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Abstract: Graphene is an excellent 2D material that has extraordinary properties such as high surface
area, electron mobility, conductivity, and high light transmission. Polymer composites are used
in many applications in place of polymers. In recent years, the development of stable graphene
dispersions with high graphene concentrations has attracted great attention due to their applications
in energy, bio-fields, and so forth. Thus, this review essentially discusses the preparation of stable
graphene–polymer composites/dispersions. Discussion on existing methods of preparing graphene
is included with their merits and demerits. Among existing methods, mechanical exfoliation is widely
used for the preparation of stable graphene dispersion, the theoretical background of this method is
discussed briefly. Solvents, surfactants, and polymers that are used for dispersing graphene and the
factors to be considered while preparing stable graphene dispersions are discussed in detail. Further,
the direct applications of stable graphene dispersions are discussed briefly. Finally, a summary and
prospects for the development of stable graphene dispersions are proposed.

Keywords: graphene; graphene dispersion; solvents; surfactants; polymers; coating; 3D printing;
supercapacitor device

1. Introduction

Graphene is a useful carbon-based material, which is available in nature as graphite.
In graphite, single layers of graphene are stacked into many layers by π–π interactions.
Graphene is an allotrope of carbon where sp2 carbon atoms are arranged in a honeycomb
lattice structure [1,2]. Graphene properties have been carefully evaluated since it was sepa-
rated in 2004 [3]. Graphene is referred to as the strongest and lightest material [4], highly
conductive [5,6], and thinnest (adsorbing 2% of light) [7], it has a large specific surface
area [8], and is the only one material where reactions can be carried out on both sides [9].
Graphene is used in various fields such as touch panels [10], conducting inks [11,12], flexi-
ble electronics [13], electrochemical devices [14], sensing devices [15], and drug carriers [16].
Generally, graphene is prepared by bottom-up and top-down methods as follows:

1.1. Chemical Vapor Deposition

The chemical vapor deposition (CVD) process is a straightforward method to prepare
graphene, although special types of equipment are needed. In this method, gaseous
molecules are deposited on a substrate which are used to grow graphene. The gaseous
molecules are combined in the reaction chamber at ambient temperature where they
come into contact with the substrate, producing graphene on the substrate [17,18]. The
CVD method yields high-quality graphene and the number of layers can be controlled
with a homogenous graphene surface. Graphene can be deposited on substrates such as
copper [19], nickel [20], platinum [21], and palladium [22]. However, this method has
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disadvantages: the equipment is expensive, toxic gases are produced as by-products, and
it is a sensitive process.

1.2. Pyrolysis

Pyrolysis is a solvothermal method used for the chemical synthesis of graphene in a
bottom-up process. Thermal reactions of sodium and ethanol are carried out in a closed
vessel, graphene sheets were successively detached by sonication [23]. Pyrolysis is a very
low-cost process and graphene can be easily fabricated, functionalized graphene can be
prepared at low temperatures but the graphene produced by this method has a large
number of defects.

1.3. Self-Assembly

Self-assembly is a bottom-up method. Here, graphene is prepared by self-assembling
the carbon molecules using sugar derivatives or organic molecules as a carbon source [24,25].
For e.g., polymerization of pyrrole on silica and removing silica layers results in high-
quality graphene sheets [26]. The graphene layers can be controlled and it is a simple
method. However, large-scale production by this method is difficult.

1.4. Thermal Decomposition of Silicon Carbide

Epitaxial graphene on silicon carbide (SiC) is a sublimation process whereby heating
SiC to high-temperature results in graphene [27,28]. In this method, silicon atoms are
sublimized at high temperatures, leaving behind the graphene layers. This process yields
high-quality graphene, however, the SiC wafer itself is expensive and the high temperature
required are disadvantages of this method [29,30].

1.5. Chemical Exfoliation

The chemical exfoliation method is a top-down method for the synthesis of graphene.
Chemical exfoliation includes two steps, the interlayer distance between graphene layers
is first increased, then, by using the intercalating compounds, graphites are exfoliated
and thus single-layered graphene is produced [31]. Graphene oxide (GO) is prepared
by Hummers’ method, where strong oxidizing agents such as potassium permanganate,
sulfuric acid, and nitric acid are used to oxidize the graphite into GO [32]. Then GO is
reduced by hydrazine [33], sodium borohydride [34], glucose [35], or hydroquinone [36]
which produces reduced graphene oxide (rGO). However, in this method strong oxidiz-
ing and reducing agents are used. In addition, because of the oxidizing and reducing
process, the presence of trace amounts of functional groups on the surface will alter the
graphene’s properties.

1.6. Mechanical Exfoliation

Mechanical exfoliation is a top-down method considered as a simple method for the
synthesis of graphene. In graphite, graphene layers are stacked by the Van der Waals
force, the Van der Waals forces are weakened by sonication, leading to exfoliation. Thus,
graphene layers can be prepared from graphite by mechanical exfoliation techniques
including micromechanical cleavage using Scotch tape [3], ultrasonication [37], and electric
field [38] methods. Exfoliation of graphite using Scotch tape results in multiple layers on the
tape. Repeated peeling of the multiple-layered graphene results in graphene with different
sizes, ranging from tens of micrometers to nanometers. However, this method requires
intensive labor and is time-consuming. Overcoming the attraction between graphene layers
will peel the layers from graphite. Lateral (shear force) and normal forces will take place
during the exfoliation of graphene from graphite by mechanical methods. Fragmentation,
results in graphene of different sizes [39]. Ultrasonication is widely used for the exfoliation
of graphite to graphene, this method yields single or few-layered graphene flakes. Figure
1 illustrates the mechanism involved in the sonication process. Sonication involves bath,
and horn sonication devices, in these devices electrical energy is transformed to vibrational
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energy [40–42]. The sound waves propagate through the graphene dispersion (liquid
medium) in alternating high- and low-pressure cycles. In low pressure cycles, vapor
bubbles are formed in the medium and grow, this bubble growth is known as cavitation.
The acoustic cavitation bubbles collapse in the high pressure cycles and release strong
mechanical and thermal energy which is responsible for the temperature increase in the
sonication bath. The release of this energy results in splitting up the larger particles into fine
particles and dispersing them in the medium. Additionally, during sonication, insertion
of solvent molecules, polymers or intercalation molecules in between the graphene layers
takes place which exfoliates the graphite into graphene layers.
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There are many reviews available about graphene, its derivatives, and its composites
for different applications [43–53]. However, there is only limited information about the
preparation of stable graphene dispersions and the factors to be considered during their
preparation. Thus, in this review, the recent advances in graphene dispersions using solvents,
surfactants, and polymers are discussed, as well as applications of graphene dispersions.

2. Stable Graphene Dispersions Using Solvents

Graphene is used in various fields; however, many applications need graphene dis-
persions instead of graphene powders. Graphene flakes, after exfoliation from graphite
by ultrasonication, aggregate because of the Van der Waals force between graphene lay-
ers [54]. Thus, research has focused on the preparation of stable graphene dispersions. The
aggregation of graphene can be overcome by the addition of high-boiling solvents such
as N-methyl-pyrrolidone [55] or ortho-dichlorobenzene [56], low-boiling solvents such
as chloroform or isopropanol [57], neoteric solvents such as supercritical fluids [57,58],
and ionic liquids [59,60]. Graphene dispersions and graphene–polymer composites in
organic media have been reported, and these dispersions were stable for the long-term with
graphene sheets of a few hundred nanometers in size [61]. However, only specific solvents
disperse graphene very well. The graphene dispersibility is dependent on the solvent and
graphene properties such as surface tension and solubility parameters (Hildebrand- and
Hansen solubility parameters) [62]. The solute–solvent systems divide the intermolecular
interactions between the solvent and graphene into three dispersive (D), polar (P), and
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hydrogen bonding (H) components [63–65]. The Hansen solubility parameter calculates the
distance of interaction between the solvent and graphene. The smaller distance between
the graphene and the solvent, the better the graphene dispersion [66]. Good solvents for
graphene should match with Hansen parameters [62] as δD = 18.0 MPa1/2, δP = 9.3 MPa1/2,
or δH = 7.7 MPa1/2. The Hildebrand solubility parameters are the sum of D, P, and H
Hansen parameters or the square root of the cohesive energy density [62]. Different tech-
niques are used for liquid-phase exfoliation (LPE) of graphite, namely high-shear mixing,
sonication, homogenizer, and microfluidization [67,68]. Graphene dispersion in 40 solvents:
cyclopentanone, cyclohexanone, N-formyl piperidine, vinyl pyrrolidone, 1,3-Dimethyl-2-
imidazolidinone, bromobenzene, benzonitrile, N-methyl-pyrrolidone (NMP), benzyl ben-
zoate, N-N′-dimethylpropylene urea, γ-butyrolactone (GBL), dimethyformamide (DMF), N-
ethyl-pyrrolidone, dimethylacetamide, cyclohexylpyrrolidone, dimethylsulfoxide (DMSO),
dibenzyl ether, isopropylalcohol (IPA), chlorobenzene, 1-octyl-2-pyrrolidone, 1-3 diox-
ane, ethyl acetate (EtOAc), quinoline, benzaldehyde, ethanolamine, diethyl phthalate,
N-dodecyl-2-pyrrolidone, pyridine, dimethyl phthalate, formamide, ethanol (EtOH), vinyl
acetate, acetone, water, ethylene glycol, toluene, heptane, hexane, and pentane have been
demonstrated [62]. Graphene attains dispersibility of about 8 µg/mL with cyclopentanone
as solvent [62]. The studies show that for good graphene dispersion, solvents should have
surface tension and Hildebrand solubility parameter of about 40 mJ/m2 and 23 Mpa1/2,
respectively. Solvents that have similar surface tension to graphene will be effective in
preparing stable graphene dispersions. The energy required to exfoliate graphite into
graphene is balanced by the surface energies of the solvent and graphene [55]. The polar
and H-bonding of Hansen parameters of solvent should be nonzero to disperse graphene.

Other than normal solvents, ionic liquids such as 1-butyl-3-methylimidazolium bis
(trifluoromethanesulfonyl)imide and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesul
fonyl)imide, which have surface tensions of about 30 and 40 mN.m−1, respectively, showed
stable dispersions. Further, these ionic liquids partially exfoliate graphite into single or
few-layered graphene [60]. This discussion suggests that choosing a solvent that matches
the surface tension and solubility parameters with graphene will effectively produce stable
graphene dispersions. Figure 2 illustrates the scheme to prepare graphene dispersions
using solvents.

Pretreated graphite flakes by tip sonication, and subjected to bath sonication, attained
graphene concentrations up to 20 mg/mL. Re-dispersion of pretreated graphene results in
good quality graphene dispersions with concentrations of at least 63 mg/mL [69]. Even
after 200 h, the concentration of graphene was calculated as 35 mg/mL. Additionally, the
dispersions have good quality graphene flakes with an average of three-layered graphene
with a lateral size of 1 µm. Ding et al. [70] explained a water-based “green” approach for
the preparation of stable aqueous-compatible graphene nanoplatelets. Graphite nanosheets
were dispersed into DMF and exfoliated by ball milling, resulting in graphene sheets with
three layers and a thickness of about 0.8–1.8 nm [71]. Stable graphene slurries in water
were prepared by pretreatment of graphite and exposed to shear effect at 20,000 rpm with a
shear dispersing emulsifier [72]. GO showed stable dispersions in the long-term in solvents
DMF, NMP, tetrahydrofuran (THF), and ethylene glycol [55]. Stable graphene dispersions
were obtained using NMP and GBL solvents by the sonication method [73]. Table 1 shows
the preparation of graphene dispersions with graphene concentrations in different solvents
by sonication and ball milling methods. Dispersion behaviors of GO and rGO in different
solvents were discussed using Hansen and Hildebrand parameters, GO and rGO attained
~9 µg/mL concentration [74]. Figure 3 reveals the long-term stability of GO and rGO
dispersions after 2 weeks of preparation in different solvents. GO and rGO dispersions in
NMP, water, and ethylene glycol were stable for longer times. The stable dispersions are
attributed to the repulsion of GO and rGO sheets [74]. GO dispersions can be prepared via
conventional and new methods. In conventional methods, a GO dispersion is prepared
directly with solvents: water, methanol (MeOH), EtOH, acetone, THF, EtOAc, and toluene.
In new methods, GO dispersions was prepared in a two-step process. In the first step, GO
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was dispersed in water, then the water was removed by centrifugation. In the second step,
GO was re-dispersed in solvents such as water, MeOH, EtOH, acetone, THF, EtOAC, and
toluene by sonication [75]. GO used to disperse graphene nanoplatelets in water resulted in
stable dispersion [76]. Stable graphene dispersions can be obtained using solvents and the
main advantage is retaining graphene properties without modification. However, using
solvents includes many disadvantages such as re-aggregation of graphene sheets, low yield
of graphene, difficulty in removal of high boiling point solvents, and structural parameters
that cannot be altered, restricting the applications.
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Table 1. A comparison of dispersion methods, graphene sources, solvents, and obtained graphene concentration values.

S. No Dispersion Method Graphene Source Solvent Concentration Reference

1. Sonication Graphite Chloroform 3.4 µg/mL [62]

2. Sonication Graphite IPA 3.1 µg/mL [62]

3. Sonication Graphite Acetone 1.2 µg/mL [62]

4. Sonication Graphite NMP 1.2 mg/mL [77]

5. Sonication Graphene
nanoplatelets Ethylene glycol 0.075 mg/mL [78]

6. Sonication Graphite powder NMP 2 to 63 mg/mL [69]

7. Sonication Graphite Actone, chloroform,
and isopropanol 0.5 mg/mL [57]

8. Ball milling Graphite
nanosheets

NMP, DMF, THF,
tetramethyluren (TMU),

acetone, ethanol,
and formamide

88, 88, 97, 76, 66,
10.32, and

3.67 µg/mL
[79]

9. Shear mixer
(9500 rpm) Graphite powder IPA-water mixture 0.27 mg/mL [80]

10. Solvent exchange
process Graphite powder NMP transferred to ethanol 0.04 mg/mL [81]

11. Tip sonication Graphite Water 0.55 mg/mL [70]

12. Sonication GO NMP ~8.7 µg/mL [74]

13. Sonication rGO o-dichlorobenzene and
chloronapthalene

~9 and
~8.1 µg/mL [74]

14. Sonication Graphite Water 1 mg/mL [82]

15. Pretreatment and
shear mixing graphite water 50 mg/mL [72]

Sonication refers to bath sonication.

3. Stable Graphene Dispersions Using Surfactants

To overcome the difficulties in preparing stable graphene dispersion using solvents,
surfactants are used. As discussed in the earlier sections, stable graphene dispersions can
be prepared only if the solvent’s surface tension and Hildebrand solubility parameters
match graphene’s parameters. To prepare stable graphene dispersions using a solvent that
does not match graphene’s parameters, surfactants are added. The electrostatic attraction
or intermolecular force between surfactants and graphene helps in stabilizing the graphene
surface with surfactants and for the even distribution of graphene in the solution.

Figure 2 illustrates the preparation of graphene dispersions using surfactants and
Table 2 shows comparison information of obtained graphene concentrations, surfactants,
graphene sources, and dispersion methods. Sodium cholate and Tween 80 disperse
graphene at 0.1 and 0.5 mg/mL in water and reach maximum graphene concentration
at 10 mg/mL [83]. Graphene dispersions were prepared with 14 different surfactants
(Figure 4) in solvents NMP, EtOH, IPA, water, and DCM with a short sonication time
(3 h). Stable dispersions were obtained using the Tween series, Span series, and Pluronic
surfactants in NMP. In ethanol, nitrogen-based surfactants showed stable graphene dis-
persions (Figure 5) [84]. Sodium cholate stabilizes the graphene surface and produces
high-quality graphene with 1–10 stacked monolayers with lengths and widths of about
1 µm and 400 nm, respectively [85]. Preparing and comparing the stabilities of graphene
dispersions in water with surfactants Triton X-100, sodium dodecylbenzene sulfonate
(SDBS), and dodecyl trimethyl ammonium bromide (DTAB) were reported [86]. The degree
of dispersion using triton X-100 was higher than dispersions using SDBS and DTAB. A
novel surfactant from used engine oil was utilized as a dispersing agent for the preparation
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of stable graphene dispersion [87]. SDBS was used as an intercalating agent to exfoliate
graphite into graphene layers and as stabilizing surfactants [88]. Further, the effect of
dispersion with the concentrations of SDBS was investigated. Triton X-100 was used to sta-
bilize the graphene surface and exfoliate graphite into graphene using a homogenizer [89].
Aromatic perylene diimide derivatives stabilize and exfoliate graphite into few-layered
graphene in the volatile solvent chloroform [90]. Graphite exfoliation into few-layered
graphene using cetyltrimethylammonium bromide (CTAB) by a hydrothermal treatment
was reported in [91].

Polymers 2021, 13, x FOR PEER REVIEW 7 of 28 
 

 

3. Stable Graphene Dispersions Using Surfactants  
To overcome the difficulties in preparing stable graphene dispersion using solvents, 

surfactants are used. As discussed in the earlier sections, stable graphene dispersions can 
be prepared only if the solvent’s surface tension and Hildebrand solubility parameters 
match graphene’s parameters. To prepare stable graphene dispersions using a solvent that 
does not match graphene’s parameters, surfactants are added. The electrostatic attraction 
or intermolecular force between surfactants and graphene helps in stabilizing the gra-
phene surface with surfactants and for the even distribution of graphene in the solution. 

Figure 2 illustrates the preparation of graphene dispersions using surfactants and 
Table 2 shows comparison information of obtained graphene concentrations, surfactants, 
graphene sources, and dispersion methods. Sodium cholate and Tween 80 disperse gra-
phene at 0.1 and 0.5 mg/mL in water and reach maximum graphene concentration at 10 
mg/mL [83]. Graphene dispersions were prepared with 14 different surfactants (Figure 4) 
in solvents NMP, EtOH, IPA, water, and DCM with a short sonication time (3 h). Stable 
dispersions were obtained using the Tween series, Span series, and Pluronic surfactants 
in NMP. In ethanol, nitrogen-based surfactants showed stable graphene dispersions (Fig-
ure 5) [84]. Sodium cholate stabilizes the graphene surface and produces high-quality gra-
phene with 1–10 stacked monolayers with lengths and widths of about 1 µm and 400 nm, 
respectively [85]. Preparing and comparing the stabilities of graphene dispersions in wa-
ter with surfactants Triton X-100, sodium dodecylbenzene sulfonate (SDBS), and dodecyl 
trimethyl ammonium bromide (DTAB) were reported [86]. The degree of dispersion using 
triton X-100 was higher than dispersions using SDBS and DTAB. A novel surfactant from 
used engine oil was utilized as a dispersing agent for the preparation of stable graphene 
dispersion [87]. SDBS was used as an intercalating agent to exfoliate graphite into gra-
phene layers and as stabilizing surfactants [88]. Further, the effect of dispersion with the 
concentrations of SDBS was investigated. Triton X-100 was used to stabilize the graphene 
surface and exfoliate graphite into graphene using a homogenizer [89]. Aromatic perylene 
diimide derivatives stabilize and exfoliate graphite into few-layered graphene in the vol-
atile solvent chloroform [90]. Graphite exfoliation into few-layered graphene using 
cetyltrimethylammonium bromide (CTAB) by a hydrothermal treatment was reported in 
[91].  

 
Figure 4. Photographic images of GO dispersions in different solvents prepared by conventional and new methods. Re-
produced with permission from [75]. 

Figure 4. Photographic images of GO dispersions in different solvents prepared by conventional and new methods.
Reproduced with permission from [75].

Polymers 2021, 13, x FOR PEER REVIEW 8 of 28 
 

 

 
Figure 5. Photographic images of graphene dispersions with different surfactants in NMP. Reproduced from [84]. HOPG: 
highly pyrolytic graphite; T-20, T-60, and T-85: Tween series; S-20, S-60, and S-85: Span series; T-X100: TritonX-100; F-108, 
F-127, and P-123: pluronic surfactants; PVP: Poly(4-vinyl pyridine); PVPyr: poly(vinyl pyrrolidone); NaC: sodium cholate; 
SDBS: sodium dodecyl benzene sulfonate. 

Highly stable graphene dispersion and exfoliation of graphite were obtained using 
PVPyr with soap solution [92]. Naphthalene diimide surfactants showed promising re-
sults in the exfoliation of graphite and dispersal of graphene in an aqueous solution. The 
graphene concentrations were calculated as 5 and 1.2 mg/mL by centrifugation at 1000 
and 5000 rpm, respectively [93]. Stable graphene dispersions were prepared using surfac-
tants- octadedecyltrimethyl ammonium chloride [94] and anilium dodecylsulphate [95]. 
Cationic pyrene derivatives were used to prepared stable graphene dispersion by soni-
cating for 7 days [96]. Graphite was exfoliated and stable GO dispersion was prepared 
using mixed surfactants—sodium dodecyl sulfate (SDS) and CTAB. The mixed surfactants 
exhibit better dispersion than the pure ones [97]. rGO stabilization behaviors in water, 
DMF, EtOH, THF, chloroform, and acetone were studied using SDBS. Chloroform and 
water showed improved rGO dispersion stability with SDBS [98]. To disperse rGO in wa-
ter, anionic, non-ionic, and zwitterionic surfactants were used and conditions were varied 
to obtain stable dispersions [99]. GO is used as a surfactant to exfoliate graphite into gra-
phene [100] and GO is used as a stabilizing agent of graphene nanoplatelets [101]. 

Table 2. A comparison details of dispersion method, graphene source, surfactants, and graphene concentration values. 

S. No Dispersion Method Graphene Source Surfactant  Graphene Concentration References 
1. Sonication Graphite  Sodium cholate  0.15 mg/mL [83] 
2. Sonication Graphite Tween 80 0.12 mg/mL [83] 
3. Sonication Graphite Sodium cholate 0.3 mg/mL [85] 
5. Tip Sonication  Graphite  Sodium cholate 7 mg/mL [65] 
6. Sonication Graphite powder Surfactant from engine oil 0.5 mg/mL [87] 
7. Sonication  Graphite  SDBS 0.05 mg/mL [88] 

8. Sonication Graphite 
micrograins 

Sodium cholate 0.52 mg/mL [102] 

Figure 5. Photographic images of graphene dispersions with different surfactants in NMP. Reproduced from [84]. HOPG:
highly pyrolytic graphite; T-20, T-60, and T-85: Tween series; S-20, S-60, and S-85: Span series; T-X100: TritonX-100; F-108,
F-127, and P-123: pluronic surfactants; PVP: Poly(4-vinyl pyridine); PVPyr: poly(vinyl pyrrolidone); NaC: sodium cholate;
SDBS: sodium dodecyl benzene sulfonate.



Polymers 2021, 13, 2375 9 of 27

Highly stable graphene dispersion and exfoliation of graphite were obtained using
PVPyr with soap solution [92]. Naphthalene diimide surfactants showed promising results
in the exfoliation of graphite and dispersal of graphene in an aqueous solution. The
graphene concentrations were calculated as 5 and 1.2 mg/mL by centrifugation at 1000 and
5000 rpm, respectively [93]. Stable graphene dispersions were prepared using surfactants-
octadedecyltrimethyl ammonium chloride [94] and anilium dodecylsulphate [95]. Cationic
pyrene derivatives were used to prepared stable graphene dispersion by sonicating for
7 days [96]. Graphite was exfoliated and stable GO dispersion was prepared using mixed
surfactants—sodium dodecyl sulfate (SDS) and CTAB. The mixed surfactants exhibit better
dispersion than the pure ones [97]. rGO stabilization behaviors in water, DMF, EtOH,
THF, chloroform, and acetone were studied using SDBS. Chloroform and water showed
improved rGO dispersion stability with SDBS [98]. To disperse rGO in water, anionic,
non-ionic, and zwitterionic surfactants were used and conditions were varied to obtain
stable dispersions [99]. GO is used as a surfactant to exfoliate graphite into graphene [100]
and GO is used as a stabilizing agent of graphene nanoplatelets [101].

Table 2. A comparison details of dispersion method, graphene source, surfactants, and graphene concentration values.

S. No Dispersion Method Graphene Source Surfactant Graphene
Concentration References

1. Sonication Graphite Sodium cholate 0.15 mg/mL [83]

2. Sonication Graphite Tween 80 0.12 mg/mL [83]

3. Sonication Graphite Sodium cholate 0.3 mg/mL [85]

5. Tip Sonication Graphite Sodium cholate 7 mg/mL [65]

6. Sonication Graphite powder Surfactant from engine oil 0.5 mg/mL [87]

7. Sonication Graphite SDBS 0.05 mg/mL [88]

8. Sonication Graphite
micrograins Sodium cholate 0.52 mg/mL [102]

9. Sonication Graphite
micrograins Sodium deoxycholate 2.58 mg/mL [102]

10. Hydrothermal treatment Graphite powder CTAB 40–60 µg/mL [91]

11. Sonication rGO Sodium deoxycholate, poly
vinyl pyrrolidone, Briji30 2.3 mg/mL [99]

12. Sonication Graphite GO >150 mg/mL [100]

13. Sonication GO SDBS 1.5 mg/mL [103]

14. Sonication GO Gallic acid 1.2–4 mg/mL [104]

15. Tip sonication Graphene powders Silane-based dispersants 10 mg/mL [105]

Sonication refers to bath sonication.

4. Stable Graphene Dispersions Using Polymers

In this section, graphene dispersions using polymers are discussed further. As in
the earlier sections, factors to be considered for the preparation of stable graphene dis-
persions using polymers (Figure 2) are discussed. Graphene dispersions using polymers
show advantages over dispersions with surfactants and solvents. Polymer functional-
ization has the advantages of changing molecular weight, topological structure, a choice
of polymers appropriate to the application [53,61,106]. Also, polymer functionalization
changes the properties of graphene and its composites which are used as components in
various applications including energy, film packing, coating, inkjet printing, and in automo-
biles [11,50,52,107–112]. However, achieving stable graphene dispersions using polymers
is difficult because choosing a suitable polymer is challenging. This can be overcome if the
interaction between graphene surfaces and the stabilizing molecules is known. Recently,
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we studied the interactions between graphene surfaces and molecules using atomic force
microscopy (AFM) [113–115]. The AFM cantilevers were modified with various monomers
using the hydrosilylation method [116]. Different types of monomers were studied with
different graphene surfaces in air and water mediums (Figure 6) [114,115]. Among the
different monomers, nitrogen-substituent monomers such as vinyl pyridine showed higher
adhesion values with the graphene surface. This is because nitrogen lone-pair electrons inter-
act with the graphene surface along with π–π interactions. Thus, graphene-philic monomers
(monomers that showed high adhesion values) were chosen from the AFM studies.
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The polymers poly(4-vinyl pyridine)-block-poly(ethylene oxide) (PVP-b-PEG) and
poly(2,2,2-trifluoroethyl methacrylate)-block-poly(4-vinyl pyridine) (PTFEMA-b-PVP) were
prepared using chosen monomers (VP showed high adhesion value). Then the prepared
polymers (PVP-b-PEG and PTFEMA-b-PVP) were used to disperse graphene in alcoholic
and aqueous mediums. As well as dispersing graphene, using these polymers, graphite
was partially exfoliated into few-layered graphene [113,117–119]. Figure 7 reveals the stable
graphene dispersion in alcoholic and aqueous mediums using PVP-b-PEO and PTFEMA-
b-PVP. The best solvents among EtOH, NMP, DCM, and THF to disperse graphite using
homopolymers and block copolymer-Poly(N-vinyl carbazole) (PVK), poly(4-vinylpyridine)
(PVP), and PVK-b-PVP were investigated. DCM was found to be a good solvent to disperse
graphene using PVK-b-PVP polymer [120]. Graphite was partially exfoliated and dispersed
in water by in situ polymerization on the graphene surface [121].
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PVPyr with a molecular weight of 10,000 g/mol was used to disperse expanded
graphite in different solvents DMF, DMSO, NMP, water, EtOH, and MeOH [122]. PVPyr
disperses pretreated graphene by autoclave treatment in different solvents MeOH, EtOH,
isopropanol, DMF, DMSO, and NMP [123]. High graphene concentrations of about
3.4 mg/mL were obtained using hyperbranched polyethylene (HBPE) by concentrating
the chloroform solvent [124]. The GO surface was well dispersed by in situ polymeriza-
tion of cyclic butylene terephthalate in solution-free conditions [53]. Stable dispersion of
graphene nanoplatelets with a natural polymer of gum Arabic has been reported [125].
GO was dispersed in THF using polystyrene by magnetic stirring, bath sonication, and
shear mixing [126]. The presence of colloidal polymer particles at the surfaces of GO and
rGO restricts the re-aggregation or restacking of GO and rGO layers [127]. GO dispersed
in organic solvents NMP and DMF using polyacrylonitrile and poly(methyl methacry-
late) [61]. Stable aqueous rGO dispersions were prepared using conducting polymer
poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) [128]. The use
of conducting polymers assists the use of graphene composites with PEDOT:PSS in en-
ergy storage applications. Table 3 shows the information about graphene concentrations
obtained using different polymers.
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Table 3. A comparison table showing dispersion methods, graphene sources, polymers, and graphene concentration values.

S. No Dispersion Method Graphene Source Polymer Graphene
Concentration References

1. Supercritical CO2 and
Sonication Graphite PTFEMA-b-PVP 0.16–0.30 mg/mL [117]

2. Sonication Graphite PVP-b-PEO 2.6 mg/mL [113]

3. Sonication Graphite PEO-b-PVP 1.7 mg/mL [119]

5. Sonication rGO PEO-b-PVP 1.8 mg/mL [119]

6. Sonication Graphite PTFEMA-b-PVP 0.26–0.38 mg/mL [117]

7. Sonication Graphite Organosilane 0.66–8.0 mg/mL [129]

8. Sonication Graphite Polyacryclic acid (PAA) 0.013 mg/mL [130]

9. Tip Sonication Expanded
Graphite PVPyr 0.4–0.72 mg/mL [122]

10. Autoclave and sonication Graphite PVPyr 0.1 mg/mL [123]

11. Heating GO PEDOT:PSS 1.0 mg/mL [128]

12. Sonication Graphite Cellulose nanocrystal
(CNCs) 0.3–1.08 mg/mL [131]

13. Sonication Graphite HBPE in THF 0.016–0.045 mg/mL [124]

14. Sonication Graphite HBPE in chloroform 0.025–0.18 mg/mL [124]

Sonication refers to bath sonication.

5. Graphene–Polymer Dispersion/Composites Characterization

Graphene–polymer composites can be studied by several techniques such as trans-
mission electron microscope (TEM), scanning electron microscope (SEM), atomic force
microscope (AFM), X-ray diffraction (XRD), Raman spectroscopy, Turbiscan, and thermo-
gravimetric analyses (TGA). Figure 8 depicts the representative SEM, TEM, AFM, Raman,
and XRD study results of graphene–polymer composites.

Briefly, TEM and SEM analyses reveal the morphology and size of graphene sheets,
and the elements that are present on graphene sheets by elemental mapping. In addition,
TEM and SEM studies will suggest the thickness of graphene sheets. As with TEM and SEM
analyses, AFM can be used to study the morphology of graphene–polymer composites. The
height profile will provide the thickness of graphene sheet from which one can calculate
the number of graphene layers. Graphene exfoliated using a mixture of water and alcohol
showed graphene sheets with lateral dimensions between several hundred nanometers
and micrometers from AFM and TEM measurements. Cross-sections of graphene sheets
by TEM showed step heights of ~0.9 and ~0.57 nm suggesting the presence of mono- and
bi-layered graphene sheets, respectively [64]. Typical graphene symmetry and atomic
ordering of carbon atoms can be observed from selected area electron diffraction–TEM
measurements. Further, 75% of flakes of graphene showed a thickness of about 0.9± 0.2 nm,
and 25% of less than about 3.5 nm thick revealing single- and few-layered graphene sheets,
respectively [131]. A Cryo-fractured surface of graphene composites reveals the disordered
structure of GO which is attributed to functional groups on the surface and edges [132].
The increase in thickness of the modified graphene surface is due to the presence of
molecules/polymers on the graphene surface [103]. In graphene/PVP composites, folded
graphene layers from TEM images suggest the presence of graphene two to four layers
thick. [122]. The structural aspects can be studied using XRD analysis; a typical pristine
graphite peak appearing at 26.5◦ with an interlayer distance of about 0.33 nm. However,
the crystalline nature of graphene will be amorphous in rGO/GO and observed as a broad
peak around 25◦/9.5◦, respectively [114,132]. A decrease in the interlayer distance for
graphene composites can be attributed to the presence of excess polymers/surfactants on
the graphene surface [113]. Composites prepared by changing the temperature showed
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an average thickness of about 1.0/1.4 nm which is close to the thickness of single-layered
graphene [104]. Raman spectroscopy is a nondestructive powerful analysis for graphene
materials. Raman studies will give structural information on graphene materials [132–134].
The G band (~1575 cm−1) corresponds to the sp2 graphitic carbon. The D band (~1355 cm−1)
is mainly generated due to the breathing mode of aromatic rings from the backbone and the
band around 2700 cm−1 is referred to as a 2D band, a second order of the D band. Broader
G and D bands reflect higher disorder in the graphitic nature. The D band will be barely
visible and the 2D band will be sharp in single-layer graphene [114,135,136]. Compared to
graphite, in graphene after exfoliation, the G band shifts to a higher position while the 2D
band shifts to a lower position [64]. The shift in the G band is important for the exfoliation
of graphite into graphene in graphene–PVP composites [122]. The broad G band reveals
the defects of GO-ethylene methyl acrylate (EMA) composite which can be attributed to
functional groups on the GO surface [132]. Generally, ID/IG will be 0.3 for pristine graphene,
an increase in this value for composites suggests defects on edge or base [102]. A decrease
in ID/IG values for GO-SDBS/SDS composites compared to GO suggests a decrease in
defects [103]. In order to study the dispersion stability, the multiple light scattering method
using Turbiscan Lab instruments has been used [119,137,138]. This method provides
the information about the stable dispersions in the upper, middle, and bottom layers of
dispersions. The method further reveals any instability such as flocculation, aggregation,
or migration of graphene dispersions. An increase in backscattered light intensity with
time is attributed to aggregation in the dispersion. TGA is used to characterize the thermal
properties of polymers and carbon-based materials. Degradation of polymers takes place
step-by-step which helps show the thermal decomposition of the polymer composition
as well as giving information about the amount of graphene and polymer present in
graphene–polymer composites [139–141].
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6. Graphene–Polymer Composites and Their Properties

Graphene–polymer composites improve the properties of pristine polymer mate-
rials [142–144]. Mainly, the mechanical, electrical, and thermal properties of graphene
are increased with polymer inclusion. Graphene–polymer composites include hydrogels,
nanofiber, thin films, sponges, hydrocolloids, foams, bandages, and dermal patches. In
order to prepare these materials, stable graphene dispersion is a key factor. PAA and
chitosan (CS) were dissolved first and then mixed with GO dispersion to prepare porous
CS-PAA-GO composites [145]. Thermoresponsive polymer poly(N-isopropyl acrylamide)
(PNIPAM) was used to prepare a hydrogel with rGO without initiating pair using hectorite
clay (Figure 9) [146]. 3D porous network structures were prepared using polyaniline (PANI)
with GO sheets [147]. The viscoelastic properties of GO are improved by the addition
of polyvinylalcohol (PVA) which is due to the hydrogen bonding between GO and PVA
chains [148]. The conductivity of rGO-PNIPAM–hectorite clay showed high conductivity of
about 6.5× 10−3 S/cm compared to rGO alone [146]. pH- and temperature-responsive semi-
interpenetrating hydrogels are reported using GO as a cross linker, NIPAM as a monomer,
and sodium alginate as an additive [149]. Nanofibers prepared using graphene–polymer
composites that are produced by electrospinning have a high specific area and exhibit im-
proved electronic properties over graphene [150]. 1D single-walled carbon nanotubes and
2D graphene pieces were used along with polymers to produce nanofibers with excellent
microstructural and electrical properties (Figure 9) [151]. Graphene–PVA, nanofibers with
hundreds of nm and lengths in tens of mm with excellent uniformity and surface smooth-
ness were prepared with liquid-phase exfoliated graphene flakes [152]. Freestanding
nanofibers have been prepared using poly(vinyl acetate)–graphene by the electrospinning
method [153]. GO modified with cetyltrimethylammonium chloride surfactant is used to
improve the dispersity of GO in polyacrylonitrile solution [154]. Graphene-foams play a
great role in solving the problem of restacking graphene sheets in composites [49,155,156].
Skin-mounted patches have been prepared using graphene–polymer composites [157,158].
GO with curcumin has been specially designed to work on infected wounds (Figure 9) [159].
The effect of mechanical properties was studied with graphene dispersions/graphene–
epoxy composites. The highly dispersed rGO showed higher glass transition, and improved
quasi-static fracture toughness were measured [160]. Compared to the pristine bio-epoxy,
graphene–epoxy composites showed high thermal stability and a slight increase in the
glass transition temperature [161]. Graphene platelets in polystyrene were prepared by
two methods, a one-step process (solution compounding) and a two-step process (solution
compounding and subsequent melt compounding). Glass transition temperature increased
for composites prepared using the two-step process. Thermal conductivity was enhanced
for composites, nonlinear and linear behavior were observed for the composite with in-
creased graphene content [162]. GO–polystyrene composites were prepared by sonication
for 30/60 min and shear mixing for 60/20 min and the glass transition temperature was im-
proved for a longer reaction time. Furthermore, use of THF enhanced the thermal and ther-
momechanical properties of the composites [126]. The effects of pre- and post-dispersion
of graphene nanoplatelet–Triton X-100 nanocomposites on electro- and thermo-mechanical
properties were reported. Post dispersion treatment showed improvements in electrical
and thermal properties of the composites compared to pre dispersion [163]. Dispersion,
re-aggregation, and mechanical properties of graphene nanoplatelets in epoxy/hardener
were studied. Results showed that temperature and viscosity affect the dispersion of
graphene greatly. Mechanical properties are enhanced for uniform graphene epoxy com-
posites over the pristine epoxy [164]. Different sized GO (170 to 2060 nm) was utilized for
enhancing the dispersion stability of carbon nanotubes. Larger-sized graphene enhances
the electrical and mechanical properties [165]. Bio-based unsaturated polyester–GO com-
posites showed excellent mechanical properties with, tensile strength, modulus, and Tg of
43.2 MPa, 2.62 GPa, and 105 ◦C, respectively [166]. Graphene–CNCs composites showed
ultimate thermal conductivity, bursting strength, and tensile strength as 0.136 W/mK,
1.514 MPa, and 25.8 MPa, respectively [167]. Cellulose fiber/PVA/GO composites showed
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anisotropic microstructures with low densities of about 17.95 mg/cm3, porosity of about
98.8%, a contact angle 142◦ revealing the hydrophobicity of the surface, and adsorption
capacity increase to 96 times its own weight [168]. Moreover, the composites showed high
strength with compressive stress about 80% with strain 0.22 MPa. Graphene concentrations
in poly(vinylidene fluoride-co-hexafluoropropylene)–graphene composites are responsible
for the increases in conductivities and elasticity values [169]. Ultra-high in-plane electri-
cal conductivity, in-plane thermal conductivity, and tensile strength were measured at
~4500 S/m, ~26 W/m/K, and ~50 MPa, respectively. Nanofibers of poly(D, L-lactic-co-
glycolic acid) with GO enhance the hydrophilicity because of the functional groups in
GO, thus the prepared nanocomposites were proposed for biomedical applications such
as scaffolds [170]. Aniline was polymerized using surfactant (CTAB) in the presence of
graphene resulting in G-PANI composite. This composite showed high conductivity which
was attributed to the charge carrier by π–π interactions between the PANI and graphene.
A maximum power density of about 0.01795 Wm−2 was attained [171]. Li and coworkers
constructed a battery with polypyrene (PPy) fiber–rGO which delivered an energy density
of 264 mWh g−1 [172]. A diameter-controlled fiber using graphene/PPy showed high
capacitive performance [173]. Homogenous dispersion of polyamide 6-functionalized
graphene nanocomposite in caprolactam was prepared by Friedel–Crafts acylation. This
composite showed significant improvement in the mechanical properties; a 29% increase of
tensile strength was reached with 0.1 wt% of graphene nanosheets [174]. The composite
(GO–EMA) showed an increase in tensile strength from 18% to 63% compared to pure
EMA [132].
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7. Applications

Many applications of polymer–graphene composites exist, however, only applications
such as 3D printing, scaffolds, coating, and supercapacitor are discussed where graphene
dispersions are directly utilized (Figure 10).
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Figure 10. (a) Scheme to prepare 3DG ink using graphene dispersion for energy storage and tissue and organ engineering
applications, reprinted with permission from [175]. (b) Schematic diagram of coating on a substrate using graphene
dispersion. (c) A graphic illustration of the preparation of GO–PEDOT/PSS film from Go–PEDOT/PSS dispersion and
structure assembly of supercapacitor device reproduced from [176].

7.1. 3D Printing

3D printing has developed a method of fabricating complex structures that cannot be
reached by other methods [177]. 3D printing can be achieved using photopolymerization
(stereolithography, material jetting, and two-photon polymerization), extrusion (fused depo-
sition modeling, robocasting), powder-based (selective/selective inhibition laser sintering,
selective laser melting, binder jetting, and electron beam melting), laminated object manufac-
turing, and direct ink techniques [177–179]. Graphene–polymer for 3D printing has attracted
great attention in biomedical applications, tissue engineering [180], and scaffolds [180–184].
Bioprinting has two types, the pre-seeding or direct method, and the post-seeding or indirect
method [185]. Graphene dispersions were directly used in 3D computer-designed fashions
in printing applications [186]. Graphene inks prepared using polylactide-co-glycolide were
used for printing of high-content graphene scaffolds [175]. This graphene scaffold was used
for electronic and biomedical applications. GO was employed to improve the mechanical
strength of polyetheretherketone (PEEK) with polyvinyl alcohol (PVA) by π–π interactions
with the aromatic rings in PEEK and hydrogen bonds between the functional groups in GO
and hydroxyl groups in PVA [187]. Thus GO with PEEk/PVA is used in 3D laser scaffold
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printing for bone regeneration. Thermally reduced GO with polycaprolactone (PCL) has
been used in tissue engineering applications [180]. GO–PCL mixture has been used in
printing scaffolds as a substituent for bone tissue engineering. The prepared scaffold was
favorable for cell proliferation and differentiation [182]. Using the injection process, 3D
scaffolds in the form of sticks were prepared with PCL–graphene nanoplatelets. These
sticks were proposed as nasal cartilage [183]. Polylactic acid with GO was used to prepare
scaffolds and the prepared scaffolds were proposed for bone formation applications [184]. A
graphene–polymer resin octet-truss lattice was used for 3D printing using stereolithography
techniques [188]. Asymmetrically aligned structure of graphene thermoplastic polyurethane
(PU) composites was utilized for 3D printing [189]. Graphene–polybutylene terephthalate
composites have also been used for 3D printing [190].

7.2. Coating

Graphene coating applications have multiple advantages such as increasing the resis-
tance to oxygen and water, improving electrical and thermal conductivities, increasing the
hydrophobicity on the surface, and preventing scratching and abrasion. However, the pres-
ence of the polymer along with graphene helps their use in coating applications [191–195].
Graphene dispersion in DMF prepared by the jet cavitation method has been used for
coating applications, to coat Kapton which enhances the atomic oxygen erosion resis-
tance [196]. Waterborne polymers with graphene resulted in stable dispersions and are
used for coating applications [197]. Graphene nanoplatelet dispersions with polytetrafluo-
roethylene improve the friction coefficient, wear rate, and adhesion to the substrate [198].
Waterborne graphene dispersions with lignin–OH is reported that this lignin–OH on
graphene surface enhances the anticorrosive properties [199]. rGO has been dispersed
in waterborne polyesteramide and used as an anti-corrosive coating material for carbon
steel strips [200]. Graphene modified with 1,10-phenanthroline-5-amine helps to detect
the corrosion of the steel at an early stage by forming a red complex with Fe2+ [201].
Graphene with PU reduces the corrosion rate to 1.81 × 10−5 mm per year [202]. Graphene–
poly(4-vinylpyridine-co-butyl methacrylate) enhances the corrosion resistance of copper
by electrophoretic deposition [203]. The anticorrosion properties are enhanced using GO-3-
methacryloxypropyltrimethoxysilane/urushiol-formaldehyde polymer coatings [204].

7.3. Supercapacitors

Polymer–graphene composites are widely used in energy storage applications. Poly-
mers play an important role as binders in preparing electrodes. However, the usual binders
such as polyvinylidene fluoride and polytetrafluoroethylene are not conductive which can
decrease the energy density of supercapacitors [205]. Thus, conduction polymers such
as polypyrrole, PANI, and poly(3,4-ethylenedioxythiophene) (PEDOT) have been used
along with binders to increase the energy density of supercapacitors [206]. This increases
the interest in preparing graphene-based electrodes for energy applications [111,207,208].
An activated water-based graphene dispersion with graphene concentration of about
20 mg/mL used as an electrode provided a specific capacitance value of 180 F/g at a
specific current of 1 A/g [209]. High quality water-dispersed graphene with dopamine
was used for energy storage applications [210]. rGO with PANI is used as an electrode
material in supercapacitors [211]. Liquid crystalline GO with PEDOT:PSS dispersion was
used for the preparation of binder-free supercapacitor electrodes [212]. Using an rGO-
PEDOT/PSS dispersion, a highly flexible, stretchable, and conductive film was prepared
and a supercapacitor device was constructed by rolling the film [176]. 3D graphene-based
composite hydrogel materials have been used as flexible supercapacitor electrodes. This is
because of the outstanding properties of graphene [213]. A PANI/GO composite showed
a large specific capacity of 648 F g−1 at a current density of 0.5 A g−1 [147,213]. Hydro-
gels using conducting polymers PANI, polypyrrole, and poly(3,4-ethylenedioxythiophene)
with graphene are used as hydrogel electrodes. The PANI nanofiber hydrogels exhibited
capacitance of up to 492 F g−1 at a current density of 1 A g−1.
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7.4. Other Applications

Graphene–polymer can be used to prepare thin films which find applications such
as sensors, shielding, field-effect transistors, photodetectors, and gas separation mem-
branes [214]. A thin film was prepared using GO with poly[2,5-bis(3-tetradecylthiophen-2-
yl)thieno[3,2-b]thiophene] for an NO2 sensor [215]. Graphene nanosheets were dispersed
in PU and poly(vinylidene-hexafluoropropylene) to prepare a free-standing conduction
thin film which was used for electromagnetic (EMI) inference [216,217]. Thin films from
graphene sheets and polystyrene are used for electronics applications [218]. The prepared
ultra-smooth surfaces of glassy graphene thin films are used for flexible and transparent
circuits [219]. Thin films of PU with graphene affect the recovery behavior of nanocompos-
ites [220]. rGO/CNC sponges were prepared by reducing GO with vitamin C and CNC
was used as a stabilizing agent. rGO/CNC has been used for the removal of methylene
blue (MB) from water showing an adsorption capacity of 270% [221]. An rGO with PU
sponge was used to detect multiple forms of mechanical deformations including tensile
strain, impact, bending, vibrating, and twisting (Figure 11) [222]. PU sponges with GO
suspension are used as high-performance EMI interference shielding materials. The high
shielding effectiveness of 969–1578 dB cm2 g−1 was observed using a GO/PU sponge [223].
Graphene embedded chitosan, hydroxypropyl cellulose, and polyethylene oxide were
used as wound dressings with enhanced antibacterial properties [224]. PEDOT: PSS coated
graphene foams have been developed for EMI shielding with a shielding effectiveness of
91.9 dB and specific shielding effectiveness of 3124 dB cm3 g-1 [225]. Monolayer graphene–
polymer has been used for dressing wounds [226]. A smart bandage material was prepared
using graphene, CS, and glycerol. These cotton patches without weaving were reported
as stable in the presence of an aqueous medium and are highly flexible with excellent me-
chanical strength (Figure 11) [159]. Ondansetron (ODS) loaded Kapton/rGO was reported
as a flexible polyimide-based patch, this patch showed high drug delivery performance on
irradiation at 980 nm for 10 min. The release of ODS takes place upon the photothermal
heating effect [157]. Electrochemical patches of rGO coated gold nanoholes on Kapton was
used for transdermal delivery of insulin [158]. In addition microneedle array patches have
been used for the transdermal delivery [227–229].
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8. Conclusions and Future Perspectives

Graphene is used in the multidisciplinary fields and many reviews are available
regarding graphene-based composites for various applications. However, there is a lack
of information on the preparation of stable graphene dispersions. The preparation of
stable graphene dispersions is still under investigation. In this review, the preparation
of stable graphene dispersions in different solvents using different graphene sources was
presented. The factors to be considered for the preparation of stable graphene dispersion
were discussed. For preparing stable graphene dispersion using solvents, solvent’s surface
tension and solubility parameters should match with graphene’s surface tension (40 mJ/m2)
and solubility parameters (Hildebrand solubility parameter of 23 Mpa1/2 and Hansen
parameters of δD = 18.0 MPa1/2, δP = 9.3 MPa1/2, δH = 7.7 MPa1/2). Surfactants are
added to prepare stable graphene dispersions if the solvent’s surface tension and solubility
parameters do not match with graphene’s parameters. In stable graphene dispersions
using surfactants, electrostatic attraction or intermolecular force between surfactants and
graphene surfaces are involved. Graphene with surfactants restricts the applications,
thus combining polymers with graphene opens the way for the involvement of graphene
dispersions in various applications. To prepare stable graphene dispersion using polymers,
the interaction or affinity between polymer molecules and graphene surface should be
considered. Thus, in this review adhesion forces between different types of monomers
and graphene surfaces were included. The graphene dispersions which are directly used
for applications were briefly discussed. This review further opens the way for future
perspectives on the factors to be considered while choosing, solvents, surfactants, or
polymers to stabilize graphene surfaces. However, further studies are to be concentrated
on the investigation of the interaction between stabilizing molecules and graphene surfaces.
If we know the interaction between stabilizing molecules and graphene surfaces, we
can tune the graphene surfaces with an appropriate stabilizer for particular applications.
Therefore, understanding the interactions is very important and this information is lacking.
With this understanding, several milestones can be achieved, which will help to design
and develop polymers, and molecules to prepare stable graphene dispersions with high
graphene concentrations.
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