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ABSTRACT

Extracting knowledge from open data of traffic accidents has been attracting increasing attention to policymakers
responsible for road safety. This article presents a knowledge elicitation approach to exploring the determinants of
traffic accidents from open government data of an urban area in Taiwan. The collected open dataset contains 34
decisional attributes and one predictive attribute (i.e., type of injury, including head, breast, leg), and 47,974
cases. Prediction models using a classification-oriented mechanism and generated rules that considered datasets
from before (B-dataset; 30,116 cases) and after (A-dataset; 17,868 cases) beginning to combat the Covid-19
pandemic in an urban area of Taiwan were compared. The findings showed that prediction accuracy was
acceptable but not high, at 70.73% for B-dataset and 74.77% for A-dataset. Determinants in the human and vehicle
categories revealed higher classification ranks than those in the temporal and environment categories. Traffic
accidents involving motorcycles were 5.13% higher in A-dataset, whereas those involving cars were 4.11% lower.
Injury on leg or foot was 3.46% higher in A-dataset, whereas other types of injury were up to 1.00% lower. The
average support for rules in the A-dataset rule base and the simplicity of the A-dataset decision tree were higher
than those of B-dataset. The research demonstrates the value of open government data in prediction model
development and knowledge elicitation to support policymaking in the traffic safety domain.

1. Introduction

and Supangan, 2006; Law et al., 2009), showing the obviously negative
impact of accidents on national economies (Vipin and Rahul, 2021).

As road traffic accidents are among the leading contributors of in-
juries and fatalities, the development of traffic accident analysis and
prediction models is an important field of research (Chand et al., 2021;
Sangkharat et al., 2021; Tavakoli and Heydarian, 2022). All traffic ac-
cidents have a cost, and this cost can even be immeasurable when human
injuries and fatalities are involved (French et al., 2009; Kaygisiz et al.,
2017). The total cost of traffic accidents is often expressed as a certain
percentage of a country's gross domestic product (Elvik, 2000; Connelly
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Exploring the key factors behind traffic accidents that lead to injuries and
fatalities is one of the main objectives of research seeking to develop
insights to support traffic safety policymaking. There are a variety of
reasons for the serious problem of a high volume of traffic accidents, and
some possible solutions with respect to policies and strategies, such as
helmet and drink-driving laws, have been proposed and implemented
(Vorel et al., 2014; George et al., 2017; Alcaniz et al., 2021). Prediction
models that can be used to disclose causes of traffic accidents in historical
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data are proposed by researchers to aid in developing such strategies to
reduce traffic accidents (Li and Zhao, 2022; Roy et al., 2021; Valent,
2022; Sangkharat et al., 2021; Olowosegun et al., 2022; Antona-Makoshi
et al., 2018).

The models that have been proposed to predict accidents have
adopted various data sources and analysis techniques (Chand et al., 2021;
Li and Zhao, 2022; Olowosegun et al., 2022; Roy et al., 2021). For
example, classification-oriented models (decision trees) were proposed
to discover decision rules to detect traffic accidents (de Ona et al., 2014;
da Cruz da Cruz Figueira et al., 2017). Statistical models were used to
estimate the frequencies and risk of brain injuries (Antona-Makoshi et al.,
2018), and the examination of the effect of road markings on drivers’
compliance with speed limits was conducted (Charlton et al., 2018).
Moreover, the analysis of road traffic accidents was presented using
exploratory data analysis and time series regression (Vipin and Rahul,
2021), while regression models were employed to predict traffic acci-
dents (Kaygisiz et al., 2017) and identify determinants of accident
severity (Ratanavaraha and Suangka, 2014). More recently, accident
detection and road condition analysis using a social network-based
real-time monitoring framework was proposed (Ali et al., 2021), and
the examination of the relationships between temperature and traffic
accidents using a generalized additive model and meta-analysis was
conducted (Park et al., 2021). The impact of COVID-19 travel-restriction
policies on road traffic accident patterns was also examined using sta-
tistical models (Li and Zhao, 2022).

The different variables used in these models can be grouped into
various categories. For example, legal variables mainly include drink-
driving laws and helmet laws, whereas socioeconomic variables have
number of vehicles and price of fuel (Chen and Liu, 2012; Vorel et al.,
2014). Variables in the social influence category contain comments and
complaints (Ali et al., 2021; Parady et al., 2020) whereas seatbelts,
bumpers, and vehicle types are included in vehicle category (da Cruz da
Cruz Figueira et al., 2017; Antona-Makoshi et al., 2018; Li et al., 2021).
Such variables as age, alcohol intake, and speed are used in the human
category (Ratanavaraha and Suangka, 2014; de Ona et al., 2014; Alcaniz
et al., 2021). Variables of temporal category are month, day, and time
zooms (Vipin and Rahul, 2021; Park et al., 2021; Li et al., 2021; Li and
Zhao, 2022), whereas environment category includes traffic volume,
weather, road condition, and lighting (Ratanavaraha and Suangka, 2014;
Charlton et al., 2018; Kaygisiz et al., 2017; Park et al., 2021; Sangkharat
et al., 2021).

Moreover, since 2019, the Covid-19 pandemic has had a considerable
impact on behavior in using transportation systems and has thereby
influenced road traffic accidents (Chen and Pan, 2020; Valent, 2022; Li
and Zhao, 2022). For example, the high risk perception of Covid-19
infection produced more self-restriction behaviors (e.g., deciding not to
travel, avoiding crowds), especially in relation to eating out and leisure
activities (Parady et al., 2020). To reduce the likelihood of infection,
workers or travelers began to prefer personal vehicles over public
transportation systems. It is estimated that 5.3% of commuters shifted
from public to private transport modes due to the Covid-19 pandemic
(Pawar et al., 2020). These changes are likely to have an influence on
traffic accidents, and this needs to be investigated to adapt relevant safety
policies.

Although studies have presented important general aspects and
identified the most remarkable antecedents of traffic accidents, under-
standing the ranking of influence for different types of variables, such as
temporal, human, vehicle, and environmental factors, is particularly
important to road safety policymaking. Moreover, the use of knowledge
elicitation techniques on real cases, such as with open government data,
is a valuable approach to developing insights for devising road safety
policies and strategies.

To address these issues, a classification-oriented prediction model
applied to open government data to reveal determinants of traffic acci-
dents is proposed and implemented in this paper. The association
strength with respect to the classification power (CP) of influencing
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variables is analyzed. The elicited knowledge is presented in the form of
decision rules. The study has three objectives. The first objective is to
develop a classification-oriented traffic accident prediction model. The
second objective is to conduct knowledge elicitation from the open
government data of Taoyuan city, Taiwan, a municipality with a popu-
lation of 2,272,452 and population density of 1,861.21 persons per
square kilometer. The third objective is to compare the results before and
after the date (January 24, 2020) that the Taiwan government started
combating the Covid-19 pandemic. The open dataset contains 48,055
valid accident cases with confirmed injuries within the period of January
1, 2017 to June 30, 2021.

2. Literature review
2.1. Prediction of traffic accidents

The literature identifies the growing importance of traffic accidents as
the main cause of injuries and fatalities (Olowosegun et al., 2022; Roy
et al., 2021; Valent, 2022; Ratanavaraha and Suangka, 2014; Xin et al.,
2020). Various determinants have been considered and examined in as-
sociation with traffic accidents and models have been developed to
explain these determinants. The ultimate aim of this body of research is
to recognize and reduce the likelihood of traffic accidents and to provide
suggestions to support road safety policymaking. The relevant literature
is summarized in this section.

The factors are generally divided into up to four main operating
categories: human, vehicle, environment, and legal and socioeconomic.
Whereas the early studies often considered two or three categories, more
recent studies have tended to focus on a single category. For example,
some studies considered human, vehicle, and environment factors
together for their contribution to traffic accidents or road safety risks (de
Ona et al., 2014; Kwon et al., 2015; Altwaijri et al., 2012). Other studies
have analyzed only the environmental factors in road accidents (Ali
et al., 2021; Kaygisiz et al., 2017; van Wee et al., 2019; Charlton et al.,
2018). Furthermore, one study considered legal and socioeconomic
factors from a governmental perspective (Vorel et al., 2014), one pro-
posed a social network-based model to detect traffic accidents and road
flow (Ali et al., 2021), two analyzed traffic accident mortality based on
temporal factors (Vipiv & Rahul, 2021; Park et al., 2021), and one
looked into motorcyclist injuries using a spatiotemporal analysis (Li
et al., 2021).

The influence of road characteristics on traffic accidents has also been
examined using a linear model (Fernandes & Neves, 2013), Lighting was
found to be one of the determinants of traffic accidents by de Ona et al.
(2014), and another study confirmed the benefits of road marking to
drivers’ compliance with speed limits (Charlton et al., 2018). Online
community opinions have been used to detect traffic accidents and road
flow using a social network-based real-time monitoring framework (Ali
et al., 2021), through which environmental factors were found to be
considered the most important determinant of traffic accidents. Despite
the limitations of this method (e.g., data sources, data quality, labeling
quality, and reliance on overly subjective opinions), it is clear that these
opinions do have value for examining traffic accidents.

To provide input into road safety policies based on time zone, tem-
poral variations have been examined by forecasting specific road traffic
accidents in particular time zones based on exploratory data analysis and
time series regression (Vipiv & Rahul, 2021). The effects of heat at
different times of the day have also been examined to provide informa-
tion conducive to traffic accident reduction policies (Park et al., 2021). In
the study of Li et al. (2021), the relationships of spatial and temporal
variables to motorcyclist injury severity were examined using
non-stationary tests and it was found that the helmet, engine size, vehicle
age, pillion passenger, at-fault striking, and speeding were significant
factors.

In terms of method, all studies have used quantitative approaches,
including binary logic, regression models, naive Bayes, decision trees,



C. Wu et al

linear models, text mining, machine learning, and general statistics. The
variables used in each category vary greatly with availability, and the
findings are not consistent. For example, age and other drivers’ charac-
teristics have been identified as important factors in traffic accidents (de
Ona et al., 2014) and road crashes (Altwaijri et al., 2012), but also as
non-significant determinants of safety risk (Kwon et al., 2015) and ac-
cident severity (Ratanavaraha and Suangka, 2014). As a consequence,
the implications and suggestions lack adequate focus. Furthermore, the
data sources are diverse and can be either linguistic or numeric in form,
or both; various studies have drawn on online comments and opinions,
open government data, or survey data. This review shows that studies
have explored a range of possibilities to derive findings from various
proposed models drawing on various types of data collected from mul-
tiple channels to support traffic safety policymaking.

2.2. Effects of the Covid-19 pandemic on traffic conditions

The Covid-19 pandemic has fundamentally influenced the lifestyles
and travel behavior of individuals across communities in several ways,
such as remote working, social distancing, self-isolation, eating at home,
and changes to leisure activities (Pawar et al., 2020; Hotle et al., 2020).
These changes may have unpredictable consequences for traffic acci-
dents. Studies that have explored the general effects of the Covid-19
pandemic are contributing to the adaptation to the impact of the dis-
ease, the progress of which remains unpredictable. For example, the
factors that lead to behavioral changes have been examined in an online
panel survey focusing on risk perception and social influence (Parady
et al., 2020). The main finding suggested that targeting the avoidance of
non-essential travel might be effective in addressing the severity of
Covid-19, particularly among groups that have difficulty maintaining
social distancing. Based on protection motivation theory, the effect of
risk perception on travel to various locations has also been examined
(Hotle et al., 2020). It was found that individuals would reduce the
number of trips they took if they perceived medium or high levels of risk,
but this was not the case for travel to workplaces, even when the
perceived risks were high.

A study of the impact of Covid-19-related lockdowns on traffic acci-
dents from March 16 to April 26, 2020 estimated that the number of
accidents per day decreased by 74.3% in comparison with the previous
week and by 76% with the previous year (Saladié et al., 2020) due to the
decrease of mobility. This shows that a reduction in traffic associated
with measures to control the Covid-19 pandemic drastically decreases
the number of traffic accidents. To deepen the exploration of the effects
of Covid-19 on traffic accidents, however, the changes in the de-
terminants of accidents before and after lockdown need to be explored in
more detail.

2.3. Classification-based technique

Classification-oriented knowledge elicitation techniques have been
successfully applied in various domains (Quinlan, 1986; Lausch et al.,
2015; Wu and Kao, 2021), and have the advantageous features of an
entirely data-driven approach, learnability, high classification accuracy,
and multi-context datasets, particularly when the data is characterized by
multi-dimensionality, = multi-collinearity, and non-homogeneity.
Although it is not a new model, variants of the classification tree algo-
rithm, such as ID3, C4.5, CHAID, CART (Ture et al., 2009), random forest
(RF; Breiman, 2001), and their extensions (Rao et al., 2019), have
demonstrated high applicability.

A decision tree is a promising mechanism when considering a
classification-based prediction model (Rao et al., 2019; Wu and Kao,
2021). By using the ID3 algorithm to calculate the CP of an attribute, the
C4.5 considers the pruning and non-pruning ability by computing the
gain ratio of an attribute to exclude nodes and leaves that are unable to
expand for a defined goal (Quinlan, 1993). It is a data-driven and
top-down classification technique to return a decision tree determined by
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the entropy of an attribute, with higher entropy implying a higher power
of classification. The C4.5 was used in the present study as the mecha-
nism to reveal the CP of decisional attributes from which decision rules
can be derived.

2.4. An urban area in Taiwan as a case study site

Taiwan's rapid economic growth since the 1980s has increased its
traffic volume and thereby made it prone to high numbers of traffic ac-
cidents. There were 362,393 vehicle accident cases reported in Taiwan in
2020, which was an increase over the 341,972 reported in 2019 (Sta-
tistics of Vehicle Accidents, 2019). An urban area in Taiwan was adopted
as the case study site for this study to demonstrate the achievement of the
three research objectives and the presentation of findings and implica-
tions. The original dataset was collected from the open government re-
pository of traffic accident data for the municipality of Taoyuan for the
January 1, 2017 to June 30, 2021 period (https://data.gov.tw/). The
dataset held 300,376 cases involving injuries and no injuries. After
removing the non-injury cases, there were 47,974 records of reported
accidents with confirmed injuries to the head, leg, breast, etc. The
collected dataset contains 34 decisional attributes in four categories
(temporal, environmental, human, vehicle) and one predictive attribute
(i.e., injury). The pre-processed original dataset was split into two
datasets based on the date January 24, 2021, which is when the gov-
ernment of Taiwan started implementing measures to contain the
Covid-19 pandemic.

3. Method
3.1. Research design

This study was conducted in four phases: preparation, implementa-
tion, validation and comparison, and knowledge elicitation in the form of
decision rules. The implementation procedure of conducting the study is
presented in Table 1, which summarizes the characteristics and required
tasks of the experimental design in detail regarding research objectives,
open data collection, data pre-processing, attribute dimension reduction,
elicitation mechanism, training and testing, and knowledge discovery.

The preparation stage involved data collection and pre-processing,
which included the elimination of missing data in either cases or attri-
butes, the granulation of continuous data types, and the splitting of the
original dataset into before and after datasets according to the critical
date of the containment of the Covid-19 pandemic in Taiwan. In the
implementation stage, the information entropy algorithm was used to
rank the CP of attributes (or variables), and the validation stage used the
criteria of 70% for training and 30% for testing to evaluate the mined
rules, with accuracy representing how accurate the mined rules predicted
the 30% test cases. The comparison stage analyzed the differences be-
tween the two datasets with respect to the determinants of traffic acci-
dents. The elicited knowledge presents the main findings in the form of
decision rules with high levels of support and simplicity, followed by
implications and suggestions.

3.2. Variables

To reveal the importance ranks of the attribute categories to the
predictive attribute for the dataset, the decisional attributes were
grouped into four categories, namely temporal, environmental, human, and
vehicle. The dependent variable (class) was injury, with eight possible
values: head, neck, breast, abdomen, waist, back, hand (including wrist),
and leg (including foot). There were five variables in the temporal cate-
gory (year, month, day, week, and hour), 15 variables in the environmental
category (e.g., weather, light, road type, road condition, speed limit, signal),
12 variables in the human category (nationality, gender, age, license type,
alcohol, protection), and two in the vehicle category (vehicle type and
collision point). The range of values was specific to each variable: for


https://data.gov.tw/

C. Wuet al

Heliyon 8 (2022) e10302

Table 1. Research design.

Feature Description

Objectives (1) Disclose determinants of traffic accidents using a data mining approach
(2) Discover knowledge for traffic accident prediction
(3) Compare traffic accidents before and after the outbreak of the Covid-19 pandemic regarding the main determinants
of traffic accidents, the vehicle types (car, bus, motorcycle) and injury types (e.g., head, breast, leg, etc.), and the decision rules extracted.

Open dataset collection (1) Collect open government data of vehicle accidents in Taoyuan city from January 1, 2017 to June 30, 2021
(2) Original dataset comprises 34 decisional attributes (e.g., weather, city road, speed limit,
collision point, age) and one predictive attribute (injury)

(3

&

Original dataset comprises 47,974 original cases with injury labels (e.g., head, breast, leg, etc.)

Data pre-processing (1) Granulate continuous attributes using the equal with interval technique
(2) Group decisional attributes into four categories: temporal (5 attributes), environmental (15 attributes),

human (12 attributes), and vehicle (2 attributes)
Divide original dataset into two subsets (B-dataset and A-dataset) according to the critical date of

@

&

the impact of Covid-19 in Taiwan (January 24, 2020)

Attribute dimension reduction (1) Reduce attribute dimensions based on the CP using the C4.5 algorithm
(2) Remove inconsistent granulated data based on the 60% consistency acceptance level (Wu et al., 2013)

Mining mechanism (1) Conduct data mining with a tree-based algorithm (C4.5) with size of leaves equal to 2
(2) Consider entire consistent (cleaned) granulated dataset

Training and testing (1) Use criteria of 70% for training and 30% for testing

(2) Obtain prediction accuracy

Knowledge discovered (1) Obtain decision rules with depth, support, and reliability
(2) Present findings and discuss implications of generated rules with high levels of support (e.g., 50)

example, week (temporal) took one of seven values corresponding to the
days of the week, road type (environmental) took one of eight values
(e.g., “national highway,” “provincial highway,” “country road”), license
type (human) took one of five values (e.g., “professional,” “regular,”
“motorcycle”), vehicle type (vehicle) took one of three values (“car,”

“bus,” or “motorcycle”).

2

3.3. Data pre-processing

Three main pre-processing tasks were undertaken: the granulation of
continuous data types, data separation, the reduction of decisional at-
tributes, and the removal of inconsistent data. First, the original dataset
contained three continuous attributes (day and hour in the temporal
category, and age in the human category), which were granulated using
equal width intervals of 3, 6, and 10, respectively, to meet the require-
ment of discrete data types for the operation of the classification-oriented
mining mechanism.

Second, the new granulated dataset was divided into two subsets. B-
dataset covered the period before the Covid-19 containment efforts
began, from January 1, 2017 to January 23, 2020, and A-dataset covered
the later period, from January 24, 2020 to June 30, 2021. The date of
January 24, 2020 was selected as the critical data for Taiwan's efforts to
contain the pandemic as this was when the Ministry of Health and
Welfare announced that the export of medical-grade and N95 face masks
was banned and when customs checks began to increase (Crucial Policies
for Combating Covid-19, 2020). This announcement conveyed an
important message that greatly influenced many subsequent government
policies, the entire field of social and economic activities, and public and
private social behavior in the direction of protecting public and private
safety, and marked the key moment when individuals began to adapt to
the need to avoid infection and maintain their health. B-dataset contained
30,116 cases and A-dataset contained 17,868 cases, with both datasets
analyzed to achieve the research objectives.

Third, the prediction accuracy (PA) of the two datasets was estimated
and attribute selection used to reduce the dimensions. The CP of the 34
decisional attributes was obtained using the C4.5 algorithm (Quinlan,
1986, 1993; Ture et al., 2009) for both datasets. The reduction of deci-
sional attributes was then conducted according to the CP ranks given by
the algorithm. The reduced datasets were labelled B-dataset-topN and
A-dataset-topN. The C4.5 algorithm is presented in Eq. (1) to compute
information entropy (InEn), in Eq. (2) to compute the expected infor-
mation entropy for an attribute [EIE (Attribute)], in Eq. (3) to determine

the CP of the attribute [CP(Attribute)], and in Eq. (4) to compute the gain
ratio for the attribute [GaRa(Attribute)].

InEn(ncy, ncy, ....ncy) = (7n—;,110g 2“—;,1) + .t (fn—;,"log 2%) (@€D)]

nc,: The number of records that return to class G;, i =1, 2, ..., n
T: The total number of tuples.

¢ .
EIE(Attribute) = Z Kn%l) InEn(avic,, avics, ..., avic,,,)} 2)

i=1

t: The number of different values that Attribute can take on.

ny;: The total number of records that Attribute takes on value V;, i =
1,2,....t.

avicj: The total number of records that Attribute takes on value V; and
returns to class G, i = 1, 2, ..., t, j =1,2,...,m.

T: The total number of records.

CP(Attribute) = InEn(nc; , ncs, .....nc,) — EIE(Attribute) 3)
. _ CP(Attribute)
GaRa(Attribute) = FIE (Atribute) @)

Finally, inconsistent data means that the same conditions can produce
different conclusions. Given the pre-defined attribute spaces, inconsistent
data will very possibly lead to prediction failure and meaningless findings
(Wu et al., 2013). For example, the decision rule derived from the incon-
sistent cases that “if sit in the back seat and fasten seat belt then you may or
may not get your head injured in a traffic accident” appears useless because
of its contradictory inferences and low reliability. In reality, such cases may
not be uncommon because decisional attributes are ill-defined or not
pre-defined, but they are not considered in our research.

To avoid discovering meaningless or unreliable decision rules,
detection and removal for the purpose of data inconsistency was con-
ducted for both datasets (B-dataset and A-dataset) using the model pro-
posed by Wu et al. (2013) with a defined consistency acceptance level
(CAL). To navigate the dilemma that too much inconsistent data is
removed if CAL is set too high and too few reliable rules are generated if
it is set too low, the CAL was set at 60%. For example, assume an
inconsistent subset (IS) containing 10 cases with the same decisional
attribute values, but three different predictive attribute values (PAV1,
PAV2, and PAV3) for which PAV1 has seven cases, PAV2 has one, and
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PAV3 has two. The inconsistency rate for PAV1, PAV2, and PAV3 would
be 0.70, 0.10, and 0.20, respectively. With a CAL of 60%, the seven cases
belonging to PAV1 would remain while one belonging to PAV2 and two
belonging to PAV3 would be removed from the IS. The datasets after
cleaning to remove inconsistent data were labelled B-dataset-topN-clean
and A-dataset-topN-clean.

3.4. Experimental settings

3.4.1. Training and testing

B-dataset-topN-clean and A-dataset-topN-clean were trained and tested
to examine the PA based on a 70/30% split. Each dataset was randomly
divided into a training subset with 70% of cases to be used for training
the mining algorithm and a testing subset with the remaining 30% cases
to be used for testing. On the one hand, the mining algorithm was J48,
carried out with the WEKA machine learning tool, which is an open
source software that is easy to use. The J48 is based on the C4.5 algo-
rithm (Quinlan, 1993) to generate a pruned or unpruned decision tree.
The WEKA contains tools for data pre-processing, classification, regres-
sion, clustering, association rules mining, and visualization. Despite
drawbacks, such as inefficiency for large volume of datasets, WEKA is
considered suitable for the research because of the granulation of
continuous data, data volume of less than 50, 000, and decisional attri-
butes that are less than 40. The prediction accuracies from C4.5 for
before and after cleaning inconsistent data are revealed to ensure the
suitability of the knowledge elicitation process. On the other hand, the
research develops a rule generation algorithm to elicit knowledge in the
form of a decision rule, which is not covered by WEKA.

Begin
Read dataset named DT;
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3.4.2. Knowledge elicitation

To comprehensively consider the entire dataset when generating
decision rules, the dataset was divided into several subsets according to
the unique combinations of decisional attributes. To make this division,
the decisional attributes of the dataset were re-ordered according to the
CP determined by C4.5. It was then sorted using the entire body of
decisional attributes. A rule was generated when a unique combination of
attribute values returned a single predictive attribute class. The number
of attributes involved (depth), the number of cases (support), reliability,
and simplicity [support x (1/depth)] were computed for every generated
rule. The rule generation algorithm (RGA), using a depth-first approach
to generate rules from the dataset (Quinlan, 1986, 1993), is shown
below.

The RGA contains three main steps. First, it retrieves the features of
the dataset being processed (e.g., value space of each decisional attri-
butes). Second, it generates rules from cases where the first attribute
appears to have the same attribute value and class, after which we
removed these cases associated with the rule from the original dataset. It
processes the remining dataset by using a depth-first approach that
generates a subset based on the first-rank attribute and re-rank the
remaining decisional attributes using the C4.5 algorithm. Finally, it uses
the same procedure until same attribute value reaches the same class.
This procedure does not stop until the remaining dataset is empty.

A generated rule contains a set of attribute values (e.g., speed limit =
“50 km/h” and collision point = “left side,”), the type of injury (e.g., head,
leg), depth (e.g., 9), support (e.g., 40), reliability (=1.0), and simplicity
(e.g., 20.3). The support represents the volume of cases that are described
by the rule. The reliability of every generated rule is 1.00 because

Compute gain for attributes of DT using classification algorithm;

Reorganize DT attributes according to attribute gain, denoted by DT-gain;

Create an empty rule base with the same attribute of DT-gain, named RuleBase;

//Store generate rules

Sorting DT-gain with all attributes;

Compute size of value space for each attribute of DT-gain;
//denoted Ni, N, ... Nm, m=the i" attribute

Do while not-empty for DT-gain;
i=1;

Do whilei<m

DFRG=If attribute value leads to same class; // Depth-first rule generation

Generate rules and store rules in RuleBase in corresponding attribute and class;

Else

//Rule generation

Remove and create the subset (S1) using the attribute value from the remaining

dataset; /First iteration is DT-gain and attribute size decreases

Compute gain for attributes of the subset; //Re-rank attributes

Endif

Repeat DFRG until rule generation completion for the subset (S1) with the itk attribute

value;
i=i+1;
EndDo
EndDo
End
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Table 2. Ranks of CP of decisional attributes for B-dataset and A-dataset.

Category and Attribute name Ranks from C4.5

attribute code

Temporal B-dataset A-dataset

X01 Year 33 34

X02 Month 30 24

X03 Day 34 33

X04 Week 32 32

X05 Hour 26 29

Environmental

X06 Weather (e.g., rain, storm, cloudy) 31 30

X07 Light (e.g., dawn, dusk) 25 27

X08 Road category (e.g., city road, country 14 21
road)

X09 Road type (e.g. railway, bridge, 18 14
multiple intersection, overpass)

X10 Speed limit (e.g., 50 km/h) 17 12

X11 Road condition (e.g., railroad crossing, 22 19
single lane)

X12 Accident location (e.g., intersection, 19 18
road section)

X13 Accident site (e.g., left turn waiting 15 15
zone, U-turn lane)

X14 Road pavement (e.g., concrete, gravel) 9 5

X15 Road pavement condition (e.g., snow 29 26
or ice, wet, slippery)

X16 Road pavement defect (e.g., bumpy, 13 7
soft surface)

X17 Road obstacles (e.g., under 21 22
construction, parked vehicle)

X18 Line of sight (e.g., curve, slope) 24 23

X19 Signal type (e.g., traffic light, flashing 28 31
signal)

X20 Signal condition (e.g., normal, 27 28
abnormal)

Human

X21 Nationality (e.g., Taiwan, non-Taiwan) 23 25

X22 Gender (e.g., male, female) 16 16

X23 Age 12 13

X24 Occupation (e.g., business man, affair 11 17
worker)

X25 Travel purpose (e.g., for work, for 20 20
school)

X26 Behavioral condition (e.g., parking, 10 11
left-turning)

X27 License status (e.g., legal, suspended) 8 10

X28 License type (e.g., professional, 2 2
regular)

X29 License vehicle type (e.g., trailer, car, 3 3
heavy, motorcycle)

X30 Alcohol (e.g., zero or less than 0.15 5 6
mg/L, between 0.16 and 0.25)

X31 Device use (e.g., cellphone) 7 9

X32 Safety device use (e.g., helmet, no 6 8
seatbelt)

Vehicle

X33 Vehicle type (e.g., bus, car, 1 1
motorcycle)

X34 Collision point (e.g., front end, left 4 4
side)

inconsistent data was removed at the pre-processing stage. Simplicity is
based on the concept that more support and fewer conditions of a rule
implies better results for knowledge elicitation. It represents how pre-
cisely a decision tree is generated; in other words, the higher the
simplicity, the better the generated decision tree. From the
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generalization viewpoint, the generated rules with high support values
are presented and their implications are addressed.

In general, given a defined number of decisional attributes, a decision
tree with deeper leaves (thus more complex) produces rules with more
conditions. Similarly, given a fixed number of cases, a rule with more
support returns a simpler decision tree. The simplicity of a decision tree is
determined by the sum of simplicity of individual rules, considering depth
and support. The greater the simplicity, the better the decision tree.
Therefore, given the certain size of dataset size, the averaged simplicity
(AS) of a generated decision tree (DeTr) is determined by Eq. (5).

L 1
AS(DeTr) = X SupportRl«) / Nz 5)
< ; Depthi

where Depth;: The number of attributes of the ith decision rule,i=1, 2, 3,
..., T, where r is the total number of rules. Supportg;: The support of the ith
rule. Ng: The number of rules generated.

4. Results
4.1. Dataset processing

B-dataset held 30,116 cases over a period of 3 years and 23 days and
A-dataset held 17,868 cases over a period of 1 year, 5 months, and 7 days;
thus there were an average of 819.04 cases per month in B-dataset and
1037.03 cases per month in A-dataset. This implies an 26.62% monthly
increase after the critical date of the Covid-19 pandemic in Taiwan. The
PA of B-dataset and A-dataset from C4.5 was estimated at 56.11% and
55.01%, respectively. As these results were unacceptable, the decisional
attribute dimensions were reduced based on the CP of decisional attri-
butes using C4.5. The rank of CP is presented in Table 2 and Figure 1.
Three main findings from the attribute selection process are as follows.

(1) Considering the top 15 ranked attributes, the human and vehicle
categories were more important than the environment and tem-
poral categories as decisional attributes to classify traffic injuries.
The vehicle category shows the highest CP (2 of 2 for both data-
sets), followed by human (9 of 12 for B-dataset and 8 of 12 for A-
dataset), environment (4 of 15 for B-dataset and 5 of 15 for A-
dataset), and finally temporal (O of 5 for both datasets).

(2) Some attributes were ranked inside the pool for one dataset but
outside of the pool for the other. For example, the road (X08) and
occupation (X29) attributes were ranked only in B-dataset, and
road type (X09) and speed limit (X12) were ranked only in A-
dataset. This implies that speed limit was not a key predictor of
traffic injuries before the critical date of Taiwan's reaction to the
Covid-19 pandemic but was an important predictor after this date.

(3) Simply considering the environment as the influential factor in
traffic accidents is insufficient when developing a road accident
prediction model. This finding is consistent with the report in
Ratanavaraha and Suangka (2014) that speed was an important
determinant of accidents and the findings of de Ona et al. (2014)
that drivers' characteristics were the main cause of traffic acci-
dents when multiple determinant categories were studied
(vehicle, environment, and human).

The top 15 attributes were selected as the final decisional attributes
for both datasets. B-dataset-topl5 and A-dataset-top15 were thus deter-
mined and cleaned by removing inconsistent data based on the CAL of
60%. B-dataset-topl5-clean and A-dataset-top15-clean were obtained as
shown in Table 3, which shows that the volume of inconsistent data
removed was 8,626 records from B-dataset-top15 and 5,803 records from
A-dataset-top15. Table 3 also presents the PA for the datasets before and
after cleaning. The PA of B-dataset-topl5 and A-dataset-topl5 were
70.73% and 74.77%, respectively, after cleaning, indicating that the
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Figure 1. Ranks of attributes for B-dataset (before pandemic response) and A-dataset (after pandemic response).

Table 3. Removal of inconsistent data and prediction accuracy.

Table 5. Main features of B-Rulebase and A-Rulebase

Datasets Dataset size after Prediction accuracy
inconsistency removal

Before cleaning B-dataset-topl5 30,116 55.52%
A-dataset-topl5 17,868 55.30%

After cleaning B-dataset-top15-clean 21,490 70.73%
A-dataset-top15-clean 12,065 74.77%

removal of inconsistent data increased the PA by 15.21% on B-dataset
and 19.47% on A-dataset. Despite the PA still not being high for either
dataset, the accuracy was acceptable and therefore the datasets were
used for knowledge elicitation.

Collision points and vehicle types were highly ranked. The collision
points varied among the 16 options but front end, right side, back end,
and left side were most prominent; in regard to vehicle type, motorcycles
were the main type. Table 4 presents the results of comparing the relative
frequency of vehicle types and injury types in the period before the
Covid-19 pandemic and the period after its impact was felt. The com-
parison reveals some remarkable findings. Traffic accidents involving
motorcycles increased from 16.31% to 21.44% whereas those involving
buses and cars decreased by 1.02% and 4.11%, respectively. Head

Table 4. Relative frequency of vehicle types and injury types for B-dataset
(before pandemic response) and A-dataset (after pandemic response).

Vehicle type (VT) B Relative A Relative Difference
frequency frequency
VT1 (bus) 1699 7.91% 831 6.89% —1.02%
VT2 (car) 16286 75.78% 8647 71.67% —4.11%
VT3 (motorcycle) 3505 16.31% 2587 21.44% 5.13%
Total 21490 12065
Injury type (IT)
IT1 (head) 1727 8.04% 691 5.73% —2.31%
IT2 (neck) 209 0.97% 121 1.00% 0.03%
IT3 (breast) 380 1.77% 197 1.63% —0.14%
IT4 (abdomen) 95 0.44% 55 0.46% 0.01%
IT5 (waist) 302 1.41% 155 1.28% —0.12%
IT6 (back) 162 0.75% 90 0.75% —0.01%
IT7 (hand/wrist) 3120 14.52% 1639 13.58% —0.93%
1T8 (leg/foot) 15495 72.10% 9117 75.57% 3.46%
Total 21490 12065

Feature B-Rulebase A-Rulebase Note
Dataset size 21,490 12,065
Rules generated 9,622 4697
Mean support 2.2334 2.5687 A>B
Mean simplicity 0.3799 0.4613 A>B
No. of highly 31 21 250 supports
supported rules
Top 5 support values 740, 453, 219, 599, 377, 173,
218,178 153, 132

injuries decreased from 8.04% to 6.89% but leg injuries increased from
72.10% to 75.57%, with the proportion of other types also changing but
by no more than 0.93%.

4.2. Rule base generation

By implementing the RGA, rule bases containing decision rules were
generated from B-dataset-topl5-clean and A-dataset-topl5-clean and
labelled B-Rulebase and A-Rulebase, respectively. Each rule base includes
the rule characteristics of decisional attributes, predictive attribute,
depth, support, reliability, class distribution, and simplicity. The features
of the generated rules are presented concisely in Table 5. The ranks of
decisional attributes in both rule bases changed as the leaves of the de-
cision tree were generated. There are 9,622 rules in B-Rulebase and 4,697
in A-Rulebase. The reliability of each rule is 1.00 because of the removal
of inconsistent data. B-Rulebase contains 31 rules with a support value
greater than 50 and A-Rulebase has 21, but the depth of these rules ranges
from 4 to 12. The top 5 support (depth) values in B-Rulebase and A-
Rulebase are 740(12), 453(10), 219(9), 218(8), 178(7), and 599(9),
377(8), 173(9), 153(5), 132(9), respectively. The average support and
simplicity of B-Rulebase are 2.2334 and 0.3799, and those of A-Rulebase
are 2.5687 and 0.4613.

Figure 2 illustrates the support and simplicity against depth for B-
Rulebase and A-Rulebase. Despite some oscillation, the support and
simplicity values are almost normally distributed. The values of support
and simplicity in B-Rulebase increase at depth 3, reach a peak at depth 6,
and decrease to depth 13. Traffic injury is normally predicted using four
to nine decisional attributes for both periods. However, the rules in A-
Rulebase end at depth 11, indicating that most rules in B-Rulebase need
more decisional attributes to predict traffic injury than those in A-Rule-
base, as is also indicated by the average simplicity.
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Figure 2. Support and simplicity for B-Rulebase and A-Rulebase.

The generated rules with a support value greater than 50 are revealed
to explore the key determinants associated with traffic injury in B-Rule-
base (part in Table 6) and A-Rulebase (part in Table 7). In particular, in
Table 6, there are 15 decisional attributes (X33-X13) and one predictive
attribute (class). Each record represents a decision rule with an identifier.
For example, rule #2772 is generated: When {Collision point = front end}
and {Occupation = general worker} and {Age = between 21 and 30} and
{Road pavement defect = negative} and {Road category = city road} and
{Accident cite = intersection} then {Main injury = leg}. It also reveals that a
rule has six decisional attributes (column Dep.), has 91 kinds of support
(column Sup.), is a perfect classification (column Class distribution), and
has simplicity of 15.1667 (column Simplicity). Part of A-Rulebase is
presented in Table 7, the structure of which is the same as that of Table 6.
Moreover, extracts from each rule base in the form If conditions-Then
conclusion (injury) are precisely presented in Table 8. This reveals that
some decisional attributes are included in both B-Rulebase and A-Rule-
base, others in either one rule base. For example, Collision spot, Driver's
license types, Alcohol test, and License status are included in both rule
bases. Occupation, Road category, Device use, Road pavement, and Road
pavement defect only appear in the B-Rulebase, whereas Speed limit and
Road pavement condition only appear in the A-Rulebase.

4. Implications and discussion

There are five major points of discussion related to the method and
findings of this study. First, the original datasets had large numbers of
decision attributes and the PA was found unacceptable for both B-dataset
(before the critical pandemic date) and A-dataset (after the critical
pandemic date) (56.11% and 55.01%, respectively). The attribute di-
mensions were reduced according to rank and the top 15 attributes in
each dataset were selected, but the PA remained low (55.52% and
55.30%, respectively). Inconsistent data was then removed to avoid high
failure classifications or unreliable generated rules, which increased the
PA to 70.73% and 74.77%, respectively. This data cleaning sacrificed
8,626 cases in B-dataset and 5,803 in A-dataset that revealed high
inconsistency rates (28.64% and 32.48%, respectively), but by producing
an acceptable PA, the study was able to move on to knowledge elicitation
with reliable outcomes.

Second, real-world data on traffic accidents is quite unstructured and
contains decision attributes that are the same but produce different

conclusions. This causes a certain degree of difficulty in modeling traffic
accidents using classification-oriented prediction models. There are
inherent cognitive, subjective, or transitionary errors in policy accident
reports (Li et al., 2021), and traffic accident datasets collected from
public open data repositories will therefore inevitably contain mistakes.
It is suggested that knowledge elicitation from open data requires thor-
ough data cleaning and pre-processing to ensure the outcome quality of
each stage of analysis right down to the penultimate stage; in particular,
inconsistent granulated data needs to be well managed (Wu et al., 2013).
The involvement of domain specialists and police officers is required to
enhance data quality. In our case study, data cleaning was performed to
ensure there was no missing data and no inconsistent cases.

Third, the expected entropy of attributes of both datasets and their
ranks (Table 3) reveal that the main factors to predict accidents are cars
and collision point (e.g., “front end,” “front left end”) in the vehicle
category and motorcycle riders in the human category, which mainly lead
to leg (or foot) injuries. This supports findings in the literature that
drivers’ characteristics and behaviors are the main determinants of traffic
accidents (de Ona et al., 2014; Xin et al., 2020) and that collision types
influence the severity level of traffic accidents (Kwon et al., 2015). It also
echoes the suggestion of Chen and Liu (2012) that a car bonnet leading
edge is probably helpful in decreasing femur/pelvis injury risk. Accord-
ing to our findings in Taiwan, cars and motorcycles, moving forward or
turning left, hitting at the front end or right and left side are the major
factors associated with vehicle accidents, with the main outcome of leg
(or foot) injuries. The finding that turning left was a major cause of traffic
accidents stands out as one that is not covered in the literature.

Fourth, when considering the environmental category in isolation,
road category (e.g., “city road”) was ranked 14 in determinants of acci-
dents in B-dataset but was ranked outside the top 15 (specifically, 21) in
A-dataset. Meanwhile, road type (e.g., “intersection and overpass™) did
not appear in B-dataset but was ranked 14 in A-dataset (ranked 14). This
implies that before the Covid-19 period, traffic accidents occurred mostly
on non-specific types or sections of city roads. However, after the city
began to adapt to the pandemic, the road type had stronger CP, especially
at or near intersections. A possible explanation is the increased volume of
motorcycles as travelers attempted to maintain social distancing. This
interpretation is in line with the finding of Pawar et al. (2020) that
commuters shifted from public to private modes of transport to avoid
exposure to the coronavirus.



Table 6. Extract from B-Rulebase (support >50).

RID X33 X28 X29 X34 X30 X32 X31 X27 X14 X26 X24 X23 X16 X08 X13 Class Dep. Sup. Rel. Class distribution Simplicity
1752 DLS10 VHS11 DAS2 PEC1 FDC1 SLS1 RS1 SBC9 0c21 RSD4 RC5 AS9 MWwW8 12 740 1 0,0,0,0,0,0,0,740 61.6667
1585 DLS10 VHS11 DAS2 SLS1 SBC9 0c21 '\'B3of10\" RSD4 RC5 AS1 MWwW8 10 453 1 0,0,0,0,0,0,0,453 45.3000
1588 DLS10 VHS11 DAS2 FDC1 SBC9 0cC21 '\'B4of10\" RC5 AS1 MW8 9 219 1 0,0,0,0,0,0,0,219 24.3333
1598 DLS10 VHS11 DAS2 SBC9 0oc21 '\'B20f10\" RC5 AS1 MwW8 8 218 1 0,0,0,0,0,0,0,218 27.2500
5737 DLS10 VHS14 DAS2 SBC9 0cC21 \'B3of10\" AS1 MW8 7 178 1 0,0,0,0,0,0,0,178 25.4286
1683 DLS10 VHS11 DAS2 RS1 SBC9 0c21 RC6 AS2 MWwW8 8 150 1 0,0,0,0,0,0,0,150 18.7500
3529 VHS12 DAS2 PEC1 SLS1 SBC9 0c21 '\'B3of10\" AS1 MWwW8 8 127 1 0,0,0,0,0,0,0,127 15.8750
1591 DLS10 VHS11 DAS2 PEC1 SLS1 SBC9 0cC21 \'B50f10\" RC5 AS1 MW8 10 114 1 0,0,0,0,0,0,0,114 11.4000
2683 VHS11 0C22 RC7 AS1 MWwW8 4 114 1 0,0,0,0,0,0,0,114 28.5000
1672 DLS10 VHS11 DAS2 SLS1 RS1 SBC9 0cC21 '\'B3of10\" RSD4 RC5 AS2 MW8 11 112 1 0,0,0,0,0,0,0,112 10.1818
3902 DLS10 VHS12 RS1 SBC9 0c21 '\'B3of10\" RSD4 AS9 MWwW8 8 99 1 0,0,0,0,0,0,0,99 12.3750
5738 DLS10 VHS14 DAS2 SBC9 0cC21 '\'B4of10\" AS1 MWwW8 7 93 1 0,0,0,0,0,0,0,93 13.2857
2430 DLS10 VHS11 PEC1 SBC9 0C22 \'B3of10\" RC5 AS1 MW8 8 92 1 0,0,0,0,0,0,0,92 11.5000
2772 VHS11 0oc4 '\'B3of10\" RSD4 RC5 AS1 MwW8 6 91 1 0,0,0,0,0,0,0,91 15.1667
3538 VHS12 DAS2 SBC9 0cC21 '\'B4of10\" RC5 AS1 MW8 7 81 1 0,0,0,0,0,0,0,81 11.5714
5799 DLS10 VHS14 DAS2 PEC1 SLS1 SBC9 0c21 '\'B3of10\" RSD4 RC5 AS9 MwW8 11 79 1 0,0,0,0,0,0,0,79 7.1818
4774 DLS10 VHS13 SBC9 0cC21 '\'B3of10\" RC5 MW8 6 74 1 0,0,0,0,0,0,0,74 12.3333
1720 DLS10 VHS11 DAS2 PEC1 SLS1 SBC9 0oc21 '\'B3of10\" AS8 MWwW8 9 73 1 0,0,0,0,0,0,0,73 8.1111
RID: Rule identifier, Dep.: Depth, Sup.: Support, Rel: Reliability.

Table 7. Extract from A-Rulebase (support >50).

RID X33 X28 X29 X34 X14 X30 X16 X32 X31 X27 X26 X10 X23 X9 X13 Class Dep Sup. Rel. Class distribution Simplicity
915 DLS10 VHS11 DAS2 RSD4 FDC1 SLS1 SBC9 SL50 AS9 MW8 9 599 1 0,0,0,0,0,0,0,599 66.5556
834 DLS10 VHS11 DAS2 RSD4 SBC9 SL50 '\'B3of10\" AS1 MW8 8 377 1 0,0,0,0,0,0,0,377 47.1250
835 DLS10 RS1 DAS2 SLS1 SBC9 SL50 \'B4of10\" AS1 MW8 9 173 1 0,0,0,0,0,0,0,173 19.2222
2540 DLS10 VHS14 SBC9 '\'B3of10\" AS1 MW8 5 153 1 0,0,0,0,0,0,0,153 30.6000
864 DLS10 VHS11 DAS2 PEC1 FDC1 SBC9 SL50 '\'B3of10\" AS2 MW8 9 132 1 0,0,0,0,0,0,0,132 14.6667
527 DLS10 VHS11 RS1 DAS2 PEC1 FDC1 SBC9 SL40 AS1 MW8 9 127 1 0,0,0,0,0,0,0,127 14.1111
842 DLS10 VHS11 DAS2 SBC9 SL50 \'B20f10\" AS1 MW8 7 122 1 0,0,0,0,0,0,0,122 17.4286
838 DLS10 VHS11 DAS2 SLS1 SBC9 SL50 \'B50f10\" AS1 MW8 8 115 1 0,0,0,0,0,0,0,115 14.3750
1421 DLS10 VHS12 FDC1 SBC5 SL50 AS1 MW8 6 96 1 0,0,0,0,0,0,0,96 16.0000
750 DLS10 VHS11 FDC1 SBC5 SL50 AS1 MW8 6 91 1 0,0,0,0,0,0,0,91 15.1667
1609 VHS12 DAS2 SBC9 SL50 '\'B30f10\" AS1 MW8 6 83 1 0,0,0,0,0,0,0,83 13.8333
2509 DLS10 VHS14 FDC1 SBC9 SL50 '\'B4of10\" AS1 MW8 7 69 1 0,0,0,0,0,0,0,69 9.8571
869 DLS10 VHS11 RS1 DAS2 SBC9 SL50 '\'B4of10\" AS2 MW8 8 69 1 0,0,0,0,0,0,0,69 8.6250
2648 DLS10 VHS14 DAS2 SBC9 SL50 \'B3of10\" RT3 AS9 MW8 8 69 1 0,0,0,0,0,0,0,69 8.6250
2366 VHS14 DAS2 SLS1 SBC5 SL50 '\'B30f10\" MW8 6 68 1 0,0,0,0,0,0,0,68 11.3333
402 DLS10 VHS11 DAS2 FDC1 SBC9 SL30 AS9 MW8 7 68 1 0,0,0,0,0,0,0,68 9.7143
1753 DLS10 VHS12 DAS2 RSD4 SBC9 SL50 '\'B3of10\" RT3 AS9 MW8 9 68 1 0,0,0,0,0,0,0,68 7.5556
561 DLS10 VHS11 DAS2 FDC1 SBC9 SL40 '\'B3of10\" AS9 MW8 8 63 1 0,0,0,0,0,0,0,63 7.8750

RID: Rule identifier, Dep.: Depth, Sup.: Support, Rel: Reliability.

o3 nm D

Z0£012 (220Z) 8 uofiH



C. Wu et al

Heliyon 8 (2022) e10302

Table 8. Extracts from B-Rulebase and A-Rulebase with a support value more than 50.

B-RB Values in B Value in A A-RB
Predictive attribute A% {leg or foot} A%
Decisional attributes
Collision point \% {front end, right side} \%
Driver license v {motorcycle license} v
Occupation \% {unknown}
Alcohol test \% {pass} \%
Age v {from 11 to 30} {from 21 to 30} v
Behavior condition \' {moving forward} \
Safety device use v {helmet or fasten seatbelt} Y
Accident cite A% {regular lane, on intersection} {regular lane, near intersection, on intersection} A%
License status \% {legal} \%
Road category v {city road}
Device use (mobile phone) \% {no}
Road pavement Y {asphalt}
Road pavement defect Y {None}
Speed limit {50} \%
Road pavement condition {wet} Y

B-RB: B-Rulebase, A-RB: A-Rulebase

As shown in Table 4, accidents due to collisions between cars and
motorcycles were 5.13% higher in A-dataset than B-dataset, and injuries
to the legs increased by 3.46%. To maintain social distancing and cope
with parking restrictions, travelers are likely to have shifted from using
public buses (public transportation systems) or cars to individual mo-
torcycles, thus increasing the likelihood of traffic accidents in the already
heavy traffic conditions in the city. Further support for this interpretation
is the finding that speed limits were not a major determinant of accidents
before Covid-19 but became prominent in A-dataset. Speed has been
identified in the literature as one of the main determinants of the severity
of crashes (Altwaijri et al., 2012; Ratanavaraha and Suangka, 2014). It is
therefore suggested to the government and companies that remote work
should be encouraged, but where this is not possible segmenting working
hours to reduce traffic load is a worthwhile alternative.

Fifth, collision point and vehicle type (“motorcycle”) held the highest
classification ranks in both datasets after cleaning, and the most frequent
outcome was injury to the leg or foot. This echoes the evidence that
motorcycle use increased after the pandemic outbreak. Moreover, despite
no remarkable differences between B-Rulebase and A-Rulebase, the latter
showed higher average levels of support and simplicity (2.5687 vs.
12.2334 and 0.4613 vs. 0.3799, respectively). This implies that on
average a rule generated from A-dataset holds 5.240 decisional attributes
with a support value of 2.5768 and a rule generated from B-dataset holds
5.636 attributes and a support value of 2.2334; the average rule from A-
dataset is therefore superior on both measures, with a lower number of
decisional attributes and a higher support value.

In general, these numbers seem too low to confidently verify the
generated decision tree, although there is no evidence in the literature to
draw on. The rules support values of 50 or above of various depths
generated from B-Rulebase and A-Rulebase have been used to present the
key determining attributes and their associated injuries as the main
outcomes of the proposed prediction model. Nonetheless, these numbers
do reveal that the structure of the decision tree represented by A-Rulebase
is more concise than that of B-Rulebase. As shown in Figure 2, 87.71%
(17,699 of 21,490) of cases in B-Rulebase have a depth of four to nine,
whereas 95.19% of cases in A-Rulebase meet this criterion. This indicates
that given the same decisional attributes, prediction of traffic accidents is
more likely for the period after the pandemic hit than the period be-
forehand. As mentioned above, this is probably due to the increase of
accidents between cars and motorcycles, which generate a high occur-
rence of leg injuries and therefore make for more consistent rules in the
prediction model.

10

In summary, the Covid-19 pandemic and associated containment
measures has changed the factors and outcomes of traffic accidents. The
findings of the present study indicate that to maintain social distancing and
avoid infection, travelers in Taiwan became more likely to ride motorcy-
cles, with a 5.13% increase in motorcycle involvement in accidents. This
echoes the findings of Pawar et al. (2020) that 5.3% of commuters shifted
from public to private transport modes. This shift increases traffic load, and
shows that in addition to the impacts of human and vehicle factors, envi-
ronmental variables are indisputably important and significantly influence
the occurrence and nature of traffic accidents. One promising future
research direction is to examine how technologies can be used to support
remote work and how working hours for non-remote workers can be
rearranged to spread traffic load. To support related policies, traffic poli-
cymakers should implement innovative technologies (e.g., surveillance
systems and data analysis techniques) to collect data and frequently update
management on traffic accident trends and factors.

5. Limitation and future works

Some limitations of the study are worth mentioning with a view to
supporting further research. Similar with most previous studies, only a
single data source (government open data) was used in the prediction
model for traffic accidents developed in the research. Further insight could
be provided by analyzing additional data sources, such as technological
surveillance systems. Data selection is the key to success in this endeavor:
issues such as privacy, cost, and consent from vehicle users should be
considered, especially in the post-pandemic era. From the perspective of
policymaking support, a prediction model must focus on the sources that
are available, which determine the contexts relevant to the prediction or
description of traffic accidents at an acceptable validation level, given that
traffic accidents are becoming increasingly difficult to predict.

Thisstudy demonstrates that the accuracy of the prediction model of both
original datasets with 34 decisional attributes was not sufficiently high. This
shows the need for application-oriented research to include in the pre-
processing of real-world open data measures to deal not only with missing
dataand granulation butalsowiththeselectionofattributes, pre-examination
of the prediction model, and inconsistency management to ensure the output
quality of later stages of analysis. Moreover, the original dataset was splitinto
two by considering the date that the government announced it would begin to
combat the incoming threat of Covid-19. Future studies may examine major
government policy announcements and changes in Covid-19 pandemic
trends to generate additional findings conducive to traffic policymaking.
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The top 15 attributes by classification ranking were considered in this
study, and inconsistent granulated data was removed at the 60% level.
Although these steps were necessary for the feasibility of the research,
they limit the findings and implications due to some fundamental theo-
retical and practical considerations. The results may vary by the selection
of an acceptable inconsistency level. Given its links to PA, future studies
should carefully manage the selection policy with respect to inconsistent
granulated data removal. The unsupervised granulation technique (i.e.,
equal width interval) was used here to convert attributes from contin-
uous to discrete measures. Other unsupervised techniques, such as equal
frequency intervals (Liu and Setiono, 1997; Wu et al., 2013), and su-
pervised techniques, such as minimum distance length (Griinwald,
2007), could be used to examine whether alternative granulation
methods enhance the accuracy of the prediction model.

Furthermore, this study adopted a classification-oriented model using
C4.5 to develop the prediction model and generate decision rules for traffic
accidents. This prediction model can be extended to developing prediction
models for other traffic issues (e.g., transportation systems) in other regions.
Other prediction models, such as random forest (Breiman, 2001) and sup-
port vector machine (Keerthi et al., 2001), are also available (Chand et al.,
2021) and may have merit for knowledge elicitation. Comparisons between
C4.5 used in the present study and other techniques to deepen the under-
standing of knowledge extraction technique applications may be one of the
future works in the decision making of road safety context.

6. Conclusion

This study used the classification-oriented technique on open govern-
ment data of Taoyuan city in Taiwan to model traffic accidents. In this paper,
the literature on the use of open data is reviewed and the procedure is re-
ported for pre-processing the collected dataset, splitting the dataset into two
subsets for comparison, applying the classification-oriented technique to
predict traffic accidents, and generating decision rules to achieve the
research objectives. Four categories of variables were considered as po-
tential determinants of traffic accidents: temporal, environmental, human,
and vehicle. With various combinations of categories having been used in
the literature, the findings of the present study disclose that human and
vehicle factors are more important than the other two. Although it is worth
placing emphasis on how to develop a safe traffic environment, vehicle
drivers or users are key to the reduction of traffic risks.

Data pre-processing, including cleaning and granulation, was a time-
consuming task. The use of the classification technique C4.5 to develop
the prediction model on the original datasets produced an unacceptable
level of PA. However, accuracy was improved with the removal of
inconsistent granulated data. This reveals that there are uncertainties
involved in knowledge elicitation from a real-world dataset, such that
confirmation of the processing quality at each stage is necessary to ensure
that the next stage is meaningful. The significance and uniqueness of this
research are evident. The proposed prediction model and research find-
ings presented above reveal that there is a transition gap, not well
covered by the existing literature, in the proposed prediction model for
traffic accidents in Taiwan. Although this research mainly contributes to
the domain of traffic safety, particularly in respect to the human and
vehicle factors in traffic safety policymaking, the method can be applied
and refined to advance technological innovation and to support existing
approaches beyond this domain and in different contexts.
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