexes in HT29 primary tumors. Left and middle/left: HIF-1a and Ki67 expression in vehicle-treated controls;
consecutive sections are shown. Middle/right: HIF-1a+ versus Ki67+ proliferation index scatterplot. Each point represents median values for HIF-1a+ tumors.
Regression line (red) and 95% CI (shaded blue area) are indicated. F1,27 = 34.45 and P = 10�4; slope 6¼ 0 by F-test. Right: Machine-learning quantification of the effect
of monotherapies or doublet LDM/MTD regimens upon Ki67+ proliferative index. Median indexes per tumor are indicated. F5,12 = 1.609 and P = 0.2312 (not
significant) for overall treatment by Brown–Forsythe ANOVA.

Data information: Violin plots present 50th (red line), 25th and 75th percentiles (blue line); numbers in brackets indicate number of tumors per group. L, low-dose
metronomic; M, maximum-tolerated dose; r, correlation coefficient. Low power magnification images of all experimental conditions can be found in Appendix Fig S1.
Blue frames in D indicate consecutive sections stained for HIF-1a and Ki67.
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Figure 2. LDM chemotherapy selectively offsets HIF-1a levels in colon cancer metastases to the liver.

A Effect of LDM and MTD chemotherapy on HT29 liver metastatic nodule size. Left: Histogram of pooled cross-sectional metastatic diameter (Ø). Middle: Metastatic
diameter (Ø) by chemotherapy regimen. A decreasing linear trend for median metastatic diameter was observed (left to right, slope = �143.2, P = 0.043 by post-test
for trend). Right: Dichotomized metastatic size at median diameter of vehicle-treated tumors. Liver nodule size was classified as small (blue) or large (red). Individual
nodule counts per group and size category (small/large) are plotted on the right ordinate. v2 (df = 5) = 6.80; P = 0.2361 (not significant) for overall effects on size; v2

(df = 1) = 4.71; P = 0.0299 (LDMCTX + LDMCPB versus vehicle).
B HIF-1a levels in HT29 liver metastatic nodules. Left: Vehicle-treated controls. Middle/left: Doublet LDM cyclophosphamide + capecitabine (LDMCTX + LDMCPB). Middle/

right: LDM cyclophosphamide + MTD capecitabine (LDMCTX + MTDCPB). Right: Automatic quantification of the effect of monotherapies or doublet regimens on HIF-
1a+ areas in individual metastatic nodules. F2,13 = 4.796 and P = 0.028 for overall treatment by Brown–Forsythe ANOVA; *P = 0.038 LDMCTX + MTDCPB versus vehicle
or P = 0.0123 LDMCTX + LDMCPB versus vehicle; #P = 0.0098 LDMCTX + LDMCPB versus LDMCTX + MTDCPB by Benjamini, Krieger, and Yekutieli post hoc test.

C Correlation between metastatic and peri-metastatic HIF-1a levels in the liver. Left: Nodule immunostaining and parenchymal HIF-1a expression. Each point
represents median values per nodule. Regression line (blue) and 95% CI (shaded blue area) are indicated. F1,57 = 150.7 and P < 0.0001; slope 6¼ 0 by F-test. Right:
Correlation between intra-metastatic and peri-metastatic parenchymatous ring in the liver. Each point represents median values per nodule. Regression line (blue)
and 95% CI (shaded blue area) are indicated. F1,54 = 55.2 and P < 0.0001; slope 6¼ 0 by F-test.

D Correlation between metastatic and peri-metastatic HIF-2a levels in the liver. Left: Nodule immunostaining and parenchymal HIF-2a expression. Right: Correlation
between intra-metastatic and peri-metastatic parenchymatous ring in the liver. Each point represents median values for each nodule. Regression line (blue) and 95%
CI (shaded blue area) are indicated. F1,54 = 55.2 and P < 0.0001; slope 6¼ 0 by F-test. n, number of nodules.

Data information: Violin plots present 50th (red line), 25th, and 75th percentiles (blue line); numbers in brackets indicate number of nodules (n) or animals (mice). L, low-
dose metronomic; M, maximum-tolerated dose; ns, not significant; Met, metastasis; r, correlation coefficient. Dashed green lines encircle the histological limit between
metastatic nodules and their surrounding normal liver parenchyma. Insets show high-magnification images of regions marked with asterisks (*). Blue frames in C and D
indicate consecutive sections from the same liver metastasis, stained for HIF-1a or HIF-2a, respectively.
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HIF-2a (Appendix Fig S5C). Since intra-metastatic HIF-1a and HIF-

2a levels were not correlated in the lung (Appendix Fig S5D), we

suggest that these data indicate a site-specific effect wherein MTD

chemotherapy selectively stimulates HIFa paralog induction in

experimental colon adenocarcinomas (i.e., HIF-1a: liver and HIF-2a:
lung), an effect that was selectively offset by specific LDM regimens.

In light of these results, where colonic metastases to the liver

were �3.6-fold larger than in the lung, we aimed to determine

whether paralog specificity was due to microenvironmental factors

or rather a consequence of differences in hypoxic levels, dependent

on metastatic size, burden, and/or factors related to the physiology

of the host organ. Likewise, we sought to rule out putative systemic

perfusion effects due to chemotherapy by quantifying fluorescently

labeled dextran injected at tissue harvesting, while determining

intra-metastatic hypoxic fractions through pimonidazole labeling.

These experiments were carried out in a cisplatin-resistant,

immunocompetent metastatic breast cancer model (EMT6-CDDP)

that disseminates to the lungs, wherein LDM chemotherapy has

been shown to prolong survival (Shaked et al, 2016). In this

immunocompetent, syngeneic model, mice received 9 days of adju-

vant MTD and LDM chemotherapy after primary breast tumor resec-

tion that was programmed to occur before the onset of mortality

due to overt metastatic disease. These experiments revealed lung

nodules in > 50% of mice (median diameter = 626 lm; Fig 3A) of

almost identical size to liver metastases in the colon adenocarci-

noma model (median diameter = 629 lm; Fig 2A). Remarkably,

intra-metastatic hypoxic fractions were significantly decreased by

both LDM monotherapies (�77% in LDM capecitabine and � 82%

in LDM cyclophosphamide, P = 1.9 × 10�3; Fig 3B). Similarly,

doublet LDM cyclophosphamide+capecitabine decreased intra-meta-

static hypoxia by �73% when compared with doublet LDM

cyclophosphamide + MTD capecitabine (P = 1.1 × 10�2; Fig 3B). In

parallel, HIF-1a expression was significantly decreased by �97%,

�94%, or �89% in LDM capecitabine, LDM cyclophosphamide, or

doublet LDM cyclophosphamide+capecitabine, respectively

(P < 0.01; Fig 3C). Furthermore, microvessel density, as measured

by CD31 immunoreactivity, reached a minimum within the LDM

cyclophosphamide monotherapy group (�65% reduction versus

vehicle, P = 4 × 10�4; Fig 3D). In addition, quantitative analysis of

metastatic lung nodules revealed a positive correlation among

hypoxic fractions, microvessel density (Fig EV2A), and HIF-1a
(Fig EV2B). Likewise, intra-metastatic HIF-1a expression positively

correlated with microvessel density (Fig EV2C). Altogether, these

data suggest that intra-tumoral hypoxia exerts a central role upon

HIF-1a-dependent vascularization in metastatic breast cancers

disseminated to the lungs. Importantly, estimates of lung perfusion

in this model, utilizing intravascular fluorescently labeled dextran,

did not show differences among chemotherapeutic regimes

(Appendix Fig S6A and B), suggesting that intra-metastatic hypoxia

in the lung does not depend on systemic effects and it is rather a

local microenvironmental effect (Appendix Fig S6C and D). Further-

more, these experiments suggest that HIFa paralog induction in

metastatic nodules depends on diffusion-limiting hypoxia, since

identically sized liver or lung metastases from colon or breast

adenocarcinomas both expressed HIF-1a, an induction that was

offset by LDM chemotherapies. In addition, we observed a negative

correlation between Ki67 proliferative indexes and HIF-1a expres-

sion in breast adenocarcinoma metastases to the lung (Appendix Fig

S7), in line with our findings in experimental colon adenocarcino-

mas (Fig 1D). Therefore, these observations provide in vivo

evidence supporting HIF-2a as a promoter of early metastatic colo-

nization through proliferation in incipient metastatic lesions (as

seen in HT29 lung metastases); by contrast, HIF-1a could play a

counterbalancing role in larger secondary tumors (as seen in HT29

liver and lung EMT6-CDDP metastases), by promoting cell cycle

arrest as a protective mechanism against chemotherapy-induced

tumoral ablation, in line with previously published in vitro work

(Gordan et al, 2007; Hubbi et al, 2013).

HIFa activity predicts mortality and metastasis in colon and
breast cancer patients

To assess the potential clinical significance of increased HIFa
expression in MTD and doublet LDM chemotherapy, we analyzed

publicly available transcriptomic colon and breast cancer data

from TCGA and GEO datasets. A mechanistically informed search

for experimentally validated HIFa targets, extracted from a previ-

ously published, predictive gene signature in colon cancer

patients (Dekervel et al, 2014), revealed a “core” of 38 (colon)

or 29 (breast) HIFa-inducible transcripts. Spearman regression

matrices of both cancer types revealed that > 70% of possible

transcript combinations were statistically significant after Bonfer-

roni post hoc correction (a < 10�5 = P < 0.01; Fig 4A). Notwith-

standing, in light of recent data indicating that > 90% of random

gene signatures containing > 100 transcripts can predict cancer

survival per se (Venet et al, 2011), we aimed at decreasing the

number of transcripts to a minimum. Unbiased statistical model-

ing yielded two novel compact, eleven HIFa-inducible transcript

signatures (hereafter referred to as HIFa-inducible (HIFi) colon

cancer score [HIFi-CCS; Fig 4B] and breast cancer score [HIFi-

BCS; Fig 4C]). Dichotomization of colon and breast TCGA data

according to HIFi-CCS or HIFi-BCS at the median confirmed indi-

vidual (> 1.5-fold) upregulation of 8/39 (21%) or 5/29 (17%) of

the statistically significant HIFa “seeds” for colon and breast

cancers, respectively (Fig 4D). Importantly, Kaplan–Meier analysis

showed that patients with increased HIFa transcript levels, as

detected by HIFi-CCS or HIFi-BCS, presented decreased overall

and recurrence-free survival (Fig 4B and C). Furthermore, HIFi-

CCS was higher in colon cancer patients with nodal invasion,

wherein high scores were also associated with accelerated

progression to metastasis [median: 11.4 versus 28.4 months in

high versus low HIFi-CCS, respectively; Fig 4B]. Similarly, HIFi-

BCS was higher in estrogen receptor-negative tumor-bearing

patients, while predicting shortened distant-metastasis-free

survival (Fig 4C).

Discussion

Despite abundant data supporting the notion that HIF-1a can

promote every single aspect of the multistep metastatic cascade

(Schito & Semenza, 2016; Schito & Rey, 2017), only a few clinical

studies have addressed HIFa expression in metastatic cancers and

its role in disease progression (Cao et al, 2009; van der Wal et al,

2012; Shimomura et al, 2013). Therapeutically, despite the favor-

able tolerability and safety profiles of LDM chemotherapies, no side-
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Figure 3. LDM chemotherapy offsets HIF-1a levels in breast cancer metastases to the lung.

A EMT6-CDDP lung metastatic nodule size. Left: Histogram of cross-sectional metastatic diameter (Ø). Middle: Metastatic diameter (Ø) by chemotherapy regimen.
F5,99 = 0.9310 and P = 0.4644 (not significant) for overall treatment by Brown–Forsythe ANOVA. Right: Dichotomized metastatic size at median diameter of vehicle-
treated tumors. Lung nodule size was classified as small (blue) or large (red). Individual nodule counts per group and size category (small/large) are plotted on the
right ordinate. v2 (df = 5) = 2.631; P = 0.7567 (not significant) for overall effects on size.

B Hypoxic fraction in lung metastatic nodules. Pimonidazole adduct immunoreactivity was automatically quantified and expressed as fractional positive areas per
nodule (rightmost panel). F5,110 = 7.544 and P < 0.0001 for overall treatment by Brown–Forsythe ANOVA; *P < 0.01 versus vehicle; #P = 0.0111 doublet LDM
cyclophosphamide + capecitabine versus LDM cyclophosphamide + MTD capecitabine by Benjamini, Krieger, and Yekutieli post hoc test.

C HIF-1a levels in lung metastatic nodules. Automatic quantification of HIF-1a levels measured as fractional positive areas per nodule (rightmost panel). F5,114 = 5.325
and P = 0.0004 for overall treatment by Brown–Forsythe ANOVA; *P < 0.01 versus vehicle by Benjamini, Krieger, and Yekutieli post hoc test.

D Microvessel density in lung metastatic nodules. Automatic quantification of CD31 fractional areas per nodule (rightmost panel). F5,124 = 7.531 and P < 0.0001 for
overall treatment by Brown–Forsythe ANOVA; *P < 0.01 (LDM capecitabine, cyclophosphamide, or doublet capecitabine + cyclophosphamide versus vehicle),
#P = 0.0417 (doublet LDM capecitabine + cyclophosphamide versus doublet LDM cyclophosphamide + MTD capecitabine) by Benjamini, Krieger, and Yekutieli post
hoc test.

Data information: Violin plots present 50th (blue line), 25th, and 75th percentiles (red line); numbers in brackets indicate number of nodules (n) or animals (mice) per
group. CPB, capecitabine; CTX, cyclophosphamide; L, low-dose metronomic; M, maximum-tolerated dose. Inset: high-magnification image of the region marked with an
asterisk (*; C rightmost panel). Green, blue, and red frames in B, C, and D indicate consecutive sections from the same lung metastatic nodule, stained for pimonidazole
(hypoxia), HIF-1a, or CD31 (microvascular density).
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by-side comparison of LDM and MTD therapeutic modalities upon

HIFa has been carried out to date.

Analysis of primary and metastatic HIF-1a or HIF-2a levels in a

total of �9,300 images across two different models of advanced

cancer (colon and breast) revealed that MTD chemotherapy can

selectively induce HIF-1a in primary tumors and established liver or

lung metastases, an effect that was offset by LDM monotherapies

and/or doublet regimens. HIF-2a upregulation by MTD regimens

was less marked and only observed in incipient colonic metastases

to the lung, an effect that was tempered by LDM monotherapies with

cyclophosphamide or capecitabine. Size differences among colorec-

tal lung and liver metastases seem, in this context, likely to be due to

asynchronic metastatic colonization, since the colon cancer model

herein utilized disseminates primarily via the portal system into the

liver, and secondarily, into the lung via the systemic circulation,

mimicking colon cancers in the clinical setting. Importantly, our

results in the second model of advanced breast cancer disseminating

to the lungs, suggest selective upregulation of HIF-1a by MTD
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chemotherapies, similarly to colonic metastases to the liver. In addi-

tion, measurements of intra-metastatic pimonidazole+, CD31+ and

intravascular dextran+ signals revealed decreased HIF-1a levels

upon LDM chemotherapy that were associated with attenuated

hypoxia and HIFa-sensitive microvessel densities, independently of

systemic lung perfusion. Importantly, microvessel density serves as

a pathobiological correlate of both HIFa-dependent transcriptional

activation via angiogenic targets, and poor clinical prognosis (Hlatky

et al, 2002; Rey & Semenza, 2010; Schito & Rey, 2017; Schito, 2019),

thus linking HIFa activity with the previously observed pre-clinical

benefit of LDM chemotherapies in the EMT6/CDDP metastatic breast

cancer model (Shaked et al, 2016).

These findings are consistent with in vitro studies indicating that

chemotherapy can induce HIFa levels even in non-hypoxic cancer

cell lines, a phenomenon thought to be correlated with cancer stem

cell enrichment leading to therapy resistance, tumor recurrence, and

metastasis (Samanta et al, 2014); likewise, a previous in vivo study

showed that MTD doxorubicin increased HIF-1a levels in isogenic

breast cancer orthografts, independently of hypoxic severity (Cao

et al, 2013). HIF-2a induction, by contrast, has been shown to coun-

teract HIF-1a-dependent cell cycle arrest in renal cell carcinoma

lines, thereby resulting in enhanced proliferation dependent on c-

Myc gain-of-function (Gordan et al, 2007). Importantly, our data

show that LDM capecitabine dramatically offsets these effects, since

the replacement of MTD capecitabine with LDM capecitabine as

monotherapy or, in combination with LDM cyclophosphamide,

leads to a striking decrease in HIFa levels in established (�629 lm;

HIF-1a) liver or incipient (�180 lm; HIF-2a) lung metastases from

colon and established lung metastases from breast primary tumors

(�626 lm; HIF-1a). These effects were heretofore thought to be

uniquely achievable by HIFa inhibitors (i.e., topoisomerase antago-

nists such as topotecan, digoxin, and anthracyclines such as adri-

amycin) that have been occasionally administered at low dose or

near-LDM regimens in combination with MTD cytotoxic agents

(Rapisarda et al, 2004; Lee et al, 2009; Schito et al, 2012). In addi-

tion, we report that LDM administration per se is able to decrease

HIF-1a or HIF-2a levels, wherein paralog specificity is dependent on

the interaction of factors such as tumor size, cell-autonomous, and

microenvironmental effects. It is noteworthy to highlight that large,

established metastases selectively upregulated HIF-1a upon MTD

therapies independently of primary cell-type [i.e., HT29 (colon)

versus EMT6-CDDP (breast)], secondary location (i.e., liver versus

lung), and chemotherapeutic drug context (i.e., neoadjuvant versus

adjuvant therapies), whereas HIF-2a was induced only in small

nodules, as observed in the colonic adenocarcinoma model. These

results are relevant in view of the recent development and clinical

validation of HIF-2a inhibitors targeting clear cell renal cell carcino-

mas (Cho et al, 2016), and thus warrant further studies on the appli-

cability of combinatorial LDM + paralog-specific HIFa antagonists

in hypoxic and/or HIFa overexpressing cancers. The data herein

presented uncover a hitherto unrecognized influence of the meta-

static microenvironment on HIFa paralog expression and suggest

that HIF-1a and HIF-2a do not play completely redundant roles

while promoting metastatic progression in distant sites, even in

oligoclonal, advanced colon and breast cancer models. In order to

facilitate the translation of these targeting strategies, we developed

HIFi-CCS and HIFi-BCS, two novel, biologically derived, compact

HIFa transcript signatures able to predict overall survival and meta-

static dissemination in colon and breast cancer patients, potentially

amenable for stratification and identification of patients that are

more likely to benefit from LDM alone or in combination with HIFa
antagonists [e.g., HIF-2a antagonists such as PT-2385, currently

under phase I trials in advanced clear cell renal cell carcinoma

(Courtney et al, 2018)].

The translational potential of the data hereby presented can be

better illustrated in light of the observation that the most compelling

clinical successes with metronomic chemotherapy regimens at the

pivotal randomized phase III trial level, all involve protocols

wherein patients receive conventional, upfront MTD therapy

followed by long-term “maintenance” regimens, not unlike continu-

ous LDM chemotherapy. Therefore, the ability of LDM chemothera-

pies to offset MTD-triggered HIFa upregulation uncovers a

molecular mechanism potentially subjacent to the favorable clinical

profile of maintenance LDM therapies, as observed in phase III

◀ Figure 4. HIFa transcriptional activation in human colon and breast cancers.

A Correlation matrix among statistically over-represented and biologically validated HIFa targets in TCGA colon or breast cancer data. Spearman (q) coefficients were
encoded in a pseudo-color scale wherein flattening of ellipses denotes increasing |q| values; blank cells indicate non-significant correlation pairs after Bonferroni post
hoc comparisons. Transcripts are annotated using official gene symbols.

B HIFa-inducible colon cancer signature (HIFi-CCS). Left and middle/left: List of HIFa targets and overall survival in TCGA (left) or aggregated microarray data (middle/
left) from colon adenocarcinomas. Cases are classified as low (blue) or high (red) HIFi-CCS according to their relationship to the median. Kaplan–Meier analysis
followed by log-rank test. Middle/right: HIFi-CCS and lymph node (LN) invasion status. Data are standardized as z-scores. t194 = 4.399 and P < 0.0001 by Student
t-test with Welch’s correction. Right: HIFi-CCS is associated with accelerated distant metastasis. Cases are classified as low (blue) or high (red) HIFi-CCS according to
their relationship to the median. Kaplan–Meier analysis followed by log-rank test.

C HIFa-inducible breast cancer signature (HIFi-BCS). Left and middle/left: List of HIFa targets and overall survival in METABRIC (left) or recurrence-free survival in
microarray (middle/left) from breast adenocarcinomas. Cases are classified as low (blue) or high (red) HIFi-BCS according to their relationship to the median. Kaplan–
Meier analysis followed by log-rank test. Middle/right: HIFi-BCS and estrogen receptor (ER) status. Data are standardized as z-scores. t112 = 3.789 and P = 0.0002 by
Student t-test with Welch’s correction. Right: HIFi-BCS is associated with worsened distant metastasis-free survival. Cases are classified as low (blue) or high (red)
HIFi-BCS whenever they are below or above the distribution median. Kaplan–Meier analysis followed by log-rank test.

D Median RNAseq expression of individual HIFa targets as split by median HIFi-CCS (left) or HIFi-BCS (right). Transcripts up/downregulated by � 1.5-fold are shown in
blue or yellow, respectively. Error bars indicate 95% CI of the median. Log2 scale; n = 209 (colon, TCGA) or n = 609 (breast, METABRIC).

Data information: Gene expression omnibus accession numbers are indicated; HR, hazard ratios, brackets indicate 95% CIs; DMFS, distant metastasis-free survival; OS,
overall survival; RFS, recurrence-free survival; n, number of patients. Violin plots present 50th (thick line), 25th, and 75th percentiles (thin lines) Blue, low signature index
(below median); red, high signature index (above median).

Source data are available online for this figure.
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clinical trials of advanced colorectal adenocarcinomas [ClinicalTri-

als.gov ID NCT00442637; (Simkens et al, 2015)] and high-risk pedi-

atric rhabdomyosarcomas (Bisogno et al, 2018). Furthermore, there

is no a priori rationale precluding favorable clinical results in other

solid malignancies (i.e., triple-negative breast cancers receiving

upfront MTD chemotherapies) wherein maintenance LDM therapies

have been shown to result in improved clinical outcomes as well

(Kerbel & Grothey, 2015; Colleoni et al, 2016; André et al, 2019).

Materials and Methods

Cell lines

Human colonic (HT29, ATCC) and cisplatin-resistant mouse

mammary adenocarcinoma [EMT6-CDDP; (Teicher et al, 1990)]

cells were grown in RPMI-1640 or high-glucose DMEM media

(Gibco), respectively, supplemented with 10% FBS (HyClone) and

authenticated by short-tandem repeat DNA profiling (Genetica DNA

Laboratories). Cells were passaged for < 4 months after being

authenticated and routinely tested negative for Mycoplasma spp.

Models of advanced metastatic cancer

Orthotopic colon adenocarcinomas were established by implanta-

tion of subcutaneous HT29 tumors expressing the pGL3 firefly luci-

ferase vector (Promega), excised, and dissected into 3–5 mm3 pieces

and orthotopically sutured onto the abluminal caecal wall of 6- to 8-

week-old male immunodeficient SCID mice (Hackl et al, 2013;

Shaked et al, 2016). Tumor growth was quantified every 7 days as

in vivo bioluminescence (Xenogen, IVIS imaging). Mice were eutha-

nized after 7 weeks of chemotherapy (luminescence > 107 photons/

s); thereafter, colon, lungs, and livers were resected in toto, fixed,

and embedded for quantitative immunohistochemistry. Syngeneic

metastatic breast cancers were established by implanting

EMT6-CDDP cells (105) into the inguinal mammary fat pad of 6- to

8-wk-old female immunocompetent BALB/J mice (Jackson Labs)

(Teicher et al, 1990; Shaked et al, 2016). Primary breast tumors

were allowed to grow for 12 days (median volume �270mm3, 95%

CI: 256–285; n = 50) and resected before initiating adjuvant LDM

and MTD chemotherapy. Adjuvant treatment was maintained for

10 days while monitoring for signs of overt metastatic disease (e.g.,

labored breathing, ascites, ulceration of residual primary tumors,

hindlimb paralysis, or ≥ 20% weight loss). To assess tissue perfu-

sion, mice were injected with fluorescein-labeled dextran (100 mg/

kg IV; FD-150S, MW 150 kD, Millipore-Sigma) dissolved in 0.9%

saline solution, within 5–15 min before euthanization. All surgical

procedures were undertaken in accordance with the animal care

guidelines of Sunnybrook Health Sciences Centre and the Canadian

Council of Animal Care.

Chemotherapeutic drug treatments

Experimental chemotherapy regimens were started 3 weeks (HT29)

or 12 days (EMT6-CDDP) after tumor implantation. Cyclophos-

phamide (Baxter) was administered at 20 mg/kg/day PO through

the drinking water (Man et al, 2002), whereas capecitabine (LC

Laboratories) was prepared in a solution containing 20 mg/ml

hydroxypropyl cellulose (Klucel-LF, Ashland), 0.9 mg/ml Methyl-P,

0.1 mg/ml Propyl-P, and 0.1% Tween-80 (Sigma-Aldrich) at a LDM

dose of 100 mg/kg/day PO by gavage or at an MTD dose of

400 mg/kg/day PO for 4 days, followed by a 17 days drug-free

break period, when appropriate.

Quantitative immunohistochemistry

Tissue processing and antigen retrieval were performed as previ-

ously described (Schito et al, 2012); briefly, 5-lm thick sections

were incubated with primary anti-HIF-1a, HIF-2a, CA9, pimonida-

zole, CD31, or Ki67 antibodies (Appendix Table S1), further

processed with a DAB-based protocol (VECTASTAIN Elite ABC-

HRP Kit; Vector Laboratories) and counterstained with Mayer’s

hematoxylin (Sigma). Negative controls were implemented by

replacing primary antibodies with isotype-matched IgGs. Liver

and kidney sections served as positive controls for HIF-1a or HIF-

2a. Microphotographs (�9,300 digital images) were acquired at

resolutions of 5.2 (×2.5), 0.7 (×20), or 0.3 (×40) lm/pixel and

stitched against a white digital canvas. Unsupervised, automated

quantitative immunohistochemistry (qIHC) was performed with

custom macros coded in ImageJ (v1.52p, NIH), with the excep-

tion of Ki67-based proliferation indexes, herein measured via a

machine-learning algorithm (Schüffler et al, 2013). Manual delin-

eation of individual metastatic regions was followed up by auto-

mated isolation into individual images, submitted to

morphometric and staining quantification. HIF-1a, HIF-2a, CA9,

pimonidazole, and CD31 were measured as fractions of primary

tumoral or metastatic cross-sectional area at fixed pixel intensity

thresholds. Ki67 proliferative indexes were calculated as the frac-

tion of positive nuclei among 18�52 random high-power (×20)

fields/tumor. The correlation between tumoral immunoreactivities

and their colocalization was determined in consecutive tissue

sections after automatic alignment. To assess perfusion of lung

tissue within the metastatic breast cancer model, nuclei were

labeled with 1 lg/ml Hoechst-33342 in PBS pH 7.8 for 10 min at

room temperature and imaged under DAPI and FITC filters to

determine lung perfused areas as a fraction of total lung tissue

cross-sectional area; fluorescence images were digitally stitched

against a square black canvas.

HIFa transcriptomic signature and patient survival analysis

A biologically derived HIFa signature was developed on the basis

of experimentally validated transcripts from a previously

published microarray colon cancer hypoxia signature [CCHS

(Dekervel et al, 2014)]. We noticed that, in addition to HIFa-inde-
pendent, hypoxia-inducible transcripts, CCHS contained five

canonical “seed” HIFa targets (i.e., BNIP3, DDIT4, P4HA1,

P4HA2, and PLAUR). Consequently, we analyzed RNAseq data

within the TCGA colonic adenocarcinoma repository by reasoning

that CCHS “seed” genes would randomly correlate with < 7 HIFa
targets among the top 200 ranked transcripts (by Spearman q),
since HIFa genes represent �2% of the transcriptome (Manalo

et al, 2005), thereby yielding P < 0.049 for ≥7 hits, assuming a

binomial statistical distribution. In order to generate a compact

HIFa signature with maximal predictive power, significant HIFa
targets (P < 0.01 after Bonferroni corrections) were submitted to
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stepwise regression followed by a Cox proportional hazards model

using overall survival as the dependent variable, subjected to log-

rank tests, implemented in R [v3.6.2] (Venables & Ripley, 2002).

Furthermore, we cross-validated TCGA-derived signatures using

colon and breast cancer microarray metadata [SurvExpress

(Aguirre-Gamboa et al, 2013)] and data obtained from the NCBI

gene expression omnibus (GEO). The following publicly available

colon and breast cancer datasets were used: TCGA colonic adeno-

carcinoma (COAD; Muzny et al, 2012b; Muzny et al, 2012a),

GSE28722 (Loboda et al, 2011b; Data ref: Loboda et al, 2011a),

METABRIC (Curtis et al, 2012b; Data ref: Curtis et al, 2012a),

GSE2034 (Wang et al, 2005b; Data ref: Wang et al, 2005a), and

GSE3494 (Miller et al, 2005b; Data ref: Miller et al, 2005a).

Statistical analysis

All data are expressed as medians, quartiles, and 95% confidence

intervals, while n indicates the number of biological replicates or

metastatic nodules in each experiment. For liver and lung metastatic

nodule analysis, n indicates the number of nodules, and the number

of mice per experimental group is also provided. Logarithmic trans-

formation of fractional data was used to ensure Gaussian distribu-

tions prior to statistical analyses. Survival curves were depicted as

Kaplan–Meier analyses followed by log-rank tests. Differences

between two experimental groups were assessed with Student t-tests

with Welch’s corrections, while three or more groups were evalu-

ated by one-way Brown–Forsythe ANOVA followed by Bonferroni

or Benjamini, Krieger and Yekutieli post hoc comparisons

(a = 0.05). Categorical tumor size data were analyzed with two-

sided chi-square tests. Differences among nonlinear and linear

model fit parameters were assessed with F-tests; Pearson r and

Spearman q coefficients are shown for linear regression and tran-

scriptomic correlations, as appropriate.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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