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Abstract: Treating postoperative (PO) pain is a clinical challenge. Inadequate PO pain management
can lead to worse outcomes, for example chronic post-surgical pain. Therefore, acquiring new
information on the PO pain mechanism would increase the therapeutic options available. In this
paper, we evaluated the role of a natural substance, epigallocatechin-3-gallate (EGCG), on pain and
neuroinflammation induced by a surgical procedure in an animal model of PO pain. We performed
an incision of the hind paw and EGCG was administered for five days. Mechanical allodynia, ther-
mal hyperalgesia, and motor dysfunction were assessed 24 h, and three and five days after surgery.
At the same time points, animals were sacrificed, and sera and lumbar spinal cord tissues were
harvested for molecular analysis. EGCG administration significantly alleviated hyperalgesia and
allodynia, and reduced motor disfunction. From the molecular point of view, EGCG reduced the
activation of the WNT pathway, reducing WNT3a, cysteine-rich domain frizzled (FZ)1 and FZ8
expressions, and both cytosolic and nuclear β-catenin expression, and the noncanonical β-catenin–
independent signaling pathways, reducing the activation of the NMDA receptor subtype NR2B
(pNR2B), pPKC and cAMP response element-binding protein (pCREB) expressions at all time points.
Additionally, EGCG reduced spinal astrocytes and microglia activation, cytokines overexpression
and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) pathway, downregulat-
ing inducible nitric oxide synthase (iNOS) activation, cyclooxygenase 2 (COX-2) expression, and
prostaglandin E2 (PGE2) levels. Thus, EGCG administration managing the WNT/β-catenin signaling
pathways modulates PO pain related neurochemical and inflammatory alterations.

Keywords: pain; epigallocat-echin-3-gallate; rat

1. Introduction

In recent years, the undertreatment of acute pain was identified as a major health-care
concern. Clinical analysis showed that only the 25% of surgical patients had satisfac-
tory relief of acute pain [1]. Despite significant improvements in pain management, re-
searchers suggest that postoperative (PO) pain is still inadequately managed [2,3]. The lack
of a clinically meaningful progress in the PO pain analgesia is probably due to the limited ef-
ficacy and side effects of the available analgesic drugs [4,5]. Treatment of PO pain continues
to be an important clinical goal. It is of fundamental importance to discover the mecha-
nisms underlying PO pain, as well as to find medications to treat it. Despite numerous
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implicated processes and decades of investigation, the molecular and cellular mechanisms
underlying PO pain remain uncertain, and therapeutic approaches for managing PO pain
are limited. It has been described that central neuronal sensitization is involved in PO pain
and hyperalgesia [6,7]. In vivo neurological studies have displayed increased rates and
prevalence of spontaneous activity of spinal neurons in the dorsal horn after surgery [8,9].
However, the complete role of central sensitization in the pathophysiology of persistent PO
pain is elusive [9]. A rat model for PO pain has been characterized by Brennan et al. [10].
In particular, the model consists of a surgical incision in the plantar hind paw and is char-
acterized by enhanced responsiveness to mechanical stimuli [11]. At the end of the surgery,
after the recovery from anesthesia, the allodynia and the reduced withdrawal thresholds
are maxima and remains significant for several days before progressively decreasing [12].
Thus, investigating the role of the spinal activation in the perception and persistence of PO
pain is an important challenge. It has been reported that the neuronal alterations that occur
in neuropathic and bone cancer pain involve the activation of the WNT signaling [13].

WNTs are a family of proteins serving as long- or short-range signaling mediators in
the management of cellular processes, such as differentiation, proliferation, and migration,
during the development of the cardiac and central nervous system [14,15]. In humans,
19 members of these secreted lipid-modified signalling proteins have been identified [16].
In particular, WNT pathways include noncanonical β-catenin–independent signaling path-
ways and canonical β-catenin signaling pathways [14,17–20]. In the canonical pathway,
WNT ligands link to the cysteine-rich domain frizzled (FZ) receptors which, in turn, acti-
vate several intracellular signaling cascades, including pro-inflammatory events. β-Catenin
is a multi-purpose protein that interrelates with transcription factors to induce target gene
transcription. The noncanonical β-catenin–independent signaling pathways consist in
the release of intracellular calcium and the activation of the subsequent intracellular path-
ways [19,21]. Therefore, we imagined that targeting the WNT pathways with natural small
molecules without side effects that would interfere with the analgesic drugs may be an
effective strategy to counteract PO pain.

Green tea has anti-inflammatory, anti-oxidant, anti-diabetic, and hypolipidemic effects.
It increases insulin glucose uptake and insulin activity and reduces glucose absorption [22].
Moreover, green tea has a positive outcome in cases of cardiovascular diseases, cancer, ox-
idative stress, neurological diseases, infections, and hypercholesterolemia [23–27]. One of
the most abundant active substances (up to 63%) in green tea is the epigallocatechin-3-
gallate (EGCG) [28]. It has important activities, such as anti-oxidant, hypolipidemic, anti-
inflammatory, anti-obesity, anticancer, and antidiabetic [29,30]. It shows an inhibitory effect on
the WNT/β-catenin signaling pathways in human osteoarthritis chondrocytes [31]. The aim
of this study was to evaluate the effect of the EGCG on the perception and persistence at
different days of PO pain through the modulation of the canonical and noncanonical β-catenin-
independent WNT signaling pathways, neurochemical and inflammatory modifications.

2. Results
2.1. Effect of EGCG Administration on Mechanical Allodynia, Thermal Hyperalgesia, and Motor
Dysfunction Induced by PO Pain

Behavioral analyses were performed in order to evaluate EGCG effect on pain per-
ception. Mechanical allodynia (Figure 1A) and thermal hyperalgesia (Figure 2B) strongly
increased already after two hours from surgical incision and lasted for five days gradually
decreasing. EGCG administration already after 24 hours and three days increased the
response to von Frey stimulation and heat source, reporting animals to pre-surgery levels at
day four after surgery. To assess motor function, a rotarod test was performed (Figure 1C).
Immediately after the surgery, animals showed impairments in motor coordination and
took five days to recover. EGCG treatment significantly improved locomotor activity
already after 24 h and three days from surgery.
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Figure 1. EGCG administration reduced mechanical allodynia, thermal hyperalgesia and motor dysfunction: von Frey test
(A), plantar test (B) and rotarod test (C). A p-value of less than 0.05 was considered significant. * p < 0.05 vs. sham, # p < 0.05
vs. vehicle.

Figure 2. EGCG administration reduced WNT/FZ/β-catenin pathway activation: Western blot analysis of: WNT3a (A),
FZ1 (B), FZ8 (C) expression. A p-value of less than 0.05 was considered significant. * p < 0.05 vs. sham, # p < 0.05 vs. vehicle.

2.2. Effect of EGCG Administration on WNT/FZ/β-Catenin Pathway Activation Induced by
PO Pain

Western blot analysis showed increased WNT3a and FZ1 expression in samples
harvested from vehicle treated rats 24 h and three days after surgery, as compared to
sham animals, while no differences were detected at five days. EGCG administration
significantly decreased WNT3a and FZ1 expression after 24 h and restored them to basal
levels, three and five days after surgery (Figure 2A,B). FZ8 expression was significantly
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increased at all timepoints (24 h, and three and five days) as compared to the sham. EGCG
treatment reduced FZ8 expression and restored it to basal levels after five days from surgery
(Figure 2C). Additionally, in both cytosolic (Figure 3A) and nuclear (Figure 3B) fractions,
β-catenin expression was significantly increased. EGCG administration strongly reduced
β-catenin expression in cytoplasm and nucleus at all timepoints.

Figure 3. EGCG administration reduced β-catenin expression: Western blot analysis of: cytosolic β-catenin (A) and nuclear
β-catenin (B) expression. A p-value of less than 0.05 was considered significant. * p < 0.05 vs. sham, # p < 0.05 vs. vehicle.

2.3. Effect of EGCG Administration on GFAP and Iba-1 Activation Induced by PO Pain

Immunohistochemical analysis showed activated astrocytes and microglia were de-
tected in vehicle treated rats. In particular, increased GFAP expression in vehicle treated
rats at 24 h (Figure 4B) and three days (Figure 4D) after surgery, as compared to sham rats
(Figure 4A), while, at five days, small levels of activation was detected (Figure 4F). EGCG
administration significantly decreased GFAP expression at all timepoints (Figure 4C,E,G).
Moreover, increased Iba-1 expression was found after 24 h (Figure 4I) and three days
(Figure 4K), as compared to the sham animals (Figure 4H). Five days after surgery, Iba-1
expression slightly decreased in vehicle group (Figure 4M). EGCG treatment reduced
microglia activation 24 h (Figure 4J), and three (Figure 4L) and five (Figure 4N) days
after surgery.
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Figure 4. EGCG administration reduced GFAP and Iba-1 activation: Immunohistochemical analysis of GFAP: sham (A),
vehicle 24 h (B), EGCG 24 h (C), vehicle three days (D), EGCG three days (E), vehicle five days (F), EGCG five days (G).
Immunohistochemical analysis of Iba-1: sham (H), vehicle 24 h (I), EGCG 24 h (J), vehicle three days (K), EGCG three days
(L), vehicle five days (M), EGCG five days (N). A p-value of less than 0.05 was considered significant.

2.4. Effect of EGCG Administration on pNR2B, pPKCγ, and pCREB Expression Induced by
PO Pain

Western blot analysis showed increased pNR2B expression (Figure 5A), pPKCγ

(Figure 5B) and pCREB (Figure 5C) expression in samples harvested from vehicle treated
rats 24 h and three days after surgery, as compared to sham animals, while at five days
it slightly decreased. EGCG administration significantly decreased pNR2B (Figure 5A),
pPKCγ (Figure 5B) and pCREB (Figure 5C) expression after at all timepoints.

Figure 5. EGCG administration reduced pNR2B, pPKCγand pCREB expression: Western blot analysis of: pNR2B (A), pPKCγ (B),
pCREB (C) expression. A p-value of less than 0.05 was considered significant. * p < 0.05 vs. sham, # p < 0.05 vs. vehicle.
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2.5. Effect of EGCG Administration on Cytokines and NFkB Pathway Activation Induced by
PO Pain

Increased levels of IL-18 (Figure 6A), TNF-α (Figure 6B) and IL-1β (Figure 6C) were
detected in the vehicle group 24 h, and three and five days from surgery. EGCG treatment
strongly reduced their expression, restoring it to basal levels at five days. Western blot anal-
ysis showed reduced IkB-α expression in the cytosolic fraction of the samples harvested
from the vehicle group at all timepoints, as compared to the sham (Figure 6D). EGCG ad-
ministration increased cytosolic IkB-α expression at 24 h and three days from surgery
and restored it to basal levels after five. In the nuclear fraction, NFkB expression was in-
creased in the vehicle group at all timepoints, as compared to the sham animals (Figure 6E).
EGCG treatment significantly reduced nuclear NFkB expression at 24 h, and three and five
days from surgery.

Figure 6. EGCG administration reduced cytokines and NFkB pathway activation: IL-18 (A), TNF-α (B), and IL-1β (C),
Western blot analysis of: IkB-α (D) and NFkB (E) expression. A p-value of less than 0.05 was considered significant.
* p < 0.05 vs. sham, # p < 0.05 vs. vehicle.

2.6. Effect of EGCG Administration on iNOS, COX-2 and PGE2 Expression Induced by PO Pain

Western blot analysis showed increased iNOS and COX-2 expressions in tissues from
vehicle treated rats 24 h, and three and five days after surgery, as compared to sham
animals. EGCG administration reduced both expressions at all timepoints (Figure 7A,B).
Additionally, PGE2 levels were significantly increased 24 h, and three and five days after
surgery and EGCG administration reduced its levels (Figure 7C).
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Figure 7. EGCG administration reduced iNOS, COX-2, and PGE2 expression: Western blot analysis of: iNOS (A), COX-2 (B)
expression, PGE2 levels (C). A p-value of less than 0.05 was considered significant. * p < 0.05 vs. sham, # p < 0.05 vs. vehicle.

3. Discussion

Patients consider PO pain to be one of the most unpleasant forms of surgical pain.
Notwithstanding the increasing understanding of the molecular biology and neurology
of PO pain, we still need to develop successful analgesics for pain control, including post-
operative pain [32]. Thus, a significant number of patients continue to experience pain
after surgery, which is not properly managed [33,34]. The surgical incision activates many
molecular mechanisms that trigger and spread inflammation, oxidative stress and pain
at peripheral and central levels [7,35]. This study was aimed to evaluate the mechanism
of EGCG effect on PO pain in rats at different timepoints. EGCG showed important
anti-inflammatory effects. In particular, mechanical hyperalgesia and thermal allodynia
induced by the incision lasted for several days, while EGCG administration significantly
alleviated hyperalgesia and allodynia. This antinociceptive would be ascribed to different
molecular events induced by EGCG. We decided to evaluate the molecular mechanism
activated by EGCG after 24 h, and three and five days from surgery.

In particular, we investigated its effects on the WNT signaling pathway, evaluating the
expression on WNT proteins. The β-catenin pathway is one of the most well studied in the
propagation of pain and related injury and regeneration of the nervous system [15,19,20].
Among the 19 members of the WNT proteins family, WNT3a is the well-studied activator
of this pathway [36,37]. Surgical incision induced an increase in the expression of WNT3a
in the spinal cord. In particular, WNT3a expression was increased 24 h and three days from
surgery, while after five days its expression partially decreased.

WNT3a binding to the FZ receptors induced the activation of the WNT/β-catenin
signaling pathway in the postsynaptic neurons. EGCG reduced WNT3a expression and
also managed the expression of the FZ receptors at all timepoints. In particular, EGCG de-
creased WNT3a expression already after 24 h and three days from the surgery. Among the
FZ receptors the two most well studied in the pain perception are FZ1 and FZ8. They differ
from each other for the contribution to pain production and persistence. In particular,
FZ1 is rapidly but transiently increased after injury, while FZ8 over-expression lasted
for longer, contributing to pain persistence [13]. EGCG administration reduced both FZ1
and FZ8 expression, reducing both pain production and persistence 24 h, and three and
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five days from surgery. Activation of WNT/β-catenin signaling induces the β-catenin
accumulation into the cytoplasm and its translocation into the nucleus [19,21]. EGCG once
reduced the WNT3a and its receptor over expression also reduced β-catenin accumulation
into the cytoplasm and translocation into the nucleus. From the neurochemical point of
view WNT/β-catenin signaling is responsible of the pain-induced activation of microglia
and astrocytes cells and upregulated the expression of the NR2B receptor and the related
Ca2+-dependent pathway in the dorsal horn of the spinal cord [11,13,38,39]. EGCG admin-
istration reduced pain perception as displayed by the behavioral analysis and acting on the
WNT/β-catenin pathway, reduced GFAP and Iba-1 over-expression both at all timepoints.
Moreover, EGCG reduced the activation of the NMDA receptor subtype NR2B and the
subsequent Ca2+—dependent signals Ppkcγ and cAMP response element-binding protein
(CREB) in the spinal cord at all timepoints. PO pain has also an important inflammatory
component [11,40]. WNT/β-catenin signaling regulates the IL-18 and TNF-α levels in
the spinal cord that directly contribute to pain production and persistence. The increased
expression of the pro-inflammatory cytokines is accompanied by elevation of IL-1β and
NFkB pathway [41]. EGCG showed anti-inflammatory activity by reducing NFkB translo-
cation into the nucleus and pro-inflammatory mediator over-expressions at all timepoints.
NFkB manages the expression of several proteins such as COX-2 and iNOS [42]. COX-2,
in turn, is major regulator of the increase in the PGE2 levels, which increases nociception
following peripheral inflammatory stimuli. EGCG administration reduced COX-2 and
iNOS expression and PGE2 levels 24 h, and three and five days from surgery.

These results showed the important role of EGCG in modulating the WNT/β-catenin
signalling pathway suppressing the production and persistence of PO pain and the related
neurochemical and inflammatory alterations.

4. Materials and Methods
4.1. Animals

Male Sprague Dawley rats (Envigo, Milan, Italy) were employed. This study was
approved by the University of Messina Review Board for the care of animals (D.Lgs 2014/26
and EU Directive 2010/63).

4.2. Surgical Procedures

PO pain were performed as described previously [11]. Briefly, rats were anesthetized
and placed dorsally. A 1 cm incision was made in the plantar hind paw. The underlying
muscle was raised and longitudinally incised, leaving the insertion and origin of the
muscle intact. A 5-0 nylon suture was employed to close the skin. The control group was
anesthetized but no incision was performed.

4.3. Experimental Groups

Rats were randomly divided in groups:
Group 1: sham + vehicle: Rats were anesthetized but no incision was performed.

Vehicle solution (distilled water) was administered one hour, six hours after anesthesia,
and daily by gavage.

Group 2: sham + EGCG: Rats were anesthetized but no incision was performed. EGCG
(25 mg/Kg) was administered one hour, six hours after anesthesia, and daily by gavage.

Group 3: PO pain + vehicle: Rats were subjected to surgical procedure and EGCG
(25 mg/Kg) was administered one hour, six hours after surgery, and daily by gavage.

EGCG dose was chosen based on literature [43]. Behavioral analyses were performed
daily and animals were sacrificed at 24 h, and three and five days after surgery. Lum-
bar spinal cords were harvested for molecular analyses.
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4.4. Behavioural Analysis
4.4.1. Mechanical Hyperalgesia

A von Frey filament test was employed to evaluate hypersensitivity to a mechanic
stimuli. The apparatus consists in a plastic box placed on a metal mesh floor and a force
transducer equipped with a plastic tip [44–46]. After 15 min of acclimation the transducer
was applied to the plantar surface until a sharp lift was observed. The mechanical threshold
was recorded.

4.4.2. Thermal Hyperalgesia

A plantar test was employed to evaluate thermal hyperalgesia. The apparatus consists
of plastic chambers and a mobile unit with a heat source [47,48]. After 15 min of habitua-
tion, the heat source was applied to the plantar surface and the paw withdrawal latency
was recorded.

4.4.3. Motor Coordination

A rotarod test was employed to evaluate motor coordination. The apparatus consists
of a horizontally oriented rotating cylinder suspended above a cage floor [49]. A training
session was performed 24 h before test. The test was performed starting from a constant
speed of 25 rpm, then the rotation was increased linearly at 20 rpm. The latency(s) for the
first fall over a 4 min period was recorded.

4.5. Immunohistochemical Analysis

Lumbar spinal cord samples were fixed and embedded in paraffin. Immunohis-
tochemical analysis was conducted, as previously described [50]. Sections were incu-
bated overnight with: anti-glial fibrillary acidic protein GFAP (sc-33673) or anti-iba-1 (sc-
3272). All sections were washed with PBS and then treated, as previously reported [51,52].
Stained sections were observed using a Leica DM6 microscope (Leica Microsystems SpA,
Milan, Italy) following a typical procedure [53].

4.6. Western Blot Analysis

Lumbar spinal cord tissues were homogenized and Western blots were performed as
already described [54,55]. A specific primary antibody, such as WNT3a (sc-80457), anti-FZ1,
anti-FZ8, anti–β-catenin, anti-active β-catenin, anti-pNR2B, anti- pPKCγ, anti-p-CREB,
anti-NFkB (sc-8008), anti-NOS2 (sc-7271), or anti-COX-2 (sc-376861), was mixed in 5%
w/v nonfat dried milk solution and was incubated at 4 ◦C overnight. Afterwards, blots
were incubated with peroxidase-conjugated bovine antimouse IgG secondary antibody or
peroxidase conjugated goat anti-rabbit IgG for 1 h at room temperature [56,57]. To verify
the equal amounts of protein, membranes were also incubated with the antibody against
β-actin or lamin A/C. Signals were detected with enhanced chemiluminescence detec-
tion system reagent (Super-SignalWest Pico Chemiluminescent Substrate, Pierce, Monza,
Italy) [58–60]. The relative expression of the protein bands was quantified by densitometry
with Bio-Rad ChemiDoc XRS software (Bio-Rad, Milan, Italy) and standardized to β-actin
or lamin A/C levels. Images of blot signals were imported to analysis software (v2003,
Image Quant TL, Amersham Biosciences, Freiburg, Germany) [59]. The western blots
analyses are representative of 3 different gels made by dividing the number of samples
obtained from animals for each experimental group in different days [61,62].

4.7. ELISA

Serum IL-18, TNF-α, IL-1β and PGE2 levels were measured by enzyme-linked im-
munosorbent assay (Cusabio Biotech), according to the manufacturer instructions in
pg/mL [63,64].
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4.8. Statistical Evaluation

All values in the figures and text are expressed as mean ± standard error of the
mean (SEM) of N observations. For in vivo studies, N represents the number of animals
studied. The results were examined by one- or two-way analysis of variance followed by a
Bonferroni post-hoc test for multiple comparisons. All results were normally distributed.
A p-value of less than 0.05 was considered significant. A p-value of less than 0.05 was
considered significant. * p < 0.05 vs. sham, # p < 0.05 vs. vehicle.
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