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Abstract

Background: Volumetric modulated arc therapy (VMAT) is widely used in clinical practice. It not only significantly
reduces treatment time, but also produces high-quality treatment plans. Current optimization approaches heavily
rely on stochastic algorithms which are time-consuming and less repeatable. In this study, a novel approach is
proposed to provide a high-efficient optimization algorithm for VMAT treatment planning.

Methods: A progressive sampling strategy is employed for beam arrangement of VMAT planning. The initial beams
with equal-space are added to the plan in a coarse sampling resolution. Fluence-map optimization and leaf-
sequencing are performed for these beams. Then, the coefficients of fluence-maps optimization algorithm are
adjusted according to the known fluence maps of these beams. In the next round the sampling resolution is
doubled and more beams are added. This process continues until the total number of beams arrived. The
performance of VMAT optimization algorithm was evaluated using three clinical cases and compared to those of a
commercial planning system.

Results: The dosimetric quality of VMAT plans is equal to or better than the corresponding IMRT plans for three
clinical cases. The maximum dose to critical organs is reduced considerably for VMAT plans comparing to those of
IMRT plans, especially in the head and neck case. The total number of segments and monitor units are reduced for
VMAT plans. For three clinical cases, VMAT optimization takes < 5 min accomplished using proposed approach and
is 3–4 times less than that of the commercial system.

Conclusions: The proposed VMAT optimization algorithm is able to produce high-quality VMAT plans efficiently
and consistently. It presents a new way to accelerate current optimization process of VMAT planning.

Keywords: Volumetric modulated arc therapy, Fluence-map optimization, Leaf-sequencing

Background
VMAT is widely used in cancer treatment in radiation on-
cology departments due to its high efficiency in treatment
delivery [1]. Compared to conventional IMRT, VMAT de-
livers radiation dose while MLC leaf, dose rate and gantry
move simultaneously [2]. It uses less treatment time and
total monitor units (MU) compared to conventional
IMRT technique [3]. The predecessor of modern VMAT
is intensity modulated arc therapy (IMAT) which was first
developed by Cedric Yu in 1995 [4, 5]. It was motivated

from the idea of delivering plans with a large number of
gantry positions. The fluence map of the beam is
pre-calculated and decomposed to several apertures.
These apertures is then delivered at a given gantry pos-
ition by multiple arcs. IMAT requires more arcs which
causes extended treatment time. Direct aperture
optimization (DAO) was thus proposed to handle the
complexity of VMAT optimization using stochastic ap-
proach. The stochastic approach is computationally inten-
sive and time-consuming [6–8]. Later, Otto presented an
iterative algorithm for VMAT optimization [9, 10]. This
algorithm employs progressive sampling strategy and
aperture-based algorithm for VMAT optimization where
high-quality dose plan can be achieved by a single arc.
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This technique is successfully adopted in commercial
treatment planning system and has been applied to a wide
range of treatment sites [11].
Compared to IMRT, VMAT presents a complex

optimization problem because of the significantly increased
number of plan parameters such as gantry angle, MLC leaf
position, dose rate, etc. [12, 13]. Various approaches were
proposed attempting to solve this problem. Most of them
are evolved from approaches originally developed for IMRT
[14–22]. Currently, most of commercial treatment planning
systems provide VMAT optimization function and heavily
rely on DAO algorithm. RapidArc (Varian Medical System,
Palo Alto, CA, USA) employs a progressive sampling strat-
egy and simulated annealing-based DAO algorithm for
VMAT planning [9]. Due to the nature of stochastic ap-
proach, the optimization process is time-consuming and
the optimization result is seldom repeatable. As reported
the maximal DVH variation could be up to 2% for OARs
using RapidArc [10]. SmartArc (Philips Healthcare, Inc.,
Thornton, CO, USA) utilizes an IMRT plan (consisting of
equal-space fields) to initialize the arc plan. The fluence
maps of IMRT plan are then segmented and redistributed
to their neighboring angles. A local gradient-based
optimization approach is used to fine-tune these apertures
to meet the mechanical constraints for actual delivery [16,
17]. In this approach, The fluence maps of all beams are ac-
tually derived from few static beams and not fully deter-
mined by fluence map optimization (FMO) algorithm.
The purpose of this study is to develop a high-efficient

optimization approach for VMAT planning. The remain-
der of this paper is organized as follow. The progressive
sampling strategy is first introduced and the optimization
process is described. Then, two important components,
fluence-map optimization algorithm and leaf-sequencing
algorithm, are explained in brief. These algorithms were
developed on an in-house developed treatment planning
system. Three typical clinical cases (head and neck, lung,
prostate) were evaluated on both in-house developed and
commercial treatment planning systems. The dosimetric
quality, delivery efficiency, and running time of VMAT
plans were then assessed. Finally, the advantage and disad-
vantage of this approach are discussed.

Methods
Progressive sampling strategy
Most of VMAT optimization algorithms model Linac
source as a series of static gantry positions. The MLC
positions and MU setting is then determined at each
gantry position. Provided the complexity of VMAT
optimization, to limit the scale of problem a progressive
sampling strategy is employed in this study. It starts with
a coarse sampling of gantry positions, then move to fine
sampling of gantry positions. An example is demon-
strated as shown in Fig. 1. At the beginning of VMAT

optimization a coarse sampling of the gantry positions is
used to model the gantry rotation range. The initial 5
beams with equal-space are chosen for the first
optimization stage. The MLC positions and MUs for the
initial 5 beams are achieved by the fluence-map
optimization and leaf-sequencing algorithms. Next, the
sampling resolution is doubled. And another 5 beams
are added to the plan and optimized. The sampling reso-
lution is continuously increased and more beams are
added to the plan until the total number of beams is ar-
rived. As shown in Fig. 1, the number of new beams in 5
optimization stages is 5, 10, 20, 40, and 60, while the
corresponding beam spacing is 72°, 36°, 18°, 9°, and 6°.
A VMAT optimization approach was developed based on

the existing fluence-map optimization and leaf-sequencing
algorithms provided by an in-house developed treatment
planning system [23]. The flowchart of VMAT planning
proposed in this study is presented in Fig. 2. First, the basic
plan parameters such as couch angle and arc range are set
by planner. An initial plan consisting of few beams with
equal-space is created and their fluence maps are generated
by FMO algorithm. These resulting fluence maps are then
processed by the leaf sequencing algorithm, and the optimal
MLC positions and MUs are determined. Next, the coeffi-
cients of FMO algorithm are adjusted based on plan object-
ive and known fluence maps of these beams. In the next
round, the sampling resolution is increased and more
beams are added to the plan. The optimization process
continues until the maximal number of beams is arrived.

Fluence-map optimization
A gradient-based optimization approach, fast monotonic
descent (FMD) algorithm is employed for VMAT
optimization. Due to the nature of gradient-based algo-
rithm, the global minimum of objective function can be
found quickly. The goal is to find minimum of objective
function subject to non-negative fluences for all pencil
beams. A non-synchronous updating scheme is used
which allows only one pencil beam adjusted at a time.
The detail of classic FMD algorithm is described in ref-
erences [23–25]. To accommodate the progressive sam-
pling strategy, FMD algorithm was modified to account
for the varied number of beams in multiple optimization
stages. The formulation of the modified FMD algorithm
is described in Appendix 1. In brief, new beams are
added to the plan in each optimization stage and their
fluence maps are optimized with the fluence maps of old
beams known. Here, xnew denotes the fluence map of
new beam which is unsolved in current stage and xold

denotes the fluence map of old beam which is solved in
previous stage. For a given voxel vijk, its dose is calcu-
lated by the sum of dose contributed from xnew and xold.
For solving xnew the coefficients of FMD algorithm is ad-
justed based the planning dose of target and the dose
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contribution from xold. As fluence map of xnew known, it
is processed by a leaf sequencing algorithm and a uni-
form fluence map for a single aperture is obtained. The
uniform fluence map replaces the original fluence map
of xnew and is used as the final value of xnew.

Leaf sequencing
Several leaf sequencing algorithms were developed in
the past years such as powers of 2, linear programming,
and graphics searching [26–29]. These algorithms

decompose fluence map into several apertures with uni-
form fluences. Given the dynamic feature of beams in
VMAT, the leaf sequencing algorithm has to deal with
more mechanical constraints related to gantry speed, leaf
speed, and dose rate than those of static beams. Mixed
integer linear programming (MILP) was successfully ap-
plied in many industrial applications due to its capability
in handling large-scale optimization problems [30, 31].
In this study, a MILP model was developed using a com-
mercial optimization software package (IBM ILOG

Fig. 1 The illustration of progressive sampling scheme. a The first beam set with 5 control points (beam spacing 72°). b The second beam set
with additional 5 control points (beam spacing 36°). c The third beam set with additional 10 control points (beam spacing 18°). d The fourth
beam set with additional 20 control points (beam spacing 9°). e The fifth beam set with additional 20 control points (beam spacing 6°)

Fig. 2 The flowchart of the proposed optimization algorithm for VMAT treatment planning
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CPLEX). It assumes that the fluence map of a beam at a
given control point is a uniform fluence map for a single
aperture. The aperture of the new beam is determined
subjected to the apertures of the two old beams closet to
it (one is at front side and one is at end side). As the ori-
ginal flence map of xnew is non-uniform, it is necessary
to convert it to a uniform fluence by a leaf-sequencing
algorithm with certain constraints. These constraints are
mostly related to mechanical limitation of Linac and
MLC and described in Appendix 2. Due to the nature of
progressive sampling strategy, the beams solved in the
earlier stages have larger apertures and weights than the
beams solved in the latter stages. This is because the
number of beams is less in the earlier stages and more
in the latter stages. The MILP model is described in
Appendix 2. The goal of this model is to search for an
optimal solution, uniform fluence map, from a
non-uniform fluence map under certain constraints. The
MILP problem is solved using branch-and-bound tech-
nique provided by CPLEX software. As an example of
fluence map consisting of 30×30 bixels, the total number
of constraints is ~ 1800 and the total number of inde-
pendent variable is ~ 2000. The processing time is ap-
proximately 0.5 s per beam.

Plan evaluation
Three clinical cases were selected for evaluation in-
cluding head and neck, prostate, and lung. The pa-
tient CT images and contours were exported from
Pinnacle (Philips Healthcare, Inc., Thornton, CO,
USA). Then they are segmented into regions of inter-
est (ROIs) for plan optimization using an in-house
developed treatment planning system. In this study,
the simulated leaf width is 0.5 cm and the leaf step is
0.5 cm, which resulted in beamlet size of 0.5×0.5 cm.
The range of leaf speed is 0.5–1 cm per degree be-
cause the leaf speed is 3–6 cm per second and gantry
speed is 6 degree per second. The prescription dose
for PTV and dose constraints for OARs are the same
for both IMRT and VMAT plans for each case. A sin-
gle dynamic arc plan consisting of 180 beams and 2°
spacing was created and fluence maps were optimized
by the proposed VMAT optimization algorithm on
the in-house developed system. The numbers of
beams in five optimization stages are 15, 30, 60, 120,
and 180, while the corresponding beam spacing is
24°, 12°, 6°, 3°, and 2°. A corresponding IMRT plan
consisting of 9 equal-space fields was created and flu-
ence maps were optimized by FMD algorithm on the
in-house developed system. The dosimetric quality of
plans is quantified by conformity index (CI), homo-
geneity index (HI), quality score (QS) [32], and
weighted root mean-square error [23], which are de-
fined as below.

CI = VTV/V95%, where VTV is the target volume and
V95% is the volume corresponding to 95% dose prescrip-
tion. If V95% = VTV, CI =1 which is perfect.
HI = D5%/D95%, where D5% and D95% are doses received

at least 5 and 95% target volume respectively. if D5% =
D95%, HI =1 which is perfect.
Quality score (QS) quantitatively measures the differ-

ence between the dose plan and the dose constraint of

all anatomical structures. QS ¼ X
j

j ðMj−C jÞ
C j

j if object-

ive is violated by plan dose, where Cj is the j-th
dose-volume constraint, Mj is the corresponding plan
dose. If no objective is violated, QS = 0 which is perfect.
Weighted root mean-square error (WE) measures the

difference between the plan dose and prescribed dose of
all voxels and represents the value of objective function.

WE ¼ ð

X
i; j;k∈VTV

wijkðPijk−DijkÞ2 þ
X

i; j;k∈VCO

wijkðPijk−DijkÞ2 þ
X

i; j;k∈VNT

wijkðPijk−DijkÞ2

N Þ

1
2

,
where Pijk, Dijk, and Wijk are defined in Eq. 1, and N is
the total number of voxels belonging to TV, CO and
NT. For a plan which Pijk =Dijk for all voxels, WE = 0
which is perfect.
The dose distribution of plans is evaluated based on

cross-sectional dose distribution and dose-volume histo-
gram. The total number of segments and monitor unit for
both plans are recorded. Additionally, estimated arc deliv-
ery times and the computation time of plan optimization
are recorded. For demonstration purpose, few important
ROIs are used in plan optimization. For head and neck
case, they are PTV, spinal cord, left and right parotids and
mandible. For prostate case, they are PTV, left and right
femur heads, bladder and rectum. For lung case, they are
PTV, left and right lungs, spinal cord and heart. All tests
are performed on a DELL Optiplex N9010 computer,
equipped with Intel(R) i7–3770 CPU and 72GB RAM.
Corresponding to the VMAT plans made on in-house de-

veloped system, three VMAT plans made on Pinnacle plan-
ning system were assessed. They were made by experienced
planners and approved for clinical treatment. These plans
are VMAT plans consisting of 2 full arcs with 4° spacing
and 6 MV beams computed with convolution superposition
algorithm. The dosimetric and delivery statistics of these
clinically approved plans are compared to those of IMRT
and VMAT plans made on the in-house developed system.
Note that the optimization algorithm, the dose calculation
engine, the dose-volume constraints and many others of
clinically approved plans are different from those of plans
made on the in-house developed system. The metric, WS, is
not calculated for the clinically approved VMAT plans be-
cause the weight specification in Pinnacle system is differ-
ent. For distinguishing clinically approved VMAT plans
from the plans made on the in-house developed system,
VMAT plans made on pinnacle system are represented by
VMAT_P.
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Results
The fluence map and plan dose distribution achieved by
progressive sampling strategy is demonstrated in Fig. 3.
For each plan, the subplots at the top are the segments
of all beams while the subplots at the bottom are the
dose distribution in axial view. The grey level of segment
indicates the magnitude of its weight. White represents
the highest value (255) and black represents the lowest
value (0). The corresponding beam arrangements are
shown in Fig. 1. In the earlier stages, the values of flu-
ence maps of new beams are larger as there are fewer
beams. As more beams included, the values of fluence
map of new beams are smaller. The plan dose quality
improves quickly in the earlier stages (as shown in Fig.
3b and c), and gradually saturates in latter stages (as
shown in Fig. 3d and e.
For the head and neck case, the objective is to main-

tain uniform dose (60 Gy) to the PTV, while minimize
the dose to the parotid gland (V30Gy < 50%) and
maximize the sparing of the brainstem (Dmax< 54 Gy),
the larynx (Dmax<40Gy), and the mandible (Dmax<
60 Gy) as much as possible. Dose distributions for IMRT
and VMAT plans are shown in Fig. 4. DVHs for IMRT
and VMAT plans are compared as shown in Fig. 5. The
VMAT plan is better than the corresponding IMRT
plan. The coverage of PTV is similar for both VMAT
and IMRT plans. The OAR sparing from VMAT plan is
better for brainstem and mandible, but is similar for lar-
ynx and parotids (left and right). The max dose to

brainstem is reduced by 10 Gy. Dose distribution of
VMAT plan is more uniform with fewer hot and cold
spots. The QS, WE, CI, and HI for both plans are shown
in Table 1. The WE is reduced by 10% for VMAT plan,
while QS, CI and HI are similar for both plans. The total
number of segments and monitor units for both plans
are shown in Table 1. The number of segment is similar
for both plans. The total MU for VMAT plan is reduced
by 40%. The computation time is 40 s for IMRT plan
and 312 s for VMAT plan as shown in Table 1. The esti-
mated delivery time is between 96 and 192 s based on a
Varian Trilogy machine with variable dose rate (300–600
MUs per minute). VMAT_P plan show better plan qual-
ity and fewer MUs than VMAT plan, but the number of
segments and optimization time are higher.
For the prostate case, the objective is to maintain uni-

form dose (76 Gy) to the PTV while keep the rectal dose
at V50 Gy < 50% and maximize sparing of bladder
(V50 Gy < 50%) and femoral head (V50 Gy < 5%). Dose
distributions for IMRT and VMAT plans are shown in
Fig. 6. DVHs for IMRT and VMAT plans are compared as
shown in Fig. 7. The VMAT plan is comparable to the cor-
responding IMRT plan. The coverage of PTV is similar
between VMAT and IMRT plans. For VMAT plan, OAR
sparing is better for rectum, femoral heads (left and right)
while similar for bladder. Dose distribution of VMAT plan
is more uniform and has less high dose region in normal
tissue. The QS, WE, CI, and HI for both plans are shown
in Table 1. The WE is reduced by 12% for VMAT plan,

Fig. 3 The segments and dose distributions of VMAT plans for five beam sets with the increasing numbers of beams. a VMAT plan with 5
equal-space beams (72° spacing). b VMAT plan with 10 equal-space beams (36° spacing). c VMAT plan with 20 equal-space beams (36° spacing).
d VMAT plan with 40 equal-space beams (9° spacing). e VMAT plan with 60 equal-space beams (6° spacing)
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while QS, CI, and HI are similar for both plans. The total
number of segments and monitor units for both plans are
shown in Table 1. The number of segment is similar for
both plans. The total MU for VMAT plan is reduced by
16%. The computation time is 36 s for IMRT plan and
294 s for VMAT plan as shown in Table 1. The estimated
delivery time is between 118 s and 236 s based on a Varian
Trilogy machine with variable dose rate (300–600 MUs
per minute). VMAT_P plan show better plan quality and
fewer MUs than VMAT plan, but the number of segments
and optimization time are higher.
For the lung case, the objective is to maintain uniform

dose (60 Gy) to the PTV while keep the lung dose at
V20 Gy < 25% and maximize the sparing of cord (Dmax<

45 Gy), heart (V30Gy < 40%, V40Gy < 30%) and esophagus
(V50Gy < 50%). Dose distributions for IMRT and VMAT
plans are shown in Fig. 8. DVHs for IMRT and VMAT
plans are compared as shown in Fig. 9. The dose coverage
of PTV is similar in both plans. For VMAT plan, dose to
heart, esophagus, and cord are slightly higher than those of
IMRT plan, while dose to lung is similar. The Dose distri-
bution of the VMAT plan is more uniform and focused on
PTV, however the dose distribution of IMRT plan is spread
along anterior-posterior direction. The QS, WE, CI, and HI
for both plans are shown in Table 1. The WE, QS, CI, and
HI are similar for both plans. The total number of segments
and monitor units for both plans are shown in Table 1. The
number of segment for VMAT plan is reduced by 16%.

Fig. 5 The DVH of head-and-neck case in IMRT plan and VMAT plan

Fig. 4 The transaxial plan dose distribution of head-and-neck case in (a) IMRT plan and (b) VMAT plan
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The total MU is similar for both plans. The computation
time is 32 s for IMRT plan and 216 s for VMAT plan as
shown in Table 1. The estimated VMAT delivery times are
between 116 s and 232 s based on a general linear acceler-
ator with variable dose rate (300–600 MUs per minute).
VMAT_P plan show better plan quality and few MUs than
VMAT plan, but the optimization time is higher.

Discussions
The results of clinical case study show that plan quality
of VMAT plans is similar to or better than that of trad-
itional IMRT plans. The VMAT plans, in many cases,
are able to achieve better OAR sparing compared to
IMRT plans. VMAT plan has the potential to tailor high
volume low dose regions because of its flexibility to
spread out the dose at many beam angles. This character
reduces the need of specific structures defined to remove
hot spots, thus reduces overall planning effort. Plans
consisting of more than 2 arcs are not reported in this
work, but it is a viable option in clinical practice. We
also tested optimizing all beams in multiple arcs which
has slightly improved dosimetric quality. These data are
not included in this paper. The dose quality of clinically
approved plans made on pinnacle planning system is
better. This may be caused by the differences of

optimization algorithm, dose calculation engine,
dose-volume constraints between pinnacle system and
in-house developed system. However, the optimization
and delivery time of VMAT plans achieved by our ap-
proach is less. It is promising to implement this ap-
proach in commercial planning system to accelerate the
current process of VMAT optimization.
The selection of beam orientations in initial stages of

optimization would affect the final dose considerably.
However it could be minimized with increasing number
of beams. It was reported that optimizing beam orienta-
tions is most valuable for a small numbers of beams (≤5)
and the gain diminishes rapidly for higher numbers of
beams (≥15) [33]. In several pioneering studies of VMAT
optimization it showed 10–15 beams with equal-space
would be a better choice in initial stage of optimization
[9, 10, 17]. We also tested our algorithm with the differ-
ent initial beam orientations in the initial stage. It was
found that for a higher number of beams (≥15) in the
initial stage the final value of objective function is less
affected. In the proposed algorithm the number of
beams in the initial stage is set to 15, while this value is
10 in RapidArc of Eclipse (Varian Medical System, Palo
Alto, CA, USA) and 15 in SmartArc of Pinnacle (Philips
Healthcare, Inc., Thornton, CO, USA).

Table 1 Comparison of performance between VMAT plan and IMRT plan

Treatment
site

Plan
type

Plan performance

QS WE CI HI Number of segments MU Time (s)

HN IMRT 0.92 79.91 1.83 1.26 129 1775 40

VMAT 0.84 71.63 1.82 1.23 108 960 312

Prostate VMAT_P 0.13 N/A 1.54 1.02 364 810 1080

IMRT 0.32 63.44 1.43 1.23 112 1418 36

VMAT 0.31 55.43 1.41 1.22 116 1180 294

VMAT_P 0.13 N/A 1.21 1.03 182 1076 1210

IMRT 0.13 15.9 1.83 1.14 166 1178 32

Lung VMAT 0.13 15.8 1.84 1.12 138 1162 216

VMAT_P 0.11 N/A 1.63 1.03 108 626 760

Fig. 6 The transaxial plan dose distribution of prostate case in (a) IMRT plan and (b) VMAT plan

Yan et al. Radiation Oncology  (2018) 13:101 Page 7 of 13



Plan quality can be further improved by increasing the
number of beams. However, as more beams included, the
computation time for plan optimization and dose calcula-
tion could be increased substantially. We speculate that only
in certain cases, e.g., with complex target shape requiring
substantial leaf motion, it would be beneficial to increase
gantry position sampling. It is observed that the number of
segments for VMAT plan is less than or similar to that of
IMRT plan in three cases. The total MU for VMAT plan is
also less than or similar to that of IMRT plan in three cases.
Overall, the delivery time for VMAT plan is significantly re-
duced compared to IMRT plan. Plan optimization times
vary case by case but all within 5 min. Compared with the
selected commercial treatment planning systems, the run-
ning time of plan optimization is reduced by 3–4 times.
Also, due to the nature of gradient-based optimization algo-
rithm, the optimization solution is repeatable as long as the
initial setting of plan parameters is the same.

The current objective function is quadratic function
which can be solved efficiently by gradient decent method.
However, for real clinical use it is desired to incorporate
more complex objectives and constraints such as
dose-volume histogram (DVH) and general equivalent uni-
form dose (gEUD). For DVH constraints, the current algo-
rithm is applicable with minor modification. Those voxels
whose doses exceed the given threshold will be identified
when comparing actual DVH to expected DVH. The
weights for those voxels will be adjusted automatically in
order to minimize the DVH difference. For gEUD con-
straints, the form of objective function will be changed as
described by Wu [34] and can be solved by gradient des-
cent method which is similar to FMD algorithm employed
in this study. The workflow shown in Fig. 2 is also feasible
for gEUD-based optimization algorithm. It is also possible
to use gEUD-based objective to constrain mean dose for
normal tissue by setting parameter α to small and positive

Fig. 7 The DVH of prostate case in IMRT plan and VMAT plan

Fig. 8 The transaxial plan dose distribution of lung case in (a) IMRT plan and (b) VMAT plan
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value. For more challenging clinical cases with complex
geometry and spatial distribution of anatomical structures,
the overlapped region between PTV and OARs should be
handled respectively and supplementary structures would
be used.
For the first time the new VMAT plan optimization ap-

proach was implemented on an in-house developed plan-
ning platform. The progressive sampling strategy is
combined with gradient-descent-based FMO algorithm
for a high-performance VMAT planning system. This
work demonstrates a new way to transform the existing
optimization algorithms originally designed for IMRT to
the new algorithm for VMAT planning. Currently, the dy-
namic arcs are planned with a single 360° with 2° angle
spacing, varying dose rate, and constant gantry speed. Sen-
sitivity to parameters such collimator angle, couch angle,
arc length, and delivery time are not explored methodic-
ally. However these parameters may provide plan quality
improvements for some cases. In addition, there may be a
need for multiple arcs for cases not included in this study.
Determining optimal use of these parameters and the po-
tential automation of the parameter settings are subjects
to ongoing investigation. It is also necessary to perform
phantom verification in order to implement this algorithm
for clinical application.

Conclusion
A new approach was developed which is based on fast
gradient descent algorithm and mixed integer program-
ming technique to provide a high-performance VMAT
planning. Results from clinical case studies demon-
strated that plan quality of VMAT plans is similar to or

better than that of IMRT plans. The optimization time
and the number of segments are reduced considerably.
This work demonstrates a way to transform the existing
optimization algorithms originally designed for IMRT to
the new algorithm designed for VMAT planning.

Appendix 1
The objective function of classic FMD is defined as
below.

min f xð Þ ¼
X
i

X
j

X
k

Wijk Dijk−Pijk
� �2 ð1Þ

where Dijk ¼
XN
n¼1

An;ijkxn

N is the total number of beamlet and xn is the fluence
of beamlet n. Dijk denotes the dose absorbed by voxel
vijk. An,ijk is the dose deposition coefficient defining the
dose contribution per unit fluence of beamlet n to voxel
(i, j, k). Pijk is the constraint doses for target volume
(TV), critical organs (CO), and normal tissue (NT). Wijk

is the weighting factors assigned for TV, CO, and NT.
Pijk and Wijk are predefined according to clinical require-
ment. The objective is to find minimum of f(x) subject
to xn > 0 for all beamlet n∈N. A non-synchronous updat-
ing scheme as shown below is used which allows only
one beamlet adjusted at a time.

xm l þ 1ð Þ ¼ xm lð Þ þ Δxm;m∈N ð2Þ

Here

Fig. 9 The DVH of lung case in IMRT plan and VMAT plan
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Δxm ¼ PN
n¼1 BmnxnðlÞ þ Cm ,

Bmn ¼
−
X
i

X
j

X
k

W ijkAm;ijkAn;ijk ;

X
i

X
j

X
k

W ijkA
2
m;ijk

Cm ¼

X
i

X
j

X
k

WijkAm;ijkPijk

X
i

X
j

X
k

WijkA
2
m;ijk

.

l is the iteration number and m is the index of beamlet
adjusted in l–th iteration. Only one beamlet adjusted at one
iteration. If all beamlets are adjusted one time, there are N
iterations and it is called one cycle. Usually it takes few cy-
cles (~ 10) to reach a satisfactory solution for one beam set.
To accommodate the progressive sampling strategy of

VMAT optimization, FMD algorithm was modified to
account for the increasing number of beams. The
optimization process starts from the initial beam set
consisting of few beams (usually 5), and then the fluence
maps are achieved by FMO and processed by leaf se-
quencing. The beam set keeps expanding and new
beams are added. The beams from previous beam set are
called old beams and the beams newly added are called
new beams. In a given beam set, the fluence maps of old
beams are fixed and the fluence maps of new beams are
optimized by FMO for several cycles. The beam set will
continuously grow until the maximal number of beams
reaches. For each beam set, there are many beamlets
corresponding to the given number of beams. Assuming
there are NT beamlets in T-th beam set and NT =NT

new

+NT
old where NT

new and NT
old are the numbers of

beamlets for new and old beams. xr
new denotes the flu-

ence of r-th beamlet of new beam while xs
old denotes the

fluence of s-th beamlet of old beam. For a given voxel
vijk, its dose is calculated based on the fluences of all
xr

new and xs
old.

Dijk ¼
XNT

new

r¼1

Ar;ijkx
new
r þ

XNT
old

s¼1

As;ijkx
old
s ð3Þ

Here r and s are the index of beamlets of new and old
beams. Accordingly, the objective function (1) can be re-
written as below.

f xð Þ ¼
X
i

X
j

X
k

wijk

Pijk−
XNT

new

r¼1

Ar;ijkx
new
r þ

XNT
old

s¼1

As;ijkx
old
s

0
@

1
A

2
4

3
5
2

ð4Þ
Alternatively, it can be expressed as.

f xð Þ ¼
X
i

X
j

X
k

wijk

Pijk−
XNT

new

r¼1

Ar;ijkx
new
r

0
@

1
A−

XNT
old

s¼1

As;ijkx
old
s

2
4

3
5
2

ð5Þ

Then the expression (5) can be extended as.

f xð Þ ¼
X
i

X
j

X
k

½wijk Pijk−
XNT

new

r¼1

Ar;ijkx
new
r

0
@

1
A

2

−2wijk Pijk−
XNT

new

r¼1

Ar;ijkx
new
r

0
@

1
A

XNT
old

s¼1

As;ijkx
old
s þ wijk

XNT
old

s¼1

As;ijkx
old
s

0
@

1
A

2

�

ð6Þ

f xð Þ ¼
X
i

X
j

X
k

wijk Pijk−
XNT

new

r¼1

Ar;ijkx
new
r

0
@

1
A

2

−
X
i

X
j

X
k

2wijk Pijk−
XNT

new

r¼1

Ar;ijkx
new
r

0
@

1
AXNT

old

s¼1

As;ijkx
old
s

2
4

3
5

þ
X
i

X
j

X
k

wijk

XNT
old

s¼1

As;ijkx
old
s

0
@

1
A

2

ð7Þ

To minimize the objective function in (2) with respect
to the fluence of m-th beamlet, its gradient at l + 1 iter-
ation should be zero.

∂ f x l þ 1ð Þ½ �
∂xm

¼ 0 ð8Þ

The gradient of objective function at l + 1 iteration is
expressed as.

∂ f x l þ 1ð Þ½ �
∂xm

¼
X
i

X
j

X
k

2wijk Pijk−
XNT

new

r¼1

Ar;ijkx
new
r l þ 1ð Þ

0
@

1
A

−Am;ijk
� �

−
X
i

X
j

X
k

2wijk

XNT
old

s¼1

As;ijkx
old
s −Am;ijk
� �

2
4

3
5

ð9Þ

For m∈, the update formula (2) is.

xnewm l þ 1ð Þ ¼ xnewm lð Þ þ Δxnewm ;m∈Nnew
T ð10Þ

Put (8) and (9) together we have

Yan et al. Radiation Oncology  (2018) 13:101 Page 10 of 13



X
i

X
j

X
k

2wijk Pijk−
XNT

new

r¼1

Ar;ijkx
new
r l þ 1ð Þ

0
@

1
A

−Am;ijk
� �

−
X
i

X
j

X
k

2wijk

XNT
old

s¼1

As;ijkx
old
s −Am;ijk
� �

2
4

3
5 ¼ 0:

ð11Þ

Replace xnewr ðl þ 1Þ in (11) with [xnewr ðlÞ+Δx] in (10),
we have

X
i

X
j

X
k

wijkAm;ijk Pijk−
XNT

new

r¼1

Ar;ijkx
new
r lð Þ þ Am;ijkΔxm

2
4

3
5

8<
:

9=
;

¼
X
i

X
j

X
k

wijkAm;ijk

XNT
old

s¼1

As;ijkx
old
s

ð12Þ

Equation (12) can be expressed as

X
i

X
j

X
k

wijkAm;ijk Pijk
� �

−
X
i

X
j

X
k

wijkAm;ijk

XNT
new

r¼1

Ar;ijkx
new
r lð Þ� �

−
X
i

X
j

X
k

wijkAm;ijkAm;ijkΔxm

¼
X
i

X
j

X
k

wijkAm;ijk

XNT
old

s¼1

As;ijkx
old
s :

ð13Þ

With proper arrangement of both sides of Eq. (13),
it is

X
i

X
j

X
k

wijkPijkAm;ijk−
X
i

X
j

X
k

wijk

XNT
new

r¼1

Am;ijkAr;ijkx
new
r lð Þ−

X
i

X
j

X
k

wijk

XNT
old

s¼1

Am;ijkAs;ijkx
old
s ¼

X
i

X
j

X
k

wijkA
2
m;ijkΔxm:

ð14Þ

Then Δxmis calculated as

Δxm ¼

X
i

X
j

X
k

wijkPijkAm;ijk−
X
i

X
j

X
k

wijk

XNT
new

r¼1

Am;ijkAr;ijkx
new
r lð Þ−

X
i

X
j

X
k

wijk

XNT
old

s¼1

Am;ijkAs;ijkx
old
s

X
i

X
j

X
k

wijkA
2
m;ijk

:

ð15Þ

Bnew
m ¼ −

X
i

X
j

X
k

wijk

XNT
new

n1¼1

Ar;ijkxr lð ÞAm;ijk

X
i

X
j

X
k

wijkA
2
m;ijk

¼ −
XNT

new

r¼1

xnewr lð Þ

X
i

X
j

X
k

wijkAm;ijkAr;ijk

X
i

X
j

X
k

wijkA
2
m;ijk

:

ð15aÞ

(15a) can also be expressed as Bnew
m ¼ PNT

new
r¼1 xnewr ðlÞ

Bnew
mr ,where Bnew

mr ¼ −

X
i

X
j

X
k

wijkAm;ijkAr;ijk

X
i

X
j

X
k

wijkA
2
m;ijk

; r∈NT
new.

Bold
m ¼

−
X
i

X
j

X
k

wijk

XNT
old

s¼1

As;ijkx
old
s Am;ijk

X
i

X
j

X
k

wijkA
2
m;ijk

¼
XNT

old

s¼1

xolds

−
X
i

X
j

X
k

wijkAm;ijkAs;ijk

X
i

X
j

X
k

wijkA
2
m;ijk

ð15bÞ

(15b) can also be expressed as Bold
m ¼ PNT

old
s¼1 xolds Bold

ms ,

where Bold
ms ¼

−
X
i

X
j

X
k

wijkAm;ijkAs;ijk

X
i

X
j

X
k

wijkA
2
m;ijk

; s∈NT
old .

Cm ¼

X
i

X
j

X
k

wijkAm;ijkPijk

X
i

X
j

X
k

wijkA
2
m;ijk

ð15cÞ

Finally, the updating formula is below.

xm l þ 1ð Þ ¼ xm lð Þ þ
XNT

new

r¼1

Bnew
mr x

new
r lð Þ

þ
XNT

old

s¼1

Bold
ms x

old
s þ Cm; m∈NT

new ð16Þ
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Note that xolds is solved in 1-th to T-1-th beam set and
constant in T-th beam set, while xnewr is variable to be
solved in T-th beam set. Cmis calculated based on wij-

k,Am, ijkand Pijk which can be pre-computed prior to the
optimization of 1-th beam set. Bold

m is calculated based
on constantswijk,Am, ijk,Pijk and xolds . Bold

m can be
pre-computed prior to the optimization of T-th beam
set. Bnew

m is calculated based on constantswijk,Am, ijk,Pijk
and variable xnewr . Bold

m can’t be pre-computed and should
be calculated online.

Appendix 2
The objective function of the MILP model is defined as
below.

min
XN
i¼1

XM
j¼1

Icij−A
c
ij

� 	
ð1Þ

Here Icij is the original fluence of bixel (beam pixel)

after FMO, and Ac
ij is the unknown fluence of bixel for

the single aperture. N and M are the dimensions of flu-
ence map indexed with ij. For achieving the best uni-
form fluence mapAcin approximating non-uniform
fluence mapIc, the following constraints are required.

lcij þ rcij ¼ 1−bcij ð2Þ

lcijþ1≤ l
c
ij ð3Þ

rcijþ1≥r
c
ij ð4Þ

Ac
ij ¼ Acbcij ð5Þ

Ac
ij≤ I

c
ij ð6Þ

XM
j¼1

lcij−
XM
j¼1

lpij













≤
vmax

sϕ
Δϕ ð7Þ

XM
j¼1

lcij−
XM
j¼1

l fij













≤
vmax

sϕ
Δϕ ð8Þ

XM
j¼1

rcij−
XM
j¼1

rpij













≤
vmax

sϕ
Δϕ ð9Þ

XM
j¼1

rcij−
XM
j¼1

r fij













≤
vmax

sϕ
Δϕ ð10Þ

The superscripts c, p, and f represent current beam,
previous beam and following beam.
The constants in the above constraints are defined as:
dmax: Maximal dose rate.
vmax: Maximal leaf speed.
sϕ: Gantry angular speed.

Δϕ: Angular spacing between two beams.
Icij : Contains the original fluence of bixel ij resulted by

FMO.
Ac: Maximal fluence of current beam and is less than

vmax
sϕ dmax.
The variables in the above constraints are defined as:
lcij : Binary variable indicates whether bixel ij of current

beam is blocked by left leaf or not (1: close; 0: open).
rcij : Binary variable indicates whether bixel ij of current

beam is blocked by right leaf or not (1: close; 0: open).
bcij: Binary variable indicates whether bixel ij of current

beam is open or not (1: open; 0: close).
Ac
ij: Float variable contains the fluence of bixel ij.

lpij : Binary variable indicates whether bixel ij of pervious

beam is blocked by left leaf or not (1: close; 0: open).

l fij : Binary variable indicates whether bixel ij of follow-

ing beam is blocked by left leaf or not (1: close; 0: open).
rpij : Binary variable indicates whether bixel ij of pervious

beam is blocked by right leaf or not (1: close; 0: open).

r fij : Binary variable indicates whether bixel ij of following

beam is blocked by right leaf or not (1: close; 0: open).
The meanings of constraints are explained as below.
Constraint (2): requires bixel ij either blocked by leaf

or open.
Constraint (3): requires mechanical continuity of left leaf.
Constraint (4): requires mechanical continuity of right leaf.
Constraint (5): requires fluence of beam either zero or

fluence Ac.
Constraint (6): requires fluence of beam is less than

fluence Iij
c.

Constraint (7): requires the distance difference between
left leaf positions in current and previous beams less than
vmax
sϕ Δϕ , which is the maximal distance that a leaf can
travel between two neighboring control points or angles.
Constraint (8): requires the distance difference between

left leaf positions in current and following beams less than
vmax
sϕ Δϕ which is the maximal distance that a leaf can travel
between two neighboring control points or angles.
Constraint (9): requires the distance difference between

right leaf positions in current and previous beams less
than vmax

sϕ Δϕ , which is the maximal distance that a leaf can
travel between two neighboring control points or angles.
Constraint (10): requires the distance difference between

right leaf positions in current and following beams less
than vmax

sϕ Δϕ , which is the maximal distance that a leaf can
travel between two neighboring control points or angles.
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