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Carnosine is a dipeptide expressed in both the central nervous system and periphery.
Several biological functions have been attributed to carnosine, including as an anti-
inflammatory and antioxidant agent, and as a modulator of mitochondrial metabolism.
Some of these mechanisms have been implicated in the pathophysiology of coronavirus
disease-2019 (COVID-19). COVID-19 is caused by severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2). The clinical manifestation and recovery time for COVID-19
are variable. Some patients are severely affected by SARS-CoV-2 infection and may
experience respiratory failure, thromboembolic disease, neurological symptoms, kidney
damage, acute pancreatitis, and even death. COVID-19 patients with comorbidities,
including diabetes, are at higher risk of death. Mechanisms underlying the dysfunction
of the afflicted organs in COVID-19 patients have been discussed, the most common
being the so-called cytokine storm. Given the biological effects attributed to carnosine,
adjuvant therapy with this dipeptide could be considered as supportive treatment in
patients with either COVID-19 or long COVID.

Keywords: carnosine, diabetes, long COVID, SARS-CoV-2 infection, anti-glycating agent

INTRODUCTION

In 2019 the coronavirus disease-2019 (COVID-19) emerged in China (Huang et al., 2020).
COVID-19 is caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2; Al-
Kuraishy and Al-Gareeb, 2020). SARS-CoV-2 has quickly spread around the world with devastating
consequences (Bedford et al., 2020). The clinical manifestation and recovery time for COVID-19
are variable (Wen et al., 2020; Wiersinga et al., 2020). Most infected patients remain asymptomatic
or present mild symptoms, including a flu-like condition consisting of nasal congestion, loss of
taste and smell, fatigue, and fever (Wiersinga et al., 2020; Zhou et al., 2020). However, some
patients are more severely affected by SARS-CoV-2 infection and may experience respiratory
failure, thromboembolic disease, neurological symptoms, kidney damage, acute pancreatitis, and
even death (Piroth et al., 2020; Wiersinga et al., 2020; Ye et al., 2020). Mechanisms underlying the
dysfunction of the afflicted organs in COVID-19 patients have been discussed, the most common
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being the so-called cytokine storm include elevated levels of
tumor necrosis factor-alpha (TNF-α) and interleukin 6 (Al-
Kuraishy and Al-Gareeb, 2020). At the time of discharge from
intensive care units, cytokines levels of COVID-19 patients have
normally returned to the physiological range (Rodriguez et al.,
2020; Wen et al., 2020). Researchers and health professionals
are under pressure to reuse, identify and develop new drugs
for this global emergency (Sahebnasagh et al., 2020). Based on
the biological effects attributed to carnosine, it is suggested this
dipeptide can be considered a palliative therapeutic with respect
to COVID-19 and long COVID.

LONG-TERM COMPLICATIONS

The number of patients recovered from SARS-CoV-2 infection
with diseases associated with long COVID is unprecedented
and unpredictable (Rando et al., 2021). Long COVID symptoms
include physical pain, fatigue, dyspnea, gastrointestinal
symptoms, headaches, and memory and psychological
disturbances (Mahase, 2020; Mandal et al., 2020; Yelin et al.,
2020). These symptoms can evolve over weeks/months following
SARS-CoV-2 infection (Mahase, 2020). Whilst some patients
report residual COVID-19 symptoms, others may develop new
symptoms or new diseases (such as diabetes) long after the initial
infection (Cirulli et al., 2020; Korompoki et al., 2021).

CARNOSINE AND ITS METABOLISM

Carnosine is a dipeptide composed of β-alanine and L-histidine
(Boldyrev et al., 2013). It is expressed in both the central
nervous system (CNS) and periphery including skeletal muscle
(Nagai and Suda, 1998; Bonfanti et al., 1999; Boldyrev et al.,
2013). Carnosine is synthesized by carnosine synthase [EC
6.3.2.11], and its hydrolysis is catalyzed by serum carnosinase
(CN1) [EC 3.4.13.20] and/or cytosolic carnosinase (CN2) [EC
3.4.13.3] (Lenney et al., 1982; Lenney, 1990; Teufel et al.,
2003). Effective transport of this dipeptide in different cell types
occurs via peptide transporter 2 (PepT 2; Xiang et al., 2006;
Lopachev et al., 2021).

BIOLOGICAL ACTIONS OF CARNOSINE

Recent studies have revealed that carnosine is present in
human erythrocytes and that acetyl-carnosine (resistant to serum
carnosine attack) is present in human serum, the concentration
of each decrease with age (Chaleckis et al., 2016). Other
studies have revealed that very low levels of acetyl-carnosine
are strongly associated with human frailty (Kameda et al.,
2020), and the blood of patient suffering from age-related
macular degeneration contained very low amounts of carnosine
(Chao de la Barca et al., 2020). So far, several biological
functions have been attributed to carnosine, including as an anti-
inflammatory (Fresta et al., 2020) and antioxidant (Jain et al.,
2020) agent, and as a modulator of mitochondrial metabolism
(Macarini et al., 2014; Shen et al., 2014; Macedo et al., 2016).

Supported by the myriad of effects reported, carnosine has
been suggested to decelerate aging symptoms (Hipkiss and
Brownson, 2000), as well as for the treatment of other
diseases, including cardiovascular disease (Menon et al., 2021),
neurodegenerative diseases (Caruso et al., 2019), and diabetes
(Houjeghani et al., 2018). The latter is mainly supported by
its hypoglycemic (Barca et al., 2018) and anti-glycation effects
(Pepper et al., 2010; Chilukuri et al., 2018). Additionally,
carnosine’s ability to partially suppress glycolysis in a variety
of cell types from yeast to tumor cells (Renner et al., 2010;
Horii et al., 2012; Hipkiss and Gaunitz, 2014) [perhaps by
altering mRNA translation (Son et al., 2008)] may also help
to explain the dipeptide’s beneficial effects toward SARS-Cov-2
viral infectivity (Hipkiss, 2020). Indeed, such infection usually
induces an upregulation of glycolysis in the infected tissue
(Bojkova et al., 2020). While carnosine might exert therapeutic
activity toward COVID-19 virus infection (Lopachev et al., 2020;
Saadah et al., 2020; Feehan et al., 2021), the possibility that the
dipeptide could be protective toward long COVID has not been
thoroughly examined.

CARNOSINE AND DIABETES

The possible application of carnosine for the treatment of
diabetes mellitus has been previously discussed (Hipkiss, 2017).
Carnosine supplementation mitigates the elevation of glucose,
triglycerides, and TNF-α levels in patients with type-2 diabetes
(Houjeghani et al., 2018), and/or in overweight or obese pre-
diabetic patients (Liu et al., 2015; de Courten et al., 2016). In
this scenario, carnosine was shown to suppress glycolysis in
different cell types (Hipkiss, 2011). Carnosine also enhances
the clearance of a variety of deleterious aldehydes, such as
formaldehyde, methylglyoxal and the glycolytic intermediates
dihydroxyacetone phosphate and glyceraldehyde-3-phosphate.
All of these reactive aldehydes can modify (glycate) proteins,
including mitochondrial proteins (Colzani et al., 2016; Hipkiss
et al., 2016; Hipkiss, 2017). Methylglyoxal is responsible for
many macromolecular modifications associated with secondary
complications of type-2 diabetes, for instance enhanced protein
glycation (Hipkiss et al., 2016).

DIABETIC PATIENTS AT INCREASED
RISK OF WORSE CORONAVIRUS
DISEASE-2019 SYMPTOMS

Coronavirus disease-2019 patients with comorbidities are at
high risk of death (Piroth et al., 2020). The main complicating
conditions include hypertension, cardiovascular disease, obesity,
chronic obstructive pulmonary disease, and diabetes (Hendren
et al., 2020; Wu and McGoogan, 2020). Diabetes is linked to
metabolic and macro/microvascular complications that increase
morbidity and mortality in different viral infections (Rasheed
et al., 2019). SARS-CoV-2 entry into the target cell is facilitated
by the connection from the spike protein to a cellular
receptor, attaching the virus to the surface of infected cells
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FIGURE 1 | Potential effects of carnosine/acetyl-carnosine on different organs susceptible to COVID and long COVID complications (created with BioRender.com).

(Hoffmann et al., 2020). Cellular receptors known to be involved
in SARS-CoV-2 infection are the angiotensin-converting enzyme
2 (ACE2) and the transmembrane serine protease (TMPRSS2
and TMPRSS4; Zhang et al., 2003; Hoffmann et al., 2020).
Multiple organs are susceptible to SARS-CoV-2 infection,
such as the lungs, digestive tract, kidneys, heart, brain, and
pancreas (Gavriatopoulou et al., 2020; Puelles et al., 2020).
ACE2 is upregulated in patients with cardiovascular disease,
hypertension, and diabetes (Pollard et al., 2020). Diabetic patients
are at higher risk for the cytokine storm secondary to the pro-
inflammatory state triggered by COVID-19 (Apicella et al., 2020),
as well as of diabetic ketoacidosis and mortality (Lim et al., 2020).
The cytokine storm also leads to peripheral insulin resistance
(Kameda et al., 2020) and disrupts pancreatic β-cells functioning,
inhibiting insulin secretion (Mehta et al., 2020). The pancreatic
damage and hyperglycemia are further stimulated by the direct
invasion of SARS-CoV-2 to the pancreas (Zhang et al., 2003).
Taken together, these effects contribute to the development of
hyperglycemia in COVID-19 patients (Mehta et al., 2020) and
potentially induce type 1 diabetes during the long COVID period
(Lim et al., 2020). While we strive to understand how COVID-
19 induces diabetes or aggravates the existing disease, it is
mandatory to maintain long-term follow-up of these patients.

RECOVERED PATIENTS AT INCREASED
RISK OF DEVELOPING DIABETES

The term “long COVID” refers to patients with a post-acute
COVID-19 (defined as the presence of symptoms 3+ weeks

from the onset of symptoms) or chronic COVID-19 (symptoms
12+ weeks; Rubin, 2020; Korompoki et al., 2021). Long-
term hyperglycemia in COVID-19 induces oxidative stress,
contributing to the development of insulin resistance and
dysregulation of pancreatic β-cells (Abdul-Hadi et al., 2020).
Many cases of pancreatitis have been reported in COVID-19
patients (Anand et al., 2020; Ghosh et al., 2020; Wang et al.,
2020). Pancreatic damage and hyperglycemia may evolve over
weeks or months following SARS-CoV-2 infection (Mahase,
2020). In this scenario, reports of late diabetes (and also other
complications) in patients recovered from SARS-CoV-2 infection
have recently emerged (Mahase, 2020; Morieri et al., 2020;
Korompoki et al., 2021).

CARNOSINE AND OTHER
CORONAVIRUS DISEASE-2019
COMPLICATIONS

Carnosine was shown to lower the affinity between ACE2 and
the spike protein from SARS-CoV-2 (Saadah et al., 2020). So
far, no further actions of carnosine on this mechanism have
been reported, nor on the interaction of the virus with host
cells, neither on viral lifespan. However, given its antioxidant
and anti-inflammatory properties (Fresta et al., 2020; Ooi et al.,
2020; Scuto et al., 2020), carnosine may attenuate the cytokine
storm in COVID-19 patients. Carnosine could also restrain other
COVID-19 complications.

A hypercoagulatory state may contribute to an increased
mortality in COVID-19 (Mucha et al., 2020). This dysregulated

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 898735

http://BioRender.com
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-898735 June 16, 2022 Time: 16:5 # 4

Diniz et al. Carnosine and Long COVID

coagulation can be induced by methylglyoxal, which causes
post-synthetic protein glycation in diabetics, including the
glycation of the anticoagulants anti-thrombin III (Jacobson et al.,
2014) and plasminogen (Gugliucci, 2003). Carnosine can inhibit
protein glycation and possibly eliminate methylglyoxal, thereby
suppressing the anticoagulant modification induced by this
reactive carbonyl (Hipkiss, 2020).

The elderly individuals over 50 years old are particularly
susceptible to worse complications (e.g., severe pneumonia)
and death following coronavirus infections (Jartti et al., 2011),
which is also true for COVID-19 (Daoust, 2020). The immune
system is impaired during the aging process, rendering the
elderly more susceptible to SARS-CoV-2 infection (Wu and
McGoogan, 2020). In this context, carnosine’s putative anti-
aging properties delayed senescence, lifespan extension, and
rejuvenation of cultured human and rodent cells (McFarland
and Holliday, 1994; Gallant et al., 2000; Yuneva et al., 2002;
Stvolinsky et al., 2010; Boldyrev et al., 2013; Hipkiss et al., 2016)
suggest that the dipeptide could be explored. Cellular aging and
cell senescence are associated with telomere shortening (Ishikawa
et al., 2016) and increases of transforming growth factor-β (TGF-
β) signaling and Smad3 expression (Doyle et al., 2010; Baugé
et al., 2013). In cultured human cells, carnosine slows telomeres
shortening (Shao et al., 2004) and suppresses TGF-β production
and signaling, possibly involving inhibition of the Smad2/3
pathway (Köppel et al., 2011). Carnosine can up-regulate
coenzyme Q10 synthesis (Schwank-Xu et al., 2021), thereby
stimulating mitochondrial activity and contributing to a less
aged cellular physiological state. Since CN1 expression increases
throughout development (Lenney et al., 1982), a progressive
decline in serum carnosine concentrations is observed in
elderly humans (Stuerenburg and Kunze, 1999; Tallon et al.,
2007) and a correlation between increased CN1 expression
and decreased carnosine levels in specific rat brain regions
has been detected (Balion et al., 2007). To date, there is no
report indicating alterations on carnosine metabolism enzymes
elicited by SARS-CoV-2. The brain is an important organ in
the clinical presentation of COVID-19. Long COVID patients
may also present long lasting neurological symptoms, including
the brain fog, hallucinations, double vision, numbness in their
limbs or face, disorientation and difficulty concentrating. These
symptoms may persist even after 5 months of SARS-CoV-
2 infection (Karuppan et al., 2021). Over the last decades,
carnosine has been widely suggested as a contributor to
brain health (Hipkiss, 2007; Boldyrev et al., 2013; Hipkiss
et al., 2016; Kawahara et al., 2018, 2020; Caruso et al., 2019;
Schön et al., 2019).

ADMINISTRATION OF
CARNOSINE/ACETYL-CARNOSINE

Dietary administration of carnosine is hampered by the presence
of serum carnosinase in humans. Previous suggestions have
included the nasal route especially as this could raise carnosine
levels in the olfactory bulb and so perhaps alleviate cognitive
impairment, anxiety and long COVID-associated brain fog (Ma

and Vervoort, 2020). The presence of the carnosine in the
airways may also locally suppress infection. There are no reported
studies on the possible efficacy of dietary acetyl-carnosine
toward almost any age-related condition, with the exception
of lenticular cataracts where the direct application of acetyl-
carnosine in solution has been proposed as a therapeutic agent
(Boldyrev et al., 2013).

DISCUSSION

The COVID-19 pandemics is a challenging scenario for the
global population, researchers, and front-line health professionals
(Sahebnasagh et al., 2020). The molecular and cellular bases
of COVID-19 are heterogeneous and there is an urge for
its complete elucidation. Due to the lack of complete SARS-
CoV-2 immunity and of comprehensive vaccination strategy,
the unpredictable clinical results of COVID-19 are concerning
(Bong et al., 2020; Ma et al., 2020; Ma and Vervoort, 2020).
Long COVID is a condition that affects a wide range of
patients (Rubin, 2020), which is severely challenging the entire
healthcare system. Nevertheless, immunized patients are less
likely to develop long COVID compared to the un-immunized
(Antonelli et al., 2021). The long-lasting symptomatology can
result in chronic morbidity (Shah et al., 2021), including the
development of diabetes (Korompoki et al., 2021). The emergence
of new COVID-19 variants threatens us with an increase in the
proportion of patients suffering from long COVID. Here, we
have summarized the available evidence indicating the potential
role of carnosine/acetyl-carnosine in ameliorating long-term
complications of COVID-19 and diabetes (Figure 1). Whenever
possible, the presence of serum acetyl-carnosine and erythrocyte
carnosine levels should be measured to determine whether the
levels of these peptides could be predictive of morbidity or
mortality, and whether raising their levels has any beneficial
effects on clinical course and survival. Given the biological effects
attributed to carnosine, intranasal adjuvant therapy with this
dipeptide could be considered as supportive treatment in patients
with either COVID-19 or long COVID.
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