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Abstract: Fungal colonization can severely damage artifacts. Nematode endosymbiotic bacteria
exhibit good prospects in protecting artifacts from fungal damage. We previously found that super-
natant from the fermentation of nematode endosymbiotic bacterium, Xenorhabdus bovienii, is effective
in inhibiting the growth of Fusarium solani NK-NH1, the major disease fungus in the Nanhai No.1
Shipwreck. Further experiments proved that X. bovienii produces volatile organic compounds (VOCs)
that inhibit NK-NH1. Here, using metabolomic analysis, GC–MS, and transcriptomic analysis, we
explored the antifungal substances and VOCs produced by X. bovienii and investigated the mech-
anism underlying its inhibitory effect against NK-NH1. We show that X. bovienii produces several
metabolites, mainly lipids and lipid-like molecules, organic acids and derivatives, and organohetero-
cyclic compounds. The VOCs produced by X. bovienii showed two specific absorption peaks, and
based on the library ratio results, these were predicted to be of 2-pentanone, 3-(phenylmethylene) and
1-hexen-3-one, 5-methyl-1-phenyl. The inhibition of F. solani by VOCs resulted in upregulation of
genes related to ribosome, ribosome biogenesis, and the oxidative phosphorylation and downregula-
tion of many genes associated with cell cycle, meiosis, DNA replication, and autophagy. These results
are significant for understanding the inhibitory mechanisms employed by nematode endosymbiotic
bacteria and should serve as reference in the protection of artifacts.

Keywords: nematode endosymbiotic bacteria; cultural heritage disease fungus; antifungal substances;
metabolomic analysis; GC–MS; transcriptome sequencing; inhibition mechanism

1. Introduction

Nematodes are an evolutionarily lower group of animals that can be categorized
according to their food tropism as saprophytic, plant parasitic, and animal parasitic ne-
matodes. Nematodes, which have insects as their obligate hosts, are known as ento-
mopathogenic nematodes [1,2]. Entomopathogenic nematodes have a wide host range of up
to 3000 species [3]. Entomopathogenic nematode endosymbiotic bacteria are Gram-negative
bacteria belonging to Enterobacteriaceae that parasitize the gut of entomopathogenic nema-
todes [4].

The potential of entomopathogenic nematodes, mostly belonging to the genera
Steinernemati sp. and Heterorhabditis sp., in controlling pests and disease-causing mi-
croorganisms has been focused upon since the first reports of insect parasitic nematodes
in 1929 [5,6]. Bacteria, in symbiotic association with Steinernemati sp., belonging to the
genus Xenorhabdus include several species, such as X. nematophilus, X. poinarii, X. bovienii,
X. beddingii, and X. japonica. Insecticidal substances produced by X. nematophilus are fre-
quently reported and have been more thoroughly studied [7]. Photorhabdus sp. is a symbiont
of Heterorhabditis sp., which produces insecticidal substances, such as insecticidal proteins,
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proteases, lipases, and lipopolysaccharides, among others [8]. Nonvolatile metabolites have
crucial roles in insecticidal killing and in inhibiting fungal and bacterial growth [9–12]; for
example, the fermentation broth of nematode endosymbiotic bacteria showed inhibitory
effects against various plant disease causing fungi, such as Fusarium, Penicillium, and
Rhizobia [13,14]. Upon isolation and extraction from the fermentation broth, nonvolatile sec-
ondary metabolites, exhibiting bacteriostatic activity, were mainly found to be indoles [15],
alkenes [16], and ketones [17]. Similarly, the inhibition of bacteria and fungi by nematode
volatile organic compounds (VOCs), has been studied by several researchers. For example,
Fernando et al. isolated two aldehydes (nonanal and n-decanal) and two alcohols (cyclo-
hexanol and 2-ethyl-1-hexanol) from volatile gases, which were determined to be disulfide
and thiazole compounds based on the presence of benzene ring [18].

Artifacts of great importance produced by human activities, historically lying in
rivers, are of great importance in tracing the history and from the perspective of art
and scientific research [19,20]. A wide variety of microorganisms are involved in the
biocorrosion of artifacts—hyphae of fungi and actinomycetes can invade and damage the
material of artifacts and bacteria can secrete a variety of secondary metabolites that corrode
the artifacts [21–24]. Such biological diseases, besides affecting the preservation of artifacts,
can also damage the appreciation value of artifacts. The spread of a large number of fungal
hyphae and spores on the surface of artifacts obscures their original attributes [25,26]. In
addition, microorganisms secrete pigment-like substances that damage the aesthetic value
of artifacts. Fusarium solani NK-NH1 is a dominant surface disease fungus on the hull of
the Nanhai No. 1 Shipwreck, which has strong cellulose and lignin degradation capacity
and is largely harmful to the hull [27].

Nematode endosymbiotic bacteria are a new class of bioresources with great potential.
Research on entomopathogenic nematode endosymbiotic bacteria can provide highly effec-
tive biofungicides for the control of fungi affecting artifacts. Although these bacteria have
been applied to control plant disease fungi, there are no reports regarding their inhibitory
effect on artifactual disease fungi. The utilization of metabolites from nematode endosymbi-
otic bacteria to inhibit artifactual fungal diseases, especially the utilization of bacteriostatic
VOCs produced by these bacteria, has great prospects for application in cultural preserva-
tion. Previous screening in our laboratory showed that the fermentation broth of X. bovienii
has good inhibitory effect against artifactual disease fungi. In this study, we analyzed
the effective inhibitory components produced by nematode endosymbiotic bacteria using
metabolomics and GC–MS and established a theoretical foundation for research on the
mechanism of inhibition employed by the identified components using transcriptome
sequencing with the aim of devising new strategies for the protection of artifacts.

2. Results
2.1. Antifungal Substances in the Supernatant of X. bovienii Ferment
2.1.1. Inhibitory Effect of Incubation with the Supernatant of Fermented X. bovienii for
Different Time

Previous experimental results showed that the supernatant of X. bovienii ferment
contains secondary metabolites that inhibit the growth of fungi that deteriorate cultural
heritage artifacts. To detect the antifungal substances in the supernatant of X. bovienii
ferment, it is necessary to obtain high concentrations of secondary metabolites as test
samples. The supernatant of X. bovienii ferment showed the maximum inhibitory effect on
NK-NH1 when incubated for 2 days (Figure 1). Therefore, an incubation time of 2 days
was chosen for metabolomics analysis.
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2.1.3. Metabolites in the Supernatant of X. bovienii Ferment 

Antifungal substances produced by X. bovienii are expected to be present in the ex-

perimental group and to be absent or present in low amounts in the blank group. 

Therefore, we first performed Venn analysis to find metabolites unique to the experi-

mental group. A total of 476 unique cationic metabolites and 544 unique anionic metab-

Figure 1. Inhibitory effect of the supernatant of Xenorhabdus bovienii on Fusarium solani (NK-NH1)
incubated for different time. Incubated at 28 ◦C for 5 days, n = 3. (a) TSY medium; (b) 1-day
incubation time; (c) 2 day incubation time; (d) 3-day incubation time; (e) 4-day incubation time;
(f) 5-day incubation time.

2.1.2. Correlation Analysis of Metabolomic Data

The results of sample correlation analysis showed that the experimental and control
groups were clustered separately, and the parallelism of the samples was good (Figure 2a).
Principal components analysis (PCA) analysis showed that there was no intersection
between the samples in the experimental and blank groups, which indicated that the main
components of the supernatant in the experimental and blank groups were different, and
the samples in the experimental group clustered closely together without discrete points
generated, indicating that the experimental samples were parallel and the data were reliable
(Figure 2b).
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2.1.3. Metabolites in the Supernatant of X. bovienii Ferment

Antifungal substances produced by X. bovienii are expected to be present in the experi-
mental group and to be absent or present in low amounts in the blank group. Therefore,
we first performed Venn analysis to find metabolites unique to the experimental group. A
total of 476 unique cationic metabolites and 544 unique anionic metabolites were found
in the experimental group; among these there were 44 named cationic metabolites and
70 named anionic metabolites (Figure S1). These 114 named metabolites were classified
using the HMDB 4.0 database. Lipids and lipid-like molecules accounted for the highest
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(52.75%) proportion of these metabolites, followed by organic acids and derivatives and
organoheterocyclic compounds, which accounted for 16.48% and 8.79%, respectively. In ad-
dition, there were few benzenoids, organic oxygen compounds, organoxygen compounds,
phenylpropanoids and polyketides, organic nitrogen compounds, and alkaloids and their
derivatives (Figure 3).
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Figure 3. Classification of differential metabolites in the supernatant of the Xenorhabdus bovienii ferment.

Further, we screened the differential metabolites that showed a large difference in
content. Using the selected screening criteria (fold change (FC) > 100; p value < 0.001), a
total of 14 substances were screened (Table 1).

Table 1. Main differential metabolites.

Metabolite Formula FC
(NKSF/Blank) p Value

lysoPC (28:0) C36H74NO7P 4643.192488 1.47 × 10−14

N-Carbamoylputrescine C5H13N3O 565,313.1885 2.67 × 10−11

20-HETE ethanolamide C22H37NO3 462.7804571 9.11 × 10−11

PE-NMe (16:0/22:5(4Z,7Z,10Z,13Z,16Z)) C44H78NO8P 403.5201482 3.26 × 10−14

alpha-Ionol O-[arabinosyl-(1->6)-glucoside] C24H40O10 525.0169799 4.03 × 10−8

PG (16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C44H75O10P 269.3971166 6.03 × 10−10

PA (16:0/18:1(11Z)) C37H71O8P 108.0167793 3.29 × 10−9

PA (16:0/15:0) C34H67O8P 105.6211958 1.09 × 10−5

Lucidenic acid M C27H42O6 25,115.625 1.36 × 10−6

Validamycin A C20H35NO13 1875.077176 1.74 × 10−7

Octadecyl fumarate C22H40O4 263.6363636 3.50 × 10−15

Lucyoside R C36H58O11 196.4816356 7.89 × 10−12

2,6,6-Trimethyl-1,4-cyclohexadiene-1-
carboxaldehyde C10H14O 186.2414338 1.39 × 10−9

1-(2,3-Dihydro-1H-pyrrolizin-5-yl)-2-propen-
1-one C10H11NO 6173.232908 4.04 × 10−10

The bacterial fermentation cultured for 2 days was used as the experimental group (NKSF) and TSY liquid medium
was used as the control group (Blank).

2.2. Volatile Antifungal Substances Produced by X. bovienii
2.2.1. Inhibitory Effect of VOCs Produced by X. bovienii on NK-NH1

To avoid direct contact between antifungal substances and cultural relics, which may
damage the relics, we searched for volatile antifungal substances. We examined whether
the VOCs produced by X. bovienii had an inhibitory effect on fungal growth. As shown in
Figure 4, in the blank group, NK-NH1 grew vigorously and the hyphae spread to the other
side, whereas in the experimental group, the NK-NH1 colonies were small, the hyphae
were underdeveloped, and the fungal growth was significantly inhibited. These results
proved that X. bovienii could produce VOCs that have an inhibitory effect on NK-NH1.
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Figure 4. Inhibitory effect of volatile organic compounds produced by Xenorhabdus bovienii on NK-
NH1. The plates were incubated at 28 ◦C for 5 days, n = 3. (a) NK-NH1 was inoculated on the left
half of the plate and culture medium was applied on the right half; (b) NK-NH1 was inoculated on
the left half of the plate and X. bovienii was inoculated on the right half.

2.2.2. GC–MS of VOCs Produced by X. bovienii

The VOCs produced by X. bovienii were passed through a column and the individual
components were separated using chromatography. The data were analyzed using software.
Two peaks at 35.629 and 37.685 min in the experimental group were obviously different
from those in the blank, indicating that these VOCs were produced by X. bovienii and might
be the compounds that inhibited the growth of NK-NH1 (Figure 5). The molecular weights
of these two compounds were determined to be 174 and 188, respectively, using mass
spectrometry (Figure 6). Based on the results of comparison with the NIST library, these
two compounds are suspected to be 2-pentanone, 3-(phenylmethyl) and 1-hexen-3-one,
5-methyl-1-phenyl.
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Figure 5. GC–MS results of volatile organic compounds produced by Xenorhabdus bovienii. CK is the
blank control and SF1, SF2, and SF3 are three replicate samples in the experimental group.

2.3. Transcriptomic Analysis of NK-NH1
2.3.1. Differential Expression Analysis

Using transcriptome sequencing of NK-NH1, we explored the inhibitory mechanism
of VOCs produced by X. bovienii at the gene transcription level. We found 6788 differentially
expressed genes, which included 3545 upregulated and 3243 downregulated genes in the
experimental group (Figure 7).
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2.3.2. KEGG Enrichment Analysis of Differentially Expressed Genes

By performing the enrichment analysis of the differential gene sets, it is possible to find
the biological functions or pathways that are significantly associated with the differential
genes under different conditions. KEGG is a comprehensive database integrating genomic,
chemical, and systematic functional information. KEGG top 20 pathways enrichment anal-
ysis showed that the differentially expressed genes were mainly associated with ribosome,
ribosome biogenesis in eukaryotes, oxidative phosphorylation, autophagy, ubiquitin medi-
ated proteolysis, peroxisome, and cell cycle (Figure 8). Many genes in the fgr0301 pathway
associated with ribosome, in the fgr03008 pathway associated with ribosome biogenesis in
eukaryotes, and in the fgr00190 pathway associated with oxidative phosphorylation were
significantly upregulated, whereas many genes in the fgr04111 pathway associated with
the cell cycle, in the fgr04113 pathway associated with meiosis, in the fgr03030 pathway
associated with DNA replication, and in the fgr04138 pathway associated with autophagy
were significantly downregulated (Table S1).
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genes. The ordinate shows the KEGG pathways. The size of the dots represents the number of
genes annotated to the KEGG pathway and the color from red to purple represents the significance
of enrichment.

3. Discussion

At present, considering their similarities with artifact disease fungi, plant disease fungi
are mostly used in research on secondary metabolites produced in the fermentation broth of
endosymbiotic bacteria. The secondary metabolites produced by nematode endosymbiotic
bacteria can also be used to inhibit the growth of artifact disease fungi, and are expected to
be useful in the protection of artifacts. We isolated four nematode endosymbiotic bacteria
from multiple nematode strains, namely X. nematophila, X. cabanillasii, X. bovienii, and
P. luminescens. In previous experiments, it was found that the fermentation products of
X. bovienii have the best inhibitory effect on NK-NH1, a major disease fungus in the
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Nanhai NO. 1 Shipwreck, and the results of untargeted metabolomic analysis revealed that
X. bovienii produced several metabolites, mainly lipids and lipid-like molecules, organic
acids and derivatives, and organoheterocyclic compounds; however, only a small number
of these metabolites have been identified. The antifungal components in fermentation broth
have been analyzed in only a few studies. In some studies, it was only confirmed that the
fermentation broth contained large amounts of substances, such as ketones, aldehydes, and
phenyl rings, and no further research was conducted on specific substances [28]. Studies
on secondary metabolites produced by microorganisms mostly used chemical extraction
methods, and crude extracts obtained from the isolates were used in bacteriostatic tests.
Crude extracts with good bacteriostatic effects were screened and then developed as
bacteriostatic substances [13]. Although no specific metabolites were identified in our
study, we screened 14 known compounds, mostly lipids and lipid-like molecules, produced
by X. bovienii that with showed significant differences.

Among the numerous microbial secondary metabolites, VOCs have received increas-
ing attention over the past decade. Since the early reports on bacterial VOCs contributing
to plant health and growth, an increasing number of studies have demonstrated great
potential for the application of these gaseous molecules in bacteriostasis [29]. Microbial
VOCs are usually released dynamically in a variety of forms and are mainly derived from
catabolic activities; they mostly comprise low complexity, lipophilic compounds [30,31].
In this study, we show that X. bovienii produces VOCs and effectively inhibits the growth
of F. solani, NK-NH1. In several studies, it has been shown that VOCs inhibit the growth
and development of several fungi. For example, Fernando et al. tested volatile compounds
from endosymbiotic bacteria isolated from rapeseed and soybean plants for their inhibitory
effects on Sclerotinia sclerotiorum, a phytopathogenic fungus, and found that sclerotial and
hyphal growth, as well as spore germination, were inhibited [18]. Shan et al. demonstrated
the growth inhibitory effect of volatile substances produced by the endosymbiotic bacteria
of a nematode strain against plant disease fungi, Mucor sp. and Rhizomucor sp. [32]. GC-MS
analysis revealed that the major VOCs produced by X. bovienii were esters, ethers, hete-
rocycles, and ketones, and there were two metabolites that were different from those in
the control group. The results of database alignment showed that these two metabolites
might be 2-pentanone, 3-(phenylmethyl) and 1-hexen-3-one, and 5-methyl-1-phenyl. At
present, there are few studies on the VOCs produced by nematode endosymbiotic bacteria,
and most researchers focus on analyzing the effective bacteriostatic active components
in their fermentation broth. Fernando et al. isolated the volatiles with better fungicidal
activity using GC-MS, and identified them as nonanal, n-decanal, cyclohexanol, and 2-
ethyl, 1-hexanol [18]. Shan et al. detected the main bacteriostatic component produced by
nematode endosymbiotic bacteria as dimethyl disulfide using GC-MS [32].

To explore the inhibitory mechanism of VOCs produced by X. bovienii, in this study,
we used transcriptome sequencing to analyze the changes occurring at the gene expression
level upon the inhibition of NK-NH1. The expression of 6788 genes of NK-NH1 was found
to change after the inhibition. Many of the genes involved in cell cycle, meiosis, and DNA
replication were downregulated, which indicates the decreased proliferation of NK-NH1
after inhibition. Autophagy-related genes were also downregulated, but three genes in
this metabolic pathway, KRAS (a GTPase), Snf1-activating kinase 1, and serine palmitoyl-
transferase were upregulated. These three genes are upstream of the autophagy regulatory
pathway and encode key enzymes that are decisive in the occurrence of autophagy; their
upregulation indicates autophagy may occur to some extent in cells. Autophagy in Saccha-
romyces cerevisiae is regulated by many factors, among which the most thoroughly studied
are the protein kinase target of rapamycin (TOR) and the Ras/Camp-dependent protein
kinase A (PKA) signal cascade system [33]. Serine palmitoyltransfer is related to TOR
complex 1 (TORC1), TORC1 contains Tor1 or Tor2, as well as Kog1, Tco89, and Lst8, which
can be inhibited by the immunosuppressant rapamycin and participate in the regulation of
cell cycle, ribosome biogenesis, ribosome translation activity, amino acid utilization, and
other growth and metabolic processes [34]. Studies have shown that TOR can sense the
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level of intracellular glutamine, which is the main intermediate of nitrogen metabolism
and can be used as an indicator of intracellular nutritional status. Therefore, S. cerevisiae
cells can regulate the degree of autophagy at different nutritional levels through TOR
pathway to ensure the normal physiological condition of cells [35]. When cells are under
nutritional stress, such as nitrogen starvation, the TOR pathway is inhibited, and autophagy
can be negatively regulated by TORC1. Since the main downstream effectors of Tor are
type-2A protein phosphatase (PP2A) and members of the PP2A-like protein family, they
are involved in the phosphorylation of a variety of intracellular proteins [36]. When TOR
is inhibited, TORC1 stimulates PP2A- and PP2A-like protein family members, dephos-
phorylates autophagy-related proteins Atg1 and Atg13, and can bind with Atg17 to form
the Atg1-13-17 complex, thereby inducing autophagy [37]. In S. cerevisiae, the Ras/cAMP-
dependent PKA pathway is involved in regulating cell metabolism and growth at different
carbon source levels. At present, studies have shown that the Ras/cAMP-dependent PKA
pathway negatively regulates autophagy. Under nitrogen starvation conditions, autophagy
formation is blocked when PKA catalytic subunit Tpk1 is overexpressed in Saccharomyces
cerevisiae and autophagy is strongly inhibited [38]. In addition, in vitro and in vivo ex-
periments confirmed that Atg1 contains two potential PKA phosphorylation sites, and
PKA can directly modify Atg1. The PKA phosphorylation of Atg1 leads to changes in its
localization. After autophagy induction, Atg1 in the wild type can be transferred from
cytoplasm to PAS site, but Atg1 mutants lacking PKA site are always located at PAS related
structures [39]. These data suggest that the Ras/cAMP-dependent PKA signaling pathway
inhibits autophagy by negatively regulating the binding of Atg1 to PAS. Autophagy is
a self-protective mechanism in biological cells to obtain nutrients by dissolving cellular
contents, reducing unnecessary life activities and maintaining only the basic metabolism.
Thus, a generally hostile environment easily leads an organism to mount an autophagic
response. We observed that the growth of Fusarium on bipartitioned plates was severely
inhibited and the mycelial growth was very slow due to the action of organic volatiles
produced by the endosymbiotic bacterium. Thus, the upregulation of key genes of the
autophagy pathway may be required for self-protection by Fusarium upon the sensing of
the external environment that is not conducive for growth.

4. Materials and Methods
4.1. Strains

The nematode endosymbiotic bacterium, X. bovienii, used in the experiment was
isolated from the nematode strain, SF SN. The fungus used in the experiment was F. solani
(NK-NH1, KY410238), which had been isolated from the hull of the Nanhai No. 1 Shipwreck
and is the most dominant disease fungus on the hull of this shipwreck.

4.2. Inhibitory Effect of the Supernatant of X. bovienii Ferment on F. solani

The supernatant of X. bovienii ferment was obtained from the liquid shake culture of
the bacterium grown in TSY medium, with shaking at 180 rpm at 28 ◦C for 1, 2, 3, 4, or
5 days. One milliliter of the supernatant from culture incubated for different time periods
was added to 20 mL of PDA medium. An 8 mm block was punched out from the edge of
a culture plate of F. solani (NK-NH1) using a hole puncher and added to the center of the
plate. The experimental group was set up in triplicate. In the control group, TSY medium
was added to the PDA medium and incubated in a 28 ◦C incubator for 5 days.

4.3. Metabolome Analysis
4.3.1. Sample Preparation

The bacterial culture fermented for 2 days was used as the experimental group (NKSF)
and TSY liquid medium was used as the control group (Blank); eight parallel cultures were
set for each group. Hundred-microliter sample was taken in a 1.5 mL centrifuge tube and
400 µL extraction solution (acetonitrile:methanol = 1:1) was added to it. After vortexing
the tube for 30 s, low-temperature ultrasonic extraction (5 ◦C, 40 KHz) was performed for
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30 min. The sample was held undisturbed at −20 ◦C, for 30 min, and then centrifuged
(13,000× g for 15 min) at 4 ◦C. The supernatant was transferred to a new tibe, blow-dried
with nitrogen, and redissolved in 120 µL of a complex solution (acetonitrile:water = 1:1).
The mixture was subjected to low-temperature ultrasonic extraction (5 ◦C, 40 KHz) for
5 min, and then centrifuged (13,000× g for 5 min) at 4 ◦C. The supernatant was transferred
to an injection vial with internal cannula for machine analysis.

4.3.2. Chromatography Conditions

The instrument used for LC–MS analysis was an ultra-high performance liquid chro-
matography tandem time of flight mass spectrometry UPLC-Triple TOF system from AB
SCIEX. The sample (10 µL) was injected into a BEH C18 column (100 mm × 2.1 mm i.d.,
1.8 µm) and the eluting compounds were detected after separation using mass spectrometry.
The mobile phases used for separation were as follows: mobile phase A: water (containing
0.1% formic acid); mobile phase B: acetonitrile/isopropanol (1/1; containing 0.1% formic
acid). The solvent gradient used for separation was as follows: 0–3 min: mobile phase A
decreased linearly from 95% to 80% and mobile phase B increased linearly from 5% to 20%;
3–9 min: mobile phase A decreased linearly from 80% to 5% and mobile phase B increased
linearly from 20% to 95%; 9–13 min: mobile phase A was maintained at 5% and mobile
phase B was maintained at 95%; 13.0–13.1 min, mobile phase A increased linearly from 5%
to 95% and mobile phase B decreased linearly from 95% to 5%; 13.1–16 min: mobile phase
A was maintained at 95% and mobile phase B was maintained at 5%. The flow rate was
0.40 mL/min and the column temperature was set at 40 ◦C.

4.3.3. Conditions Used for Mass Spectrometry

The mass spectrum signals from the samples were collected in the positive and nega-
tive ion scanning mode over a mass scanning range (m/z) of 50–1000. The parameters used
for mass spectrometry were as follows: positive ion voltage, 5000 V; negative ion voltage,
4000 V; declustering voltage, 80 V; spray gas, 50 psi; auxiliary heating gas, 50 psi; air curtain
gas, 30 psi, ion source heating temperature, 500 ◦C; cyclic collision energy, 20–60 V.

4.3.4. Data Analysis

The LC–MS raw data were imported into the metabolomics processing software,
Progenesis QI (Waters Corporation, Milford, CT, USA), for processing. The MS and MSMS
data were analyzed using the public database HMDB (http://www.hmdb.ca/) (accessed
on 25 May 2022) and Metlin (https://metlin.scripps.edu/) (accessed on 25 May 2022). The
metabolites were identified based on database matching. The preprocessed data were
uploaded to the Meiji Biological Cloud Platform (https://cloud.majorbio.com) (accessed
on 15 June 2022) for analysis.

4.4. Inhibitory Effect of VOCs Produced by X. bovienii on F. solani

A two-partition plate was used for this experiment. The partition in the middle was
impermeable to substances, such as liquid; however, a gap between the top portion of the
partition wall and the plate cover allowed volatile gases to pass across the partition wall.
Melted TSA medium was poured on one side of the partition and melted PDA medium
was poured on the other side. After the solidification of the media, 50 µL of the symbiotic
bacterial solution of nematode was coated on the side with the TSA medium. An 8 mm
block from the edge of a tested F. solani (NK-NH1) colony was punched out with a hole
puncher and added to the center of the side with the PDA medium. In the control group,
the partition plate was not coated with the bacterial solution, and only a fungal block was
placed on the side with the PDA medium. The plates were placed in an incubator set at
28 ◦C for 5 days.

http://www.hmdb.ca/
https://metlin.scripps.edu/
https://cloud.majorbio.com
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4.5. Detection of VOCs Using GC-MS
4.5.1. Collection of VOCs Produced by X. bovienii

X. bovienii was inoculated in 10 mL TSY agar medium in a 100 mL conical flask and
incubated at 28 ◦C for 2 days. The VOCs were collected using solid-phase microextraction
(SPME). SPME fibers (Supelco, Bellefonte, PA, USA) were pretreated in the GC inlet at
280 ◦C for 10 min. Thereafter, a preheated SPME fiber was inserted into the flask through
the sealing film on the conical flask and exposed to the top space of the conical flask for
60 min to collect VOCs. In the control group, the conical flask only contained TSA medium
and was not inoculated with bacteria. Three experimental groups and a control group were
set up.

4.5.2. GC–MS Detection

An HP-5 nonpolar chromatographic column (Agilent, Santa Clara, CA, USA,
30 m × 0.25 mm, 0.25 µM thin layer) was used for the separation of VOCs. The sam-
ple was manually injected in a non-shunting mode; helium was used as the carrier gas
at a flow rate of 1.0 mL/min. The SPME fiber at the GC (Agilent 7890) injection port
was heated to 250 ◦C for 5 min to realize thermal desorption. The temperature program
was set as follows: 40 ◦C for 5 min, 4 ◦C for 1 min, continuous temperature rise to 100 ◦C,
continuous temperature rise to 100 ◦C for 3 min, 5 ◦C for 1 min, continuous temperature rise
to 200 ◦C, continuous temperature rise to 200 ◦C for 3 min, 5 ◦C for 1 min, and continuous
temperature rise to 280 ◦C for 15 min. Mass spectrometry was performed on an Agilent
5975c system. The compounds were identified by comparing the obtained data with the
known data in the NIST library.

4.6. Transcriptome Sequencing Analysis

NK-NH1, with significantly inhibited mycelial growth (NKXb), and the control group
(CK) were used for transcriptome sequencing. The samples were sent to Beijing Novogene
Co., Ltd. (Beijing, China). for analysis. Raw data can be found at https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE207994 (accessed on 27 June 2022).

4.6.1. Differential Expression Analysis

The analysis of the differentially expressed genes in the two groups was performed us-
ing the DESeq2 R package (Version 1.16.1; Creator: Michael Love, Simon Anders, Wolfgang
Huber; Location: Billerica, MA, USA). DESeq2 provides statistical routines for determining
differential expression in digital gene expression data using a model based on negative bino-
mial distribution. The resulting p-values were adjusted using the Benjamini and Hochberg’s
approach for controlling the false discovery rate. Genes with an adjusted p-value < 0.05
found using DESeq2 were considered to be differentially expressed.

4.6.2. KEGG Enrichment Analysis of Differentially Expressed Genes

KEGG is a database resource for understanding the high-level functions and utilities
of the biological system, such as cells, organisms, and ecosystems, from molecular-level
information, especially large-scale molecular datasets generated in genome sequencing
and other high-throughput experimental technologies (http://www.genome.jp/kegg/
(accessed on 2 July 2022)). We used the cluster Profiler R package to test the statistical
enrichment of differentially expressed genes in the KEGG pathways.

5. Conclusions

X. bovienii can produce a variety of metabolites, mainly lipids and lipid-like molecules,
organic acids and derivatives, and organoheterocyclic compounds. The VOCs produced
by X. bovienii produced two specific absorption peaks, and the library ratio results were
2-pentanone, 3-(phenylmethylene) and 1-hexen-3-one, 5-methyl-1-phenyl. The treatment
of F. solani with VOCs resulted in the significant upregulation of genes related to ribosome,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207994
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207994
http://www.genome.jp/kegg/
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ribosome biogenesis, and oxidative phosphorylation, and the significant downregulation
of genes associated with cell cycle, meiosis, DNA replication, and autophagy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23169040/s1.
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