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Abstract: The search for selective heterogeneous catalysts for the aerobic oxidation of alcohols
to ketones and aldehydes has drawn much attention in the last decade. To that end, different
palladium-based catalysts have been proposed that use various organic and inorganic supports. In
addition, supports that originate from a biological and renewable source that is also nontoxic and
biodegradable were found to be superior. We heterogenized palladium chloride or acetate complexes
with triphenylphosphine trisulfonate on iota-carrageenan xerogel by simple mixing of the complex
and the polysaccharide in water. The resulting polysaccharide-catalyst mixture then underwent
deep freeze and lyophilization, after which the catalyst was characterized by TEM, XPS and SEM-
EDS and tested in aerobic oxidation. The new heterogeneous catalysts were successfully used for
the first time in the aerobic oxidation of benzylic alcohols. Moreover, they were easily removed
from the reaction mixture and recycled, yielding an increase in activity with each subsequent reuse.
As determined by TEM and XPS, the reduction in palladium and the formation of nanoparticles
during the reaction in ethanol yielded more active species and, therefore, higher conversion rates. A
SEM-EDS analysis indicated that the palladium was thoroughly dispersed in the xerogel catalysts.
Moreover, the xerogel catalyst was observed to undergo a structural change during the reaction. To
conclude, the new heterogeneous catalyst was prepared by a simple and straightforward method that
used a non-toxic, renewable and biodegradable support to yield an active, selective and recyclable
heterogeneous system.

Keywords: catalysis; carrageenan; heterogeneous catalysts; oxidation

1. Introduction

The selective oxidation of alcohols to ketones and aldehydes, which has been at-
tracting significant attention both in laboratory scale studies of catalysis and in industrial
production, is considered a pivotal reaction in organic synthesis [1–4]. However, the scaled-
up application of oxidation reactions in synthesis has been severely limited by the large
amounts of hazardous metal oxidants required, such as manganese or chromium oxides,
which also necessitate the use of toxic solvents such as DMF and DMSO and produce
excessive amounts of effluents [5]. Furthermore, running oxidation with these strong
oxidants tends to result in over-oxidized products, e.g., primary alcohols are oxidized to
their corresponding carboxylic acids.

To avoid the use of metal oxidants and toxic organic solvents, a cleaner and safer
oxidation method was developed that uses hydrogen peroxide in water. That method,
however, is limited by the low solubility of many organic compounds in water and the fact
that water can react with other functional groups on the molecule [6,7]. An alternative is to
use aerobic oxidation in the presence of a transition metal-based catalyst. Such a method
utilizes low-cost and readily available oxygen as the oxidant while producing only water
as a by-product. As such, it constitutes a “green route” for alcohol oxidation that can be
performed in variety of organic solvents [8,9].
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Over the years, many homogeneous catalysts have been suggested for this purpose,
among them systems with copper [10] and iron [11] or transition-metal complexes [12,13]
based mainly on palladium or ruthenium [14,15]. Yet if the intention is to develop an
environmentally friendly, simple and inexpensive industrial protocol, homogeneous sys-
tems suffer a huge drawback: separation of the metal from the reaction mixture at the
end of the reaction is a complicated process in such systems, and the catalyst cannot be
recycled. In heterogeneous systems, in contrast, where the metal is immobilized on a
support, the end-products are easy to separate and recycle. These benefits notwithstanding,
the preparation of any heterogeneous catalyst must be as simple and as reproducible as
possible, while avoiding any leaching of the metal [16,17].

A variety of supported metals have been offered as heterogeneous catalysts for the
oxidation of alcohols [18,19] by using different supports, for example, Pd/Alumina [20],
Ni/Hydrotalcite [21], Ru/Hydroxyapatite [22], Co/Activated carbon [23], and Au/
Polystyrene [24]. Palladium catalysts, which have found widespread application in or-
ganic synthesis, were also extensively used to this end, and they employed different
supports, such as silica [25], graphene [26], aluminum hydroxide [27], MnCeOx [28], and
poly(ethyleneglycole) [29]. Additionally, the most active species in many systems were
palladium nanoparticles [29–33].

Since many organic and inorganic supports can potentially be used, supports that
originate from a biological and renewable source that is also nontoxic and biodegradable
are superior. To that end, polysaccharides, which constitute the most prevalent form of
the biopolymers and the most abundant organic material on earth, have recently been
used to immobilize different metal catalysts as complexes or nanoparticles. Of note are
the palladium-based catalysts, which have been used mainly in the Suzuki cross-coupling
reaction [34,35] but also in other coupling reactions [36], in amination and in hydrogena-
tion [37]. However, polysaccharides-based palladium catalysts for the aerobic oxidation of
alcohols have not been proposed. Recently, we also proposed a simple and straightforward
procedure to immobilize palladium complexes on various renewable polysaccharides by
using sodium triphenylphosphine trisulfonate (TPPTS) as ligand and anchor. The new
heterogeneous catalysts were successfully used in Suzuki cross-coupling [38–42] and Heck
coupling and in the transfer hydrogenation of olefins [43,44].

In this study, we report for the first time on the use of a palladium catalyst immobilized
on a renewable polysaccharide in the aerobic oxidation of benzylic alcohols (Figure 1).
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Figure 1. Aerobic oxidation of benzylic alcohols.

2. Materials and Methods
2.1. Polysaccharides and Reagents

The polysaccharides, palladium acetate, palladium chloride, TPPTS, benzyl alcohol and
sodium carbonate (analytical grades) were purchased from Sigma-Aldrich, Rehovot, Israel.
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2.2. Catalyst Preparation

In a typical procedure, 10 µmol of palladium salt was added to a vial with 3 mL
distilled water together with 30 µmol of TPPTS and mixed at room temperature for 5 min.
The mixture was added to a 15-mL polypropylene tube together with 3 mL of 1% wt/vol
polysaccharide solution in distilled water, sealed and vortexed for homogenization. The
tube was then placed in a deep freeze unit at −20 ◦C for 24 h until the liquid was completely
frozen. Then the seal was removed from the tube and it was covered with a paraffin sheet
that was pierced with disposable toothpick. The tube was placed in a lyophilizer (Christ,
Osterode, Germany) for 48 h. At the end of the process, the dried xerogel was cut into
pieces measuring ~1 cm × 1 cm and added to the reaction mixture.

2.3. Reaction Procedure

In a typical procedure, 10 µmol of palladium catalyst (homogenous or heterogeneous)
was added to a vial with 5 mL ethanol together with 0.925 mmol benzyl alcohol (S/C = 92.5),
with or without 0.092 µmol sodium carbonate. The mixture was placed in an oil bath
preheated to 60 ◦C and magnetically stirred for 24 h. At the end of the reaction, the reaction
mixture was cooled, and after reactions in which a heterogeneous catalyst was used, it was
removed by filtration through a 0.45 µm Millex LH filter (Millipore, Bedford, MA, USA).
The organic phase was then analyzed to determine conversion by GC by using an ZB-5
column (Phenomenex, Torrance, CA, USA). High-pressure reactions were tested in a home-
made 10 mL stainless steel reactor with magnetic stirring following the same procedure.

Catalyst leaching was tested as follows: (1) testing the reaction performance of the
catalyst that was removed from the original reaction mixture in a second reaction with
a fresh reaction mixture that contains the initial amounts of fresh substrates and sodium
carbonate used in the first reaction; (2) testing the reaction performances after catalyst
removal by running the reaction mixture under similar conditions for an additional 24 h to
test whether the conversion increases with time, and (3) performing spectro arcos ICP-OES
(Agilent, Santa Clara, CA, USA) analysis of the reaction medium after the first cycle (24 h),
to test for leftover palladium in the reaction solution.

Catalyst recycling was tested by adding the recovered catalyst to a solution with
similar amounts of fresh substrates and base and running the reaction mixture under
similar reaction conditions for an additional 24 h.

2.4. TEM Analysis

HRTEM micrographs were obtained on a EFI Talos F200C electron microscope (Thermo
Fischer Scientific, Gloucester, UK) operated at 200 kV at room temperature. The samples
were prepared by deposition of a drop of ethanol suspension of the solid catalyst on a
carbon-coated Cu grid and examined as grain mounts.

2.5. Surface Analysis by X-ray Photoelectron Spectroscopy (XPS)

XPS data were collected by using an X-ray photoelectron spectrometer ESCALAB 250
(Thermo Fischer Scientific, Gloucester, UK) ultrahigh vacuum (1 × 10−9 bar) apparatus
with an AlKα X-ray source and a monochromator. The X-ray beam size was 500 µm, and
survey spectra were recorded with a pass energy (PE) of 150 eV, and high energy resolution
spectra were recorded with a pass energy (PE) of 20 eV. To correct for charging effects, all
spectra were calibrated relative to a carbon C 1s peak positioned at 284.8 eV. Processing of
the XPS results was carried out by using AVANTAGE program (Thermo Fischer Scientific,
Gloucester, UK).

2.6. Scanning Electron Microscope (SEM) Energy Dispersive X-ray Spectrometry (EDS)

Elemental analysis was performed by using a scanning electron microscope (SEM),
FEI Verios 460L XHR (extreme high resolution, Hillsboro, OR, USA), equipped with energy-
dispersive X-ray spectroscopy (Thermo Fischer Scientific, Gloucester, UK).
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2.7. Analysis of Total Sugar Concentration

At the end of the reaction, the catalyst was separated from the reaction solution and
washed with ethanol, which was added to the ethanolic reaction solution, and the mixture
was then filtered through a 0.45-µm Millex LH filter. The filtrate was dried by speed-vac,
and the residue was dissolved in 1 mL of distilled water. The total sugar concentration in
the solution was analyzed by phenol-sulfuric assay [45]. Briefly, 1 mL of sample was mixed
with 1 mL of 5% phenol and 5 mL of 98% sulfuric acid and incubated at room temperature
for about 1 h. Absorbance of the developed color was determined spectrophotometrically
at 490 nm. The amount of sugar content was deduced from the absorbance by comparing
it with a standard curve (0–100 µg/mL) of galactose.

3. Results and Discussion

The investigation began with the homogeneous aerobic oxidation of benzyl alcohol
in ethanol—an inexpensive, commercially available and relatively nontoxic and non-
hazardous solvent—in the presence of various palladium salt catalysts (Table 1). In all of
the reactions, only benzaldehyde was detected, without any benzoic acid or benzyl acetate
leftovers, showing that the reaction is selective.

Table 1. Homogeneous and heterogeneous reactions in ethanol a.

Entry Catalyst Base b Pd(OAc)2 Conversion (%) PdCl2 Conversion (%)

1 Homogeneous-No ligand - 50 0
2 Homogeneous-No ligand + 37 19
3 Homogeneous-TPP - 23 0
4 Homogeneous-TPP + 28 30
5 Homogeneous-TPPTS - 39 0
6 Homogeneous-TPPTS + 32 20
7 Heterogeneous - 20 0
8 Heterogeneous + 22 8
9 Heterogeneous c - 12 0

10 Heterogeneous c + 20 12
11 Heterogeneous d - 21 14
12 Heterogeneous e - 22 not tested
13 Heterogeneous f - 40 not tested

a Reaction conditions: 0.925 mmol benzyl alcohol, 10 µmol catalyst, 5 mL solvent, 60 ◦C, 1 atm air, 24 h. b + refers to an addition of
0.092 µmol Na2CO3; - without basis. c 3.8 atm air. d 1-Phenylethanol instead of benzyl alcohol. e 4-Methylbenzyl alcohol instead of benzyl
alcohol. f 4-Methoxybenzyl alcohol instead of benzyl alcohol.

First, two commercially available palladium salts, palladium acetate and palladium
chloride, were employed with or without the addition of a base: sodium carbonate (Table 1,
entries 1 and 2). As can be seen from Table 1, the conversion rate with Pd(OAc)2 was
found to be higher than with PdCl2 (Table 1, entry 1). Furthermore, while adding sodium
carbonate to Pd(OAc)2 decreased the conversion rate, it increased the conversion rate when
added to PdCl2, which was inactive without a base. Here the base assists both with the
abstraction of the acidic alcohol of the benzyl alcohol, thus initiating the reaction, and with
the dissociation of the anion from the catalyst.

Additionally, the addition of triphenyl phosphine (TPP) as a ligand, which can stabilize
the catalyst and prevent reduction in the metal and formation of palladium black, resulted
in lower conversion rates with Pd(OAc)2, but higher conversion rates with PdCl2 in the
presence of a base (Table 1, entries 3 and 4). These results emphasize the difference between
the two palladium salts, which can be attributed to their different solubilities in ethanol
and the different natures of the chloride and acetate ions. Finally, as the heterogenization
procedure involves the use of TPPTS as a ligand, the homogeneous reactions with both
Pd(OAc)2(TPPTS)2 and PdCl2(TPPTS)2 were also tested (Table 1, entries 5 and 6). In the
latter case, the conversion rate with Pd(OAc)2(TPPTS)2 was lower than that with the



Polymers 2021, 13, 498 5 of 10

free salt and higher than Pd(OAc)2(TPP)2, but still higher than the conversion rate with
PdCl2(TPPTS)2, which was similar to that when using salt alone.

Based on our previous work, iota (i) carrageenan was selected as the support for the
heterogeneous system [38–44]. With this support, the reaction with i-Pd(OAc)2(TPPTS)2
was superior to that with i-PdCl2(TPPTS)2 (Table 1, entries 7 and 8). Increasing the air
pressure from 1 atm to 3.8 atm slightly decreased the conversion rates, perhaps because of
the high concentration of nitrogen that was adsorbed on the palladium surface (Table 1, en-
tries 9 and 10). Lastly, various benzylic alcohols were tested and also successfully oxidized
using the new heterogeneous catalysts. In those tests, the addition of an electron donating
group, such as methoxy, was found to significantly increase the conversion rate (Table 1,
entries 11–13). However, aliphatic alcohols, which are less prone to aerobic oxidation,
showed only negligible conversion rates. Next, to better evaluate the applicability of the
new heterogeneous system, we tested the ability of both i-based catalysts to be recycled
and the ability of the system to function for multiple runs (Table 2).

Table 2. Catalyst recycling in ethanol a.

Cycle i-Pd(OAc)2(TPPTS)2
Conversion (%)

i-PdCl2(TPPTS)2
Conversion (%) b

1 20 8
2 29 11
3 35 15

a Reaction conditions: 0.925 mmol benzyl alcohol, 10 µmol catalyst, 5 mL solvent, 60 ◦C, 1 atm air, 24 h. b Addition
of 0.092 µmol Na2CO3.

As illustrated in Table 2, in the new heterogeneous systems the catalysts could be
easily separated from the reaction mixture and recycled, while running the reaction again
with the filtered reaction mixture after catalyst removal did not result in an increase in the
conversion, thus hinting that the catalyst had not leached into the solution. Furthermore,
ICP-OES analysis did not reveal any leftover palladium in the solution, indicating that there
was no palladium leaching. Moreover, and surprisingly, the reaction cycles run after the
first and second times the catalysts were recycled (Table 2, entries 2 and 3) yielded higher
conversion rates than the initial reaction cycle. To test the stability of the heterogeneous
catalyst under the reaction conditions, the sugar content in the reaction mixture after each
cycle was measured by using the colorimetric phenol-sulphuric method. The sugar content
in the reaction solution at the end of each cycle was negligible compared to the amount
of polysaccharide used to prepare the catalyst (less than 50 µg sugar compared to 0.03 g
polysaccharide initially used). This observation indicates that the heterogeneous catalyst
almost did not degrade and/or was dissolved in the reaction solution, even though the
reaction conditions comprised mixing at under 60 ◦C for 72 h.

In addition, the color of the catalyst grew darker from cycle to cycle. We suggest
that this may be attributed to the formation of palladium nanoparticles while heating
the catalyst under reaction conditions, as was previously reported under similar reaction
conditions in a Suzuki-cross coupling in ethanol [35].

The next step was to rigorously evaluate the state and form of the palladium (and its
distribution within the fresh heterogeneous catalyst) and the catalyst after 24 h of reaction.
Both samples were analyzed by TEM (Figure 2).

As expected, the TEM image of i-Pd(OAc)2(TPPTS)2 fresh catalyst (Figure 2A) showed
that nanoparticles had already been created during the lyophilization of the polysaccharide-
catalyst mixture, which is in agreement with previously published findings [38,39]. How-
ever, employing the catalysts in the reaction and heating it for 24 h at 60 ◦C resulted in
the formation of much larger nanoparticles than previously reported, as illustrated in
Figure 2B. This implies that the reaction conditions promoted reduction in the palladium
and nanoparticle aggregation [39].
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Nanoparticles of palladium have been intensively studied in a wide range of cat-
alytic applications, including C-C coupling reactions (e.g., Suzuki, Heck, Sonogashira,
Negishi, Stille, Kumada and Hiyama), hydrogenation and electrochemical reactions in
fuel cells [33,35]. There are also several reports showing the successful employment of
palladium nanoparticles in oxidation reactions. For example, palladium nanocatalysts
with carbon nanomaterial support have been successfully applied in a glucose oxidation
reaction [46]. Additionally, a biphasic aerobic oxidation of alcohols was performed by using
palladium nanoparticles in a polyethylene glycol matrix as the catalyst and supercritical
carbon dioxide as the substrate and product phase [29]. In contrast to our findings, how-
ever, it is well known that the aggregation of palladium nanoparticles, which results in a
reduction in the surface area-to volume ratio, usually renders palladium nanoparticles less
active and selective [33]. It was therefore suggested that other factors are responsible for the
reaction enhancement effect, such as changes in the palladium oxidation state, palladium
distribution on the surface, palladium nanoparticle morphologies, rate of nanoparticle
formation, changes in the support structure, mass transfer limitations, etc.

Analysis by XPS was used to better understand the changes in the elemental distribu-
tion on the heterogeneous catalyst and to determine the oxidation state of the palladium on
the surface before and after the reaction. The analysis showed that the palladium atomic
concentration on the surface of both preparations was similar, 0.5%, and in agreement with
the amount that was used to form the heterogeneous catalyst. Moreover, the elemental
identification and quantification of i-Pd(OAc)2(TPPTS)2 before and after the reaction was
also similar in both preparations, as shown in Table 3.

Curve-fitting of the Pd3d spectra of the two preparations (Figure 3) shows that both
consist of a doublet (Pd3d5/2 and Pd3d3/2) due to spin-orbit splitting, and each component
of the doublet involves two peaks, assigned to Pd(0) and Pd(II). However, the two samples
exhibited different ratios between the two oxidation states.

In the spectrum results for the fresh heterogeneous catalyst, the area percentage peaks
of the Pd(0) and Pd(II) correspond to 24% and 76%, respectively (Figure 3A). For the
post-reaction heterogeneous catalyst, the area percentage peaks of the Pd(0) and Pd(II)
correspond to 70% and 30%, respectively (Figure 3B). This shows that 46% of the Pd(II),
derived from Pd(OAc)2, was reduced to metallic form during 24 h of reaction with binding
energies of Pd(0) 3d (d5 335.6 eV; d3 341.6 eV) (Figure 3). Thus, it seems that the enhance-
ment in catalytic activity after recycling of the xerogel can be attributed to the increase in
the Pd(0) form.
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Table 3. Elemental identification and quantification of i-Pd(OAc)2(TPPTS)2 before and after reaction,
determined by XPS.

Element Atomic %
before Reaction

Atomic %
before Reaction

C1s 56.76 55.99
O1s 31.91 31.26
N1s 0.58 0.51

Pd3d 0.50 0.49
Na1s 2.07 2.75
Ca2p 1.09 1.32
S2p 6.43 6.98
K2p 0.68 0.69
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Figure 3. XPS spectra of i-Pd(OAc)2(TPPTS)2 in the Pd3d region (A) Before reaction, (B) After 24 h
of reaction.

The elemental analysis of i-Pd(OAc)2(TPPTS)2 before and after the reaction was also
investigated via SEM-EDS (Figure 4). Representative EDS spectra of various samples
revealed that the palladium atomic concentration in both preparations was 0.5%, which is
in agreement with the amount used to form the xerogel catalyst and the amount shown
in the XPS analysis, indicating that the palladium was probably uniformly dispersed in
the xerogel. Similarly, the molar elemental ratio of P:Pd in the heterogeneous catalyst was
found to be 3:1, as in the homogeneous catalyst (data not shown). What this suggests
is that the complex, i-Pd(OAc)2(TPPTS)2, has kept its elemental composition despite the
reaction conditions. However, the images of both samples obtained using SEM indicate
that the structures are different. While the i-Pd(OAc)2(TPPTS)2 xerogel before the reaction
is characterized by a porous sphere or structure with hollows (Figure 4A), the xerogel
that appears during the 24 h of reaction is characterized by ordered vertical porous tubes
(Figure 4B). Indeed, the structural differences can be observed by physical contact: the
xerogel becomes more rigid after the reaction. Therefore, it seems that structural changes
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also play a major factor that can pose a mass transfer limitation that can affect reaction
performances between successive cycles.
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4. Conclusions

i-Pd(OAc)2(TPPTS)2 and i-PdCl2(TPPTS)2, prepared using a very simple and straight-
forward method, were successfully employed in the aerobic oxidation of benzylic alcohols.
After 24 h pf reaction, the conversion rate of benzyl alcohol with i-Pd(OAc)2(TPPTS)2 (22%)
was higher than that with i-PdCl2(TPPTS)2 (8%) and close to that of the parent homo-
geneous complex (32%). In this novel method, the metal did not leach into the reaction
mixture and the catalyst was successfully recycled twice, exhibiting increases in activity
in the reactions after the first and second times it was recycled from an initial conversion
rate of 22% to 29% in the first recycle and 35% in the second. Notably, both the catalyst
matrix and the solvent used in this approach are environmentally preferable, thus making
this approach of general interest for the pursuit of viable “green” nanoparticle catalysis
systems. Characterization of the lyophilized i- Pd(OAc)2(TPPTS)2 system via TEM, XPS
and SEM-EDS analyses before and after the reaction in ethanol shows that the palladium
was successfully dispersed and embedded in the xerogel and that palladium nanoparticles
formed during the reaction and led to higher conversion rates. In addition, the structure of
the i-Pd(OAc)2(TPPTS)2 was altered in the course of the reaction.
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