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Objectives: Transcutaneous auricular vagus nerve stimulation (taVNS) has been

reported to be effective for chronic insomnia (CI). However, the appropriate population

for taVNS to treat insomnia is unclear.

Methods: Total twenty-four patients with CI and eighteen health controls (HC) were

recruited. Rest-state functional magnetic resonance imaging (Rs-fMRI) was performed

before and after 30 min’ taVNS at baseline. The activated and deactivated brain

regions were revealed by different voxel-based analyses, then the seed-voxel functional

connectivity analysis was calculated. In the CI group, 30min of taVNS were applied twice

daily for 4 weeks. Pittsburgh Sleep Quality Index (PSQI) and Flinders Fatigue Scale (FFS)

were also assessed before and after 4 weeks of treatment in the CI group. The HC

group did not receive any treatment. The correlations were estimated between the clinical

scales’ score and the brain changes.

Results: The scores of PSQI (p < 0.01) and FFS (p < 0.05) decreased after 4 weeks

in the CI group. Compared to the HC group, the first taVNS session up-regulated left

dorsolateral prefrontal cortex (dlPFC) and decreased the functional connectivity (FCs)

between dlPFC and bilateral medial prefrontal cortex in the CI group. The CI groups’

baseline voxel wised fMRI value in the dlPFC were negatively correlated to the PSQI and

the FFS score after 4 weeks treatment.

Conclusions: It manifests that taVNS has a modulatory effect on the prefrontal cortex

in patients with CI. The initial state of dlPFC may predict the efficacy for taVNS on CI.

Keywords: chronic insomnia, transcutaneous auricular vagus nerve stimulation, functional magnetic resonance

imaging (fMRI), biomarkers, prefrontal cortex, neuromodulation
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INTRODUCTION

Chronic insomnia (CI) disorder is categorized as primary or
secondary, depending on whether the sleep problem is caused by
another medical and mental disorder or medication substance
use (1). The main treatments for CI are medications and
physical therapies. Cognitive behavioral therapy (CBT), one
of the most mainstream physical therapy for insomnia, was
found to reduce the Functional Connectivity (FC) between the
Ventral Medial Prefrontal Cortex (vmPFC) and the striatum
in patients suffering from insomnia (2). Medication also affects
brain activity. In healthy participants, zolpidem reduced the
neural activity in occipital lobe during visual stimulation (3).
Agomelatine and mirtazapine increased the FC between right
Dorsolateral Prefrontal Cortex (dlPFC) and right Precuneus in
Major Depression Disorder (MDD) patients with sleep disorder
(4). Physical therapies have fewer side effects and therapy
dependence. Guidelines of sleep disorder recommend physical
therapies as the first treatment before medications (5–8).

Insomnia is also a risk factor for depression (9). It is often
accompanied by mental problems (6). Colleges have to pay close
attention to some potential curative effect of neuromodulations
on insomnia (10), which have been widely used in the treatment
of mental diseases. Deep Brain Stimulation (DBS) and Vagus
Nerve Stimulation (VNS) are invasive neuromodulations, DBS
was reported to have occasionally improved a patient’s sleep
problems in a patient with Parkinson’s disease (11). Stimulating
the cat’s Nucleus Tractus Solitaries (NTS), the nucleus into
which sensory fibers of the vagus nerve mainly project, increases
the theta and beta band power of left amygdala and pre-
frontal cortices. As a result, the cats performed an increase in
wakefulness and a total time of rapid eye movement (REM)
sleep (12). These suggest that DBS and VNS have potentially
curative effect on insomnia. Acute sleep deprivation dysregulated
the affective network (13–15), so it is not surprising that
neuromodulations are effective on insomnia. Although many
clinical trials proved their safety, surgery is still impractical for
patients suffering from diseases of mild symptoms, for example,
chronic insomnia (16). Transcutaneous auricular vagus nerve
stimulation (taVNS) belongs to the category of neuromodulation.
A clinical trial has shown the efficacy of taVNS on CI (17), but the
underlying brain mechanism is still quite unclear.

Prefrontal cortex is more vulnerable to insomnia (18).
The dysfunction of PFC is one of the main pathological
manifestations of insomnia (19–21), neuroimaging studies
reveal that sleep deprivation severely damages the PFC and
reduces its ability of task execution and stimuli regulation
(22). Reduced Amplitude of Low Frequency Fluctuation
(ALFF) was found widely in the frontal lobe in patients
with insomnia, which indicated a lower neuroexcitability.
Moreover, the aberrant ALFF is related to the duration and
severity of insomnia (19). Patients suffering from evening-
types insomnia even have a lower metabolism and a reduced
diurnal variation in PFC (23). Stimulating the peripheral
branches of vagus would widely modulate the neuroexcitability
through the projections from NTS to the forebrain and limbic
system (24).

TABLE 1 | Sample characteristics of the participants.

Items CI (N = 20) HC (N = 28) Z/χ2 p-value

Age (year) 42.50 ± 15.42 43.5 ± 11.23 −0.278 0.781

Sex (M/F) 8/12 6/12 0.181 0.671

Education (year) 12.20 ± 4.62 12.83 ± 6.24 −0.179 0.858

Z, Wilcoxon rank testing; χ2, chi-square testing. CI, chronic insomnia; HC, healthy control.

Our previous studies revealed that taVNS adjusts the frontal
cortex, insular, PCC, and amygdala in patients with major
depression disorder (25–28). The modulated brain regions were
also closely related to sleep. According to the hyperarousal
theory, patients with insomnia have an overexcited but low
functioning cortex (18, 29), which leads to nocturnal sleep
disturbances, daytime fatigue, and low work efficiency (29). In
this study, the instant effects of taVNS would be explored. We
hypothesize that taVNS would modulate the forebrain, especially
brain regions related to emotion and cognition in patients
with CI.

MATERIALS AND METHODS

Recruitment of Participants
A total of twenty- four patients with CI were recruited. They
were diagnosed according to the Fifth Edition of the Diagnostic
and Statistical Manual of Mental Disorders (DSM-V, 2015). All
participants were right-handed. Before the study, they were all
informed of the study protocol and volunteered to participate in
the study. Patients with fMRI contraindications, severe organic
or mental diseases were excluded. Patients would voluntarily quit
the ongoing therapies including sleeping pills for at least 2 weeks.
Healthy controls (HC) were recruited, at the same time, they
were matched with patients in gender, age, and education (see
Table 1). All participants declaimed to have taken any sleep-aid
drugs or psychotropic drugs. Both the CI group and the HC
group received the same clinical assessment, a session of taVNS
treatment, and fMRI scans at baseline. After that the CI group
received 4 weeks’ of taVNS treatment while the HC group did
not receive any treatment.

Ethical Review and Registration
The study was reviewed by the Ethics Committee of Institute of
Acupuncture andMoxibustion under China Academy of Chinese
Medical Sciences (CACMS) and registered at the Chinese Clinical
Trial Registry (NO. ChiCTR-15007374).

Transcutaneous Auricular Vagus Nerve
Stimulation
The electro-acupuncture stimulator (SDZ-IIB, Hwato brand,
made in Su zhou, China) was attached to the bilateral cymba
conchae through electrodes on the skin surface (see Figure 1).
Parameters were set according to previous studies of taVNS
(17, 27): Dilatational wave of 4/20Hz and pulse width of 0.2ms
± 30%. Current intensity was adjusted according to each patient’s
subjective feeling. Each taVNS session lasted for 30min, twice
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a day for 4 weeks, which is recommended by guidelines for
short-term medications of insomnia (7, 8).

Clinical Assessments
All participants accepted Pittsburgh Sleep Quality Index (PSQI)
and Flinders Fatigue Scale (FFS) before and after the 4 weeks’ of
treatment. To exclude the risk of depressive or anxiety symptoms,
which may independently affect imaging findings, we used
Hamilton Rating Scale for Depression (HAMD) and Hamilton
Anxiety Rating Scale (HAMA) to estimate the mental status
of all the participants. Before and after the taVNS treatment,
the patient would be excluded with a total score of HAMD or
HAMA >7. The process of this study is shown in Figure 2.
In addition, we screened all patients’ T2-weighted images and
structural images to ruled out most of the serious metabolic
or immune-related neuropsychiatric diseases, cerebrovascular
diseases, inflammatory diseases of central never system, and
intracranial tumors.

MRI Data Acquisition
Rest-state functional magnetic resonance imaging (Rs-fMRI)
were performed before and after the first 30 min’ taVNS
session. Participants were told to keep their eyes closed
and not fall asleep during the scan. The fMRI data was
acquired by Siemens 3.0T Skyra equipment (Siemens; Munich,

FIGURE 1 | (A) The electrodes were attached to the surface of cymba

conchae. (B) The stimulating place of taVNS. RS-fMRI, rest-state functional

Magnetic Resonance Imaging; taVNS, Transcutaneous Auricular Vagus

Nerve Stimulation.

Germany). The scanning parameters were as follows. In
functional images, the blood oxygen level-dependent gradient
Echo Planar Imaging (EPI) sequence was used. One hundred
and forty four volumes lasted 6min 10 s, repeat time/echo time:
2,500/30ms, flip angle = 90 degrees, scanning field of view:
240mm × 240mm, matrix: 64 × 64, number of layers: 43,
layer thickness/spacing: 3.0/1.0mm. In high-definition structure
image, three-dimensional magnetization was used to prepare fast
gradient echo sequence, repeat time/echo time: 2,500/2.98ms,
flip angle: 7 degree, field of view: 256mm × 256mm, matrix: 64
× 64, number of layers: 48; Layer thickness/spacing: 1.0/1.0 mm.

FMRI Data Preprocessing
DPABI (http://rfmri.org/DPABI) software (30), a SPM-based
functional MRI preprocessing pipeline, was used for data
preprocessing. The preprocessing steps were as follows. Convert
DICOM file into NIFTI. Remove the first 10 time points. The
remaining 134 volumes were slice-time corrected and realigned
according to Friston 24-parameter model. The nuisance signals
(including linear trend, head-motion, signals of cerebrospinal
fluid, and white matter) were regressed out from the data
(31). Then the functional images were co-registered to the
T1-weighted structural images, which were segmented through
Voxel Based Morphometry (VBM). Derived images were
normalized to Montreal Neurological Institute (MNI) space
according to transformation parameters estimated by VBM.

The limitations of the signal-to-noise ratio and disputes in
sampling and preprocessing strategies for fMRI data, the existing
voxel based analysis studies are sometimes contradictory. To get a
better presentation of the short- time intervention, we employed
ALFF, fALFF, and ReHo to reveal the reproductive results.

FMRI Data Processing
The ALFF and fALFF were calculated from the normalized
images after smoothing (6mm Gaussian kernel full width at half
maximum smooth nucleus) to the MNI space. ALFF value was
calculated as the average square root of the power spectrum range
of 0.01–0.1Hz and converted to a frequency domain through the
fast Fourier transform process. FALFF value is the ratio of power
in the specific frequency band of the whole detected frequency
range. The ALFF and fALFF maps were also transferred to
mean ALFF and fALFF maps by subtraction of the global mean

FIGURE 2 | Changes of fMRI induced by instant taVNS were measured before and after the first treatment on the two groups. Clinical scales for patients were

assessed before and after the 4 weeks’ taVNS treatment.
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value. The mean ALFF and fALFF values were converted to Z-
distribution for standardization. Then we got the zALFF and
zfALFF map.

Regional homogeneity (ReHo) is calculated by voxel based on
Kendall’s coefficient of concordance (KCC) for the time series of
a given voxel with its nearest neighbors (32). ReHo maps was
calculated through the unsmoothed and filtered (0.01–0.1Hz)
images to remove physiological signals such as heartbeat and
respiration. Then ReHo maps were taken to mean ReHo maps
by subtraction of the mean voxel wise ReHo in the entire brain
and standardized into Z-value (zReHo Maps). Calculated zReHo
maps were smoothed to MNI space with 6mm Gaussian kernel
full width at half maximum smooth nucleus at last.

FC is the Pearson’s correlations of the temporal fMRI signals
between a Region of Interest (ROI) and all brain. Activated or
deactivated regions found by the above voxel based analyses
would be used as the Region of Interest (ROI) for seed to voxel
FC analysis. FC were computed by voxel in the normalized
image after smoothing to Montreal Neurological Institute (MNI)
space (6mmGaussian kernel full width at half maximum smooth
nucleus). All images were band-pass filtered (0.01–0.1Hz)
before FC was computed. Pearson’s correlation coefficients were
transformed into normally distributed scores according to the
Fisher’s R- to -Z transformation.

Statistics
In SPSS 25 (SPSS Inc., Chicago, IL, USA), two sample T-test
and χ

2 tests were applied to compare the baseline characteristics
between the CI and HC group. Paired T-test was applied to
compare within group changes of PSQI and FFS scores in
CI group.

For the fMRI images, the between group differences were
performed with independent two sample T-test, with an
uncorrected p-value < 0.05. Paired T-tests were performed to
determine the within-group differences in the group, before and
after the first taVNS session. For the within group comparisons,
multiple comparison corrections were performance in Gaussian
random field correction (GRF), combined voxel wise p-value
< 0.001 with cluster p-value < 0.05 (two tailed). To clarify
the behavioral associations of ALFF, fALFF, ReHo, and FC,
we performed Pearson correlation analyses between the fMRI
values and clinical scales in SPSS 25, controlling for age, sex,
and education.

RESULTS

taVNS Improved PSQI and FFS Scores
Out of 24 patients, two were excluded, one because of stroke
history found by structural images and the other because
the patient was diagnosed with bipolar disorder. Another two
patients have withdrawn from the study. At last, twenty patients
completed the 4 weeks’ of taVNS treatment as well as the two
fMRI scan sessions. The mean duration of insomnia was 95.2
months. Both PSQI (N = 20, p < 0.01 95%CI) and FFS (N = 20,
p < 0.05, 95%CI) improved after the 4 weeks’ taVNS treatment
(see Table 2).

TABLE 2 | Improvement of PSQI and FFS after 4-weeks taVNS treatment (x ± s).

Items Baseline After treatment Z p-value

PSQI (N = 20) 12.7 ± 3.715 9.75 ± 4.278† 3.337 0.003

FFS (N = 20) 14.5 ± 5.92 11.5 ± 4.136* 2.860 0.010

*p< 0.05;
†
p< 0.01; Z, Wilcoxon rank testing; PSQI, Pittsburgh Sleep Quality Index; FFS,

Flinders Fatigue Scale; Change at week 4 to baseline mean (95% CI).

First taVNS Session Activated the Similar
Location in Left dlPFC and Adjusted Its FC
With PFC
The CI group showed lower ALFF and fALFF in dlPFC
and higher ReHo in Precuneus when compared to HC
group (see Supplementary Material 1), which is similar to
previous studies (19, 33). Three different voxel based analyses
showed consistent results. Namely, the first taVNS session
up- regulated left dlPFC in the CI group (see Figures 3A,B

and Table 3). ALFF analysis showed the activation aroused by
taVNS was higher in CI group than in the HC group (see
Figure 3C). Then the activated dlPFC found by the ALFF,
fALFF, and ReHo were merged as one ROI. The following
seed to voxel FC analysis revealed decreased FC between
dlPFC and bilateral dormedial prefrontal cortex (dmPFC) (see
Figures 3B,D).

A Lower ALFF or ReHo Value in dlPFC
Before the First Session Correlating With
the Higher PSQI Score After 4 Weeks’ of
Treatment
When the correlations were examined between the clinical scales’
scores and the fMRI values, several significant results were
defined. At baseline, ALFF values in dlPFC were negatively
correlated with the patients’ PSQI (R = −0.536, p < 0.01) and
FFS (R=−0.537, p< 0.05) score after 4 weeks’ of treatment. The
baseline ReHo values in dlPFC were also negatively correlated
with the after-treatment PSQI (R = −0.545, p < 0.05) (see
Figure 3E).

DISCUSSION

Our current study revealed that taVNS improved the CI
symptoms. In the first session, the taVNS up- regulated the left
dlPFC and reduced its FC with bilateral dmPFC. The baseline
ReHo and ALFF values in the left dlPFC were correlated with the
PSQI or FFS scores after 4 weeks’ of treatment.

dlPFC Is a Potential Targeting Brain Region
of taVNS Treatment on CI
According to the hyperarousal theory, the Ascending Reticular
Activating System (ARAS) promotes the soberness of human
brain. Patients with CI have higher FC between the thalamus
and dlPFC, when compared to good sleepers. As a result, some
brain regions reduce their activity to compensate for the bottom-
up arousal effects originating from ARAS. For example, dlPFC
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FIGURE 3 | (A) Different voxel based analyses showed similar up- regulated area in left dorsolateral prefrontal cortex. (B) Changes of different voxel based analyses

before and after taVNS. (C) ALFF analysis showed taVNS aroused higher activation in the CI group than in the HC group. (D) The FC between the up- regulated

dlPFC and bilateral dorsomedial prefrontal cortex decreased after taVNS. (E) Correlations between the clinical scales’ scores and the fMRI values. PSQI, Pittsburgh

Sleep Quality Index; FFS, Flinders Fatigue Scale; ALFF, amplitude of low frequency fluctuation; fALFF, Fractional ALFF; ReHo, Regional homogeneity; FC, Functional

connectivity; 0w, before taVNS treatment; 4w, after 4 week taVNS treatment; Relief Rate, The remission rate was defined as the difference in scale scores before and

after treatment divided by the scale scores before treatment. *p < 0.05; **p < 0.01.

show a decreased ALFF in insomniacs (21), which is similar to
what we have found. DlPFC is a core region of cognitive control
network (CCN) (34–37), that is why insomniacs have lower
working efficiency and they are vulnerable to fatigue despite of
their overexcited global status.

DlPFC is actually the most common stimulating target of
transcranial magnetic stimulation (TMS). TMS on dlPFC can
reduce the heart rate, the connection between the vagus and PFC
is the anatomical basis of these phenomena (38). Unlike TMS,
taVNS activates dlPFC indirectly. The connection offers a potent

answer to what we have observed. FC Maps between dlPFC
and subgenual cingulate has becoming a promising method for
navigating TMS in treating depression (39). Interestingly, our
study also found that patients whose initial state of dlPFC was
low functioning would have a higher PSQI and FFS after 4 weeks
of treatment. However, the limited sample size failed to reveal any
correlation between the remission rate and ALFF values or ReHo
values. A fMRI study reveals CBT increase the fALFF values
in dlPFC and decrease the fALFF values in dmPFC in patient
with major depression disorder (40). This phenomenon indicates
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TABLE 3 | Brain changes after the first taVNS session (N = 20).

Items Brain regions

(AAL)

BA Number

of voxels

MNI

coordinates(mm)

Peak

intensity

X Y Z

ALFF Frontal_Mid_L

Frontal_Inf_Tri_L

10/46 37 −39 36 21 7.791

fALFF Frontal_Mid_L

Frontal_Inf_Tri_L

10/46 26 −39 39 21 8.305

ReHo Frontal_Mid_L

Frontal_Inf_

Tri_L

10/45/46 71 −39 39 21 7.364

FC Frontal_Sup_

Medial_R

Frontal_Sup_

Medial_L

9/10 28 3 57 21 −5.143

ALFF, Low frequency fluctuation in the left dorsolateral prefrontal lobe; fALFF, Fractional

amplitude of low frequency fluctuation in the left dorsolateral prefrontal lobe; ReHo,

Regional homogeneity in the left dorsolateral prefrontal lobe; FC, Functional connectivity

between left dorsolateral prefrontal andmedial prefrontal lobe; AAL, Anatomical Automatic

Labeling; MNI, Montreal Neurological Institute; BA, Brodmann area.

increased nervous excitability in the dlPFC, which is similar to
what we have found after the first session of taVNS treatment.We
speculate that taVNS and CBTmay share a similar brain effect on
the dlPFC.

taVNS Lowered the CCN’s Monitoring to
Default Mode Network
Patients with CI have an abnormal FC between default
mode network (DMN) and the additional brain regions when
compared with good sleepers (9, 41), which aggravate the
hyperarousal status of the brain. Increased ALFF values are found
in brain regions related to sensation and attention (19). That is
why patients with insomnia are more sensitive to external stimuli
and are easier to be awakened. The FC within DMN, especially
between the prefrontal lobe and the posterior DMN, decreases
when we fall asleep (19, 41). The dysfunctional DMN also leads
to the abnormal FCs within DMN, which impairs both the sleep
structure and working memory (33, 42). DmPFC is one of the
most prominent brain regions of the abnormal frontal DMN
(41, 43). Study has also confirmed that dmPFC is the key area
for maintaining sleep (43). Patients with CI would pay excessive
attention to sleep quality, which would aggravates frustration
(44). This is because mPFC is connected with the hippocampus,
amygdala, nucleus accumbens, and hypothalamus. They manage
reward circuit and emotions (34, 45).

Long-term sleep deprivation leads to a decompensated
Salient Network (SN). CCN should allocate more resources to
compensate the loosed ability of SN to modulate the aberrant
DMN. The current study found that taVNS decreased the FC
between left dlPFC and bilateral dmPFC, which is opposite to
the pathological changes of the patients with insomnia (2, 46),
indicating that CCN has lowered its monitoring to DMN, and
the excessive consumption of CCN reduced. We speculate that
taVNS would alleviate the symptoms of low efficiency and fatigue
in patients with CI.

Electroencephalogram (EEG) has a better time resolution than
fMRI. Many neuromodulations use EEG as a brain-machine
interface to improve stimulating parameters. Our study found the
cortex is the most outstanding brain region affected by instant
taVNS. It’s easier to get stable EEG signals of the cortex. Using
EEG to explore biomarkers of a certain neuromodulation would
be of higher translational value than fMRI.

Limitations
First, there was no obvious decrease in PSQI in the current study,
which may be due to the fact that we only recruited patients with
mild primary insomnia to ensure the consistency of the basic
state. Second, while our study revealed that the initial status of
PFC in patients with insomnia was related to curative effect, no
difference were found between the changes of dlPFC and the
changes of the patients’ clinical scores. This may be due to the
limited sample size. Transient taVNS cannot completely explain
the efficacy of mechanism of taVNS. The positive results we
found need a longer observation to get more convincing results.
Third, a placebo control group is indeed the best designed control
groups of this study. At last, the sample size was too small and
we only studied the EPI sequence. Despite of the limitations, we
intend to provide the potential predicting imaging biomarkers for
the suitable patients who are sensitive to taVNS.

CONCLUSIONS

In this study, we found a short time taVNS aroused the left PFC in
patients with insomnia. The changes of PFC could be replicated
through different voxel-based analyses. The projection fromNTS
to forebrain might be the anatomical basis of our findings.
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