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Abstract

Background

The relationship between allergic sensitisation and asthma is complex; the data about the

strength of this association are conflicting. We propose that the discrepancies arise in part

because allergic sensitisation may not be a single entity (as considered conventionally) but

a collection of several different classes of sensitisation. We hypothesise that pairings

between immunoglobulin E (IgE) antibodies to individual allergenic molecules (compo-

nents), rather than IgE responses to ‘informative’ molecules, are associated with increased

risk of asthma.

Methods and findings

In a cross-sectional analysis among 461 children aged 11 years participating in a popula-

tion-based birth cohort, we measured serum-specific IgE responses to 112 allergen compo-

nents using a multiplex array (ImmunoCAP Immuno-Solid phase Allergy Chip [ISAC]). We

characterised sensitivity to 44 active components (specific immunoglobulin E [sIgE] > 0.30

units in at least 5% of children) among the 213 (46.2%) participants sensitised to at least

one of these 44 components. We adopted several machine learning methodologies that

offer a powerful framework to investigate the highly complex sIgE–asthma relationship.

Firstly, we applied network analysis and hierarchical clustering (HC) to explore the connec-

tivity structure of component-specific IgEs and identify clusters of component-specific sensi-

tisation (‘component clusters’). Of the 44 components included in the model, 33 grouped in
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seven clusters (C.sIgE-1–7), and the remaining 11 formed singleton clusters. Cluster mem-

bership mapped closely to the structural homology of proteins and/or their biological source.

Components in the pathogenesis-related (PR)-10 proteins cluster (C.sIgE-5) were central to

the network and mediated connections between components from grass (C.sIgE-4), trees

(C.sIgE-6), and profilin clusters (C.sIgE-7) with those in mite (C.sIgE-1), lipocalins (C.sIgE-

3), and peanut clusters (C.sIgE-2). We then used HC to identify four common ‘sensitisation

clusters’ among study participants: (1) multiple sensitisation (sIgE to multiple components

across all seven component clusters and singleton components), (2) predominantly dust

mite sensitisation (IgE responses mainly to components from C.sIgE-1), (3) predominantly

grass and tree sensitisation (sIgE to multiple components across C.sIgE-4–7), and (4)

lower-grade sensitisation. We used a bipartite network to explore the relationship between

component clusters, sensitisation clusters, and asthma, and the joint density-based non-

parametric differential interaction network analysis and classification (JDINAC) to test

whether pairwise interactions of component-specific IgEs are associated with asthma. JDI-

NAC with pairwise interactions provided a good balance between sensitivity (0.84) and

specificity (0.87), and outperformed penalised logistic regression with individual sIgE com-

ponents in predicting asthma, with an area under the curve (AUC) of 0.94, compared with

0.73. We then inferred the differential network of pairwise component-specific IgE interac-

tions, which demonstrated that 18 pairs of components predicted asthma. These findings

were confirmed in an independent sample of children aged 8 years who participated in the

same birth cohort but did not have component-resolved diagnostics (CRD) data at age 11

years. The main limitation of our study was the exclusion of potentially important allergens

caused by both the ISAC chip resolution as well as the filtering step. Clustering and the net-

work analyses might have provided different solutions if additional components had been

available.

Conclusions

Interactions between pairs of sIgE components are associated with increased risk of asthma

and may provide the basis for designing diagnostic tools for asthma.

Author summary

Why was this study done?

• The relationship between allergic sensitisation and asthma is complex.

• Asthma prediction models based on the IgE responses to the whole allergen extracts

exhibit relatively poor performance.

• This study examines the relationship between IgE responses to multiple allergen compo-

nents in component-resolved diagnostics (CRD) and their associations with asthma.
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PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002691 November 13, 2018 2 / 22

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: CM reports reports

honoraria for speaking at Novartis, Astra Zeneca,

Thermo Fisher, GSK; being a member of an

advisory board for Novartis and GSK; and grants

from NIHR, North West Lung Centre Charity,

Moulton Charitable Foundation. AS reports

research grant funding from Medical Research

Council, NIH, National Institute of Health Research,

JP Moulton Charitable Foundation and lecture fees

from Thermo Fisher Scientific. The other authors

have no competing interests to declare.

Abbreviations: AD, atopic dermatitis; AUC, area

under the curve; COPD, chronic obstructive

pulmonary disease; CRD, component-resolved

diagnostics; HC, hierarchical clustering; HDM,

house dust mite; IgE, immunoglobulin E; ISAC,

ImmunoCAP Immuno-Solid phase Allergy Chip;

ISU, ISAC Standardised Unit; JDINAC, joint

density-based nonparametric differential

interaction network analysis and classification;

MDS, multidimensional scaling; NICE, UK National

Institute of Health and Care Excellence; OR, odds

ratio; PAM, partition around medoids; PR,

pathogenesis-related; ROC, receiver operating

characteristic; sIgE, specific immunoglobulin E;

SPT, skin prick test.

https://doi.org/10.1371/journal.pmed.1002691


What did the researchers do and find?

• Serum-specific IgE responses to 112 allergen components were measured using a multi-

plex array among children in a population-based birth cohort.

• Researchers applied network analysis and hierarchical clustering (HC) to explore the

connectivity structure of component-specific IgEs and identified seven clusters of com-

ponent-specific sensitisation. Cluster membership mapped closely to the structural

homology of proteins and/or their biological source.

• HC identified four ‘sensitisation clusters’ among study participants.

• The relationship between component clusters, sensitisation clusters, and asthma was

explored using a bipartite network.

• The differential network of pairwise component-specific IgE interactions was inferred,

which demonstrated that interactions among 18 pairs of allergen components predicted

asthma with a good balance between sensitivity and specificity. For example, children

with IgE antibodies to different allergenic proteins from both dog and cat, or horse and

house dust mite, are at higher risk of developing asthma.

What do these findings mean?

• IgE responses to multiple allergenic proteins are functionally coordinated and co-

regulated.

• Pairwise interactions within this complex network predict clinical phenotypes. Interac-

tions between pairs of sIgE components are associated with increased risk of asthma

and provide the basis for designing diagnostic tools for asthma.

Introduction

Asthma is the most common noncommunicable disease in childhood. Over recent decades, a

large body of evidence has demonstrated a close relationship between specific immunoglobu-

lin E (sIgE) antibody responses and asthma [1, 2], but the data about the strength of this associ-

ation are conflicting [2, 3]. Furthermore, in a clinical situation, confirmation of allergic

sensitisation using standard diagnostic tests (skin prick tests [SPTs] and/or measurement of

sIgE) does not necessarily indicate that patient’s symptoms are caused by an allergic reaction

[1]. We have previously proposed that these inconsistencies are in part consequent to ‘allergic

sensitisation’ not being a single entity (as considered conventionally) but an umbrella term for

a collection of several different classes of sensitisation that differ in their association with

asthma and other allergic diseases. To test this, in a previous study we applied a machine learn-

ing approach with Bayesian inference to a comprehensive set of skin tests and sIgE data to

whole allergen extracts collected from infancy to school age in a population-based birth cohort

[4]. Children clustered into four distinct sensitisation classes characterised by different pat-

terns of responses to specific allergens and the time of onset of sensitisation [4]. The risk of

asthma was increased almost 30-fold amongst children belonging to one of these classes

(assigned as ‘Multiple early sensitisation’, comprising less than one third of children diagnosed
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as sensitised using conventional definitions). We have replicated these findings in another

birth cohort [5] and have shown that diminished lung function in adolescence and early adult-

hood is associated with ‘Multiple early’, but not other sensitisation classes [6, 7].

In food allergy, there is increasing evidence that sensitisation to some, but not all, allergenic

proteins in allergen extracts is important for making a distinction between true allergy and

asymptomatic sensitisation [8]. For example, we have shown that immunoglobulin E (IgE)

response to peanut protein Ara h 2 is much more predictive of true peanut allergy than stan-

dard tests using whole allergen extract [9, 10]. Measuring sensitisation to these individual mol-

ecules (referred to as allergen components) using component-resolved diagnostics (CRD) may

be more informative than standard tests in respiratory allergy, as well. The developments in

molecular diagnostics have led to products such as the multiplex Immuno Solid-phase Aller-

gen Chip (ImmunoCAP ISAC), in which sIgE to more than 100 allergen components can be

measured simultaneously [11]. Using a machine learning approach, we have shown that pat-

terns of component-specific IgE responses in this multiplex assay have reasonable discrimina-

tion ability for asthma and rhino-conjunctivitis [12]. In a further study using latent variable

modelling, we identified several cross-sectional clusters of IgE responses in school age chil-

dren, and each of these clusters was associated with different clinical symptoms [13]. Our sub-

sequent study using nested latent class probabilistic modelling has indicated that longitudinal

trajectories of sensitisation to several grass and house dust mite (HDM) allergens during child-

hood had different associations with clinical outcomes [14].

Based on these findings, we propose (1) that the impact of allergic sensitisation on asthma

is a complex phenomenon that cannot be captured by considering individual allergen sIgE

responses separately, or in isolation; and (2) that sIgE responses to multiple allergenic proteins

are functionally coordinated and co-regulated, and this complex network of interactions fore-

shadows asthma development. Specifically, we hypothesise that interaction patterns between

component-specific IgE antibodies rather than individual IgE responses to ‘informative’ com-

ponents are associated with risk of asthma. To address our hypothesis, we measured sIgEs to

112 allergen components using a commercially available multiplex array among participants

in a population-based birth cohort, and we used unsupervised machine learning techniques to

explore how component-specific IgEs interact with each other and to identify common sensiti-

sation profiles among children. We then used a supervised machine learning approach to

explore interactions of component-specific IgEs in relation to asthma.

Materials and methods

Study design, setting, and participants

The Manchester Asthma and Allergy Study is a population-based birth cohort [15]. Participat-

ing families were recruited from the maternity catchment area of Wythenshawe and Stepping

Hill Hospitals in South Manchester and Cheshire, United Kingdom [15]. All pregnant women

were screened for eligibility at antenatal visits (8th–10th week of pregnancy) between 1 Octo-

ber 1995 and 1 July 1997. Of the 1,499 women and their partners who met the inclusion crite-

ria, 288 declined to take part in the study, and 27 were lost to follow-up between recruitment

and childbirth. The study was approved by the Research Ethics Committee and parents gave

written informed consent.

Data sources/Measurement and definition of outcomes

Children attended review clinics at ages 1, 3, 5, 8, 11, and 16 years. Validated questionnaires

were interviewer administered to determine parentally reported history of wheeze, eczema,

and rhinitis, and treatments received. SPT was used to ascertain atopic sensitisation to
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common inhalant and food allergens, and lung function measurements were obtained using

spirometry at all visits from age 5 years. A blood sample was collected in children who gave

assent for venepuncture [16]. Primary care medical records were examined and data including

wheeze episodes, prescriptions of asthma medications and oral corticosteroid, and hospitalisa-

tions were extracted.

In this study, we performed a cross-sectional analysis using data collected at age 11 years.

‘Current wheeze’ was defined as a positive answer to the question, ‘Has your child had

wheezing or whistling in the chest in the last 12 months?’ [17] ‘Current asthma’ was defined as

a positive answer to two out of three of: ‘Has the doctor ever told you that your child had

asthma?’; ‘Has your child had wheezing or whistling in the chest in the last 12 months?’; and

‘Has your child had asthma treatment in the last 12 months?’ [18]. Further details of follow-up

and definitions of clinical outcomes are presented in the supplementary appendix (S1

Appendix).

CRD

We measured sIgE to 112 allergenic molecules using ImmunoCAP ISAC (Thermo Fisher Sci-

entific-Phadia AB, Uppsala, Sweden) at the follow-up at age 11 years. The level of component-

specific IgE antibodies was reported in ISAC Standardised Units (ISU). To ascertain co-occur-

ring sensitisations among participants, we dichotomised IgE data according to the manufac-

turer’s guidelines, using a binary threshold (positive>0.30 ISU). To evaluate the differential

connectivity structure of component-specific IgEs, we used continuous raw values.

Statistical learning

In this cross-sectional analysis, we included all children with available CDR data. We analysed

data for components with sIgE>0.30 ISU in at least 5% of children (active components) and

among participants with at least one active component sIgE>0.30 ISU (filtering) [19]. A flow-

chart describing the analysis steps involved in this study is presented in S1 Fig.

Statistical grouping of allergen components and their connectivity

structure: Component clusters

We investigated patterns of sIgE co-expression using hierarchical clustering (HC), which

transforms a distance matrix into a nested series of partitions that can be represented through

a treelike graph (dendogram). By exploring this graph, one can obtain useful information on

the hierarchy of the clusters and their similarities. At the lowest level of the hierarchy, each

cluster contains a single observation. At the highest level, there is only one cluster containing

all of the data. HC algorithms can follow an agglomerative or a divisive approach. Agglomera-

tive strategies start at the bottom and at each level recursively merge a selected pair of clusters

into a single cluster. This produces a grouping at the next higher level with one fewer cluster.

The pair chosen for merging consist of the two groups with the smallest intergroup dissimilar-

ity. Divisive methods start at the top and at each level recursively split one of the existing clus-

ters at that level into two new clusters. The split is chosen to produce two new groups with the

largest between-group dissimilarity. With both paradigms there are N−1 levels in the hierarchy

[20]. In our analysis, we used the agglomerative procedure combined with the average linkage

method, which defines the distance between two clusters as the average distance between each

point in one cluster to every point in the other cluster.

Compared with partitional clustering, HC techniques do not require one to fix the number

of clusters a priori, can find different levels of similarity between the sIgE components within
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the hierarchy of clusters, and, hence, can highlight different patterns of connectivity and bio-

logical properties.

Distances between sIgE components were expressed by means of the distance correlation

matrix [21]. The advantage of using distance correlation is that it is capable of detecting non-

linear relationships. We then used network analysis to visualise the connectivity structure of

sIgEs.

Final partitions can significantly differ according to the chosen clustering approach. Hence,

to evaluate the robustness of our findings, we compared the retrieved clusters with partitions

obtained through a divisive HC procedure and a partitional clustering technique using the

Rand index [22].

Patterns of sensitisation among study participants: Sensitisation clusters

To identify patterns of sensitisation among children, we used an HC approach combined with

Ward’s linkage [23] and the Jaccard distance between binary responses to sIgE profiles. At

each iteration of the clustering algorithm, the Ward’s method joins the clusters so that the total

within-cluster variance is minimised. Ward’s linkage is conservative, monotone, correctly

infers the hidden structure within the data, and often outperforms the other approaches [24,

25]. We used χ2 and Kruskal–Wallis tests to evaluate the associations between the identified

clusters and clinical outcomes.

Differential sIgE co-expression patterns in asthma

We used a bipartite network to visually explore the relationship between component clusters,

sensitisation clusters, and asthma. We investigated whether sIgE to individual components is

associated with the risk of asthma using a penalised logistic regression model. To test the

hypothesis that pairwise interactions of component-specific IgEs are associated with asthma,

we used joint density-based nonparametric differential interaction network analysis and classi-

fication (JDINAC) [26]. We utilised this recently developed nonparametric model to identify

differential interaction patterns of network activation of sIgEs that are most closely related to

asthma, and to build a classification model using the network biomarkers. JDINAC has the

advantage of capturing nonlinear relations between component-specific IgEs without the need

for parametric assumption on their probability distribution.

The main assumption of the JDINAC model is that network-level difference between chil-

dren who have asthma and children who do not have asthma arises from the collective effect

of differential pairwise component IgE interactions. Here, the interactions are characterised by

the conditional joint density of pairs of component-specific IgEs [26], estimated through a

nonparametric kernel method. Formally, let Xn×p be the data matrix of n individuals and p
sIgE allergens. Hence, Xl, l = 1,. . .,n, represents the level of sIgEs in the l-th child. Let Yl denote

the binary variable defined as follows:

Yl ¼
0 if l is non � asthmatic

1 if otherwise

(

Let P denote the probability of having asthma, P = Pr(Yl = 1), and Gi denote the i-th sIgE.

Then, JDINAC logistic regression-based approach can be exploited to test the model:

logitðPÞ ¼ a0 þ
Xp

i¼1

X

j>i

bijln
f 1
ij ðGi;GjÞ

f 0
ij ðGi;GjÞ

; s:t:
Xp

i¼1

X

j>i

bij � c; c > 0

where f 1
ij ðGi;GjÞ and f 0

ij ðGi;GjÞ denote the class conditional joint density of Gi and Gj for class 1
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and class 0, respectively. The conditional joint densities f 1
ij ðGi;GjÞ indicate the strength of asso-

ciation between Gi and Gj in class 1, and parameters βij indicate differential dependency pat-

terns between condition-specific groups [26]. The estimation procedure is based on a multiple

splitting and prediction averaging procedure, which guarantees robust and accurate results.

The data are split in two parts. On the first part, joint kernel density functions, f̂ 1
ij and f̂ 0

ij, are

estimated, while on the second part, L1 penalised logistic regression is fitted. The procedure is

repeated for a predefined number of iterations (for estimation details and algorithm, see [26]).

To ensure robustness of the results, we ran both models with 10-fold cross validation in 50

independent repetitions. To reduce the effect of imbalanced data, we included class weight in

both models. sIgE raw values were log-transformed (log(x+1)) prior to these analyses.

Validation

To evaluate the robustness of our results and provide external narrow validation [27], we repeated

the analysis among cohort participants who had ISAC CRD data at age 8 years, excluding the chil-

dren whose data were used in the primary analysis at age 11 years. For children in the validation

step, both CDR data and clinical outcomes were ascertained at age 8 years.

All statistical analyses were run in the programming language R [28]. Distance correlation

was computed with the package energy [29]. JDINAC scripts were made available by the

authors [26] at https://github.com/jijiadong/JDINAC. We used igraph package for network

visualisations [30], epitools to estimate the odds ratio (OR) [31], clValid to compute internal

validity measures for HC [32], and caret to infer the penalised logistic regression model [33].

Results

Participant flow and demographic data

Among 1,184 children born into the cohort, 822 attended clinical follow-up at age 11 years.

CRD data were obtained for 461 (56.1%) children. Demographics of these 461 participants are

presented in S1 Table; we have also previously reported that there were no significant differ-

ences in demographic characteristics or outcomes between cohort members with and without

CRD [13]. Of 461 children with CRD, 221 (47.9%) had positive sIgE to at least one of the 112

allergen components [13], and 94 (20.4%) had current asthma. After filtering [19], 44/112

allergen components were active; 213 (46.2%) children had at least one of the active compo-

nent IgEs >0.30 ISU, 73 (34.3%) of whom had asthma. The list of components that were inac-

tive [19] and the proportion of children who had positive sIgE to these ‘rare’ components are

presented in S2 Table.

There was a significant difference in the total number of positive component-specific IgEs

between children who have asthma and children who do not have asthma, with children who

have asthma responding to more allergens than children who do not have asthma (median 11

[IQR: 6–18] versus 6 [IQR: 3–10 ], p<0.001, S2 Fig). The responses to individual components

stratified by disease status did not show considerable differences between sensitised children

with and without asthma (Fig 1). However, we highlight an increase in the positive responses

to some allergenic proteins among children who have asthma, particularly group 2 HDM com-

ponents and furry animal lipocalins (S3 Table).

Statistical grouping of allergen components (component clusters) and their

connectivity structure

Of the 44 allergen components included in the model, 33 grouped in seven component clusters

(C.sIgE-1–7), while the remaining 11 formed singleton clusters (Table 1). The number of
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clusters was determined by fixing the threshold for the dissimilarity measure (1−distance cor-

relation) equal to 0.40, which ensured high similarity between the components.

We compared the adopted model with the divisive HC clustering DIANA (Divise Analysis)

[34], and the partition around medoids (PAM) [34] algorithm. The Rand index, 0.99 for

DIANA and 0.98 for PAM, suggested that the obtained groups were stable and robust. Internal

validity indices also showed that cluster membership was very stable (S3 Fig).

C.sIgE-1 was composed exclusively of HDM components (Group 1 and 2 HDM allergens);

C.sIgE-2 of peanut components associated with true peanut allergy (2S albumins and 7S globu-

lin) [9]; C.sIgE-3 of lipocalins from cat, dog, horse, and mouse; C.sIgE-4 of grass components;

C.sIgE-5 of PR-10 proteins from various sources; C.sIgE-6 of tree allergens; and C.sIgE-7 of

Fig 1. Patterns of sensitisations stratified by asthma status. Participants are represented in columns and sIgE components in rows. A black

square indicates that a participant has a sIgE>0.30 to a particular allergen component. sIgE, specific immunoglobulin E.

https://doi.org/10.1371/journal.pmed.1002691.g001
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Table 1. Component-specific IgE clusters membership.

Component clusters sIgEs Species Biochemical name

�C.sIgE-1 Der p 1 Dermatophagoides pteronyssinus (European HDM) Cysteine protease

Der p 2 D. pteronyssinus (European HDM) NPC2 family

Der f 1 D. farinae (American HDM) Cysteine protease

Der f 2 D. farinae (American HDM) NPC2 family

�C.sIgE-2 Ara h 1 Arachis hypogaea (Peanut, groundnut) Cupin (Vicillin-type, 7S globulin)

Ara h 2 A. hypogaea (Peanut, groundnut) Conglutin (2S albumin)

Ara h 6 A. hypogaea (Peanut, groundnut) Conglutin (2S albumin)

�C.sIgE-3 Fel d 4 Felis domesticus (Cat) Lipocalin

Equ c 1 Equus caballus (Domestic horse) Lipocalin

Can f 1 Canis familiaris (Dog) Lipocalin

Mus m 1 Mus musculus (Mouse) Lipocalin

�C.sIgE-4 Phl p 1 Phleum pratense (Timothy) Beta-expansin

Phl p 2 P. pratense (Timothy) Grass group II/III

Phl p 4 P. pratense (Timothy) Berberine bridge enzyme

Phl p 5 P. pratense (Timothy)

Phl p 6 P. pratense (Timothy)

Cyn d 1 Cynodon dactylon (Bermuda grass) Beta-expansin

�C.sIgE-5 Gly m 4 Glycine max (Soybean) PR-10

Mal d 1 Malus domestica (Apple) PR-10

Aln g 1 Alnus glutinosa (Alder) PR-10

Bet v 1 Betula verrucosa (B. pendula) (White birch) PR-10

Pru p 1 Prunus persica (Peach) PR-10,

Cor a 1.04 Corylus avellana (Hazelnut) 2S albumin

Ara h 8 A. hypogaea (Peanut, groundnut) PR-10,

Cor a 1.01 C. avellana (Hazelnut) PR-10,

�C.sIgE-6 Cup a 1 Cupressus arizonica (Cypress) Pectate lyase

Jug r 2 Juglans regia (English walnut) Vicilin seed storage protein

Pla a 2 Platanus acerifolia (London plane tree) Polygalacturonase

Cry j 1 Cryptomeria japonica (Sugi) Pectate lyase

�C.sIgE-7 Mer a 1 Mercurialis annua (Annual mercury) Profilin

Bet v 2 B. verrucosa (B. pendula) (European white birch) Profilin

Hev b 8 Hevea brasiliensis (Para rubber tree [latex]) Profilin

Phl p 12 P. pratense (Timothy) Profilin

�Singletons Der p 10 D. pteronyssinus (European HDM) Tropomyosin

Lep d 2 Lepidoglyphus destructor (Storage mite) NPC2 family

Fel d 1 F. domesticus (Cat) Uteroglobin (chain 1)

Blo t 5 Blomia tropicalis (Storage mite)

Gal d 3 Gallus domesticus (Chicken) Ovotransferrin

Phl p 11 P. pratense (Timothy) Ole e 1–related protein

Mux f 3 Bromelain

Che a 1 Chenopodium album (Lambsquarters) Ole e 1 homologue

Ole e 1 Olea europaea (Olive) Common olive group 1

Can f 5 C. familiaris (Dog) Arginine esterase, prostatic kallikrein

Abbreviations: HDM, house dust mite; IgE, immunoglobulin E; PR, pathogenesis-related.

https://doi.org/10.1371/journal.pmed.1002691.t001
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profilins. The HC highlighted the structural relationships of the allergen components within

protein families.

The co-expression network in Fig 2 shows the interactions and underlying connectivity

structure of component-specific IgEs. The connectivity expresses how sIgE components are

correlated and co-regulated with each other. Components belonging to the PR-10 (C.sIgE-5)

cluster were central to the network, showing higher connectivity than other components; com-

ponents in this cluster seem to mediate connections between components from grass (C.sIgE-

4), tree (C.sIgE-6), and profilin (C.sIgE-7) clusters with components in HDM (C.sIgE-1), lipo-

calins (C.sIgE-3), and peanut clusters (C.sIgE-2). Alt a 1 and Blo t 5 were weakly connected to

other component-specific IgEs. Components in the HDM cluster showed high intraclass

connectivity.

Characteristics of sensitisation profiles (sensitisation clusters) among study

participants

The structure of sensitisation profiles among study participants was inferred in a completely

unsupervised manner, with the optimal solution suggesting four sensitisation clusters (based

on the Calinski-Harabasz criterion [35]). Cluster membership was stable (S4 Fig). In the

Fig 2. Component-specific IgE network and hierarchical cluster reveal connectivity structure in sIgE. The network consists of a set of

nodes, joined in pairs by lines or edges. Colours represent cluster memberships and node diameter is proportional to the scaled

connectivity of each sIgE, while edge colour and width represent the strength of connection between pairs of sIgE components. IgE,

immunoglobulin E; sIgE, specific immunoglobulin E.

https://doi.org/10.1371/journal.pmed.1002691.g002
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model comparisons, the Rand index showed moderate agreement with the partition obtained

with DIANA (0.53) and good agreement with the partition obtained with PAM (0.79).

After visual inspection of the patterns (Fig 3), we labelled these four sensitisation profiles as

(1) Multiple sensitisation, with positive sIgE to multiple components across all seven compo-

nent clusters (C.sIgE-1–7) and singleton components; (2) Predominantly HDM sensitisation,

with IgE responses mainly to components from C.sIgE-1; (3) Predominantly grass and tree

sensitisation, with positive sIgE to multiple components across C.sIgE-4–7; and (4) Lower-

grade sensitisation.

Association with clinical outcomes (asthma, rhinitis, and atopic dermatitis [AD]) differed

for different sensitisation profiles (S4 Table, S5 Table). Children in the HDM cluster were

more likely to have asthma (OR: 4.44; 95% CI: 1.72–11.46; p = 0.002) and wheeze (OR: 7.31;

95% CI: 2.74–19.48; p< 0.001), but not rhinitis or AD, while those in the grasses/trees cluster

were more likely to have rhinitis (OR: 6.62; 95% CI: 2.84–15.40; p< 0.001). Membership of

the Multiple sensitisation cluster was associated with the highest risk of asthma (OR: 4.97; 95%

CI: 1.99–12.34; p< 0.001) and a high risk of wheeze (OR: 4.41; 95% CI: 1.70–11.41; p< 0.001)

Fig 3. Patterns of IgE responses to allergen components for individual participants. Rows represent sIgEs, while

columns indicate children. Colours represent sensitisation clusters’ membership. Squares are coloured if and only if a

child has a positive response,<0.30 to a particular sIgE. IgE, immunoglobulin E; sIgE, specific immunoglobulin E.

https://doi.org/10.1371/journal.pmed.1002691.g003
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and rhinitis (OR: 6.18; 95% CI: 2.71–14.12; p< 0.001) (S5 Table). No significant associations

were found with lung function measurements (S6 Table).

Differential sIgE co-expression patterns in the prediction of asthma

Fig 4 summarises the relationship between sensitisation clusters and asthma, and the connec-

tivity with component-specific IgEs and component clusters. Although a significantly higher

proportion of children with asthma was found in the Multiple sensitisation and HDM clusters,

Fig 4. Bipartite network to uncover the relationship between sensitisation clusters and asthma, and the connectivity with

component-specific IgEs and component clusters. In the bipartite network, nodes represent one or more types of entities,

and edges between the nodes represent a specific relationship between the entities. Here, pie charts represent individuals

aggregated according to sensitisation cluster membership and asthma status. Red indicates children with asthma, while blue

indicates no asthma. Squares represent sIgE allergens and colours represent cluster membership. Edges show whether a

subject has a positive response to a particular c-sIgE. MDS layout was used to infer the network. HDM, house dust mite; IgE,

immunoglobulin E; MDS, multidimensional scaling; sIgE, specific immunoglobulin E.

https://doi.org/10.1371/journal.pmed.1002691.g004
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the majority of children in each of the sensitisation clusters did not have asthma. All clusters

shared similar connection to some component clusters (C.sIgE-3 and C.sIgE-4), but we

observed distinct patterns of connectivity between the cluster with a higher proportion of chil-

dren with asthma compared with those with a higher proportion of children who did not have

asthma. Specifically, only children in Multiple sensitisation and Predominantly HDM clusters

were strongly connected to the allergens in C.sIgE-1, while children in Predominantly grasses/

trees and Lower-grade sensitisation clusters were distinctively connected to C-sIgE-2.

S5 Fig shows examples of bipartite subnetworks of a subset of component clusters. Panel A

shows the connectivity between a set of informative components in the lipocalin cluster (C.

sIgE-3) with Fel d 1. The analysis has shown that children with connection to only one sIgE

were not at higher risk of asthma, but those who were connected to two or more components

were at increased risk of having asthma. Similar behaviours are observed for all the other net-

works, apart from interactions involving the grass IgE cluster (C.sIgE-4).

To investigate whether individual components sIgE or pairwise interactions of component-

specific IgEs are stronger associates of asthma, we compared the performances of penalised

logistic regression and JDINAC in classifying asthma (Table 2). In the multivariate logistic

regression model, we include all the 44 individual components as predictors. To improve com-

parability between the two models, a penalty on the L1-norm was included in the logistic

model.

Penalised logistic regression with individual components had poor performance, with low

sensitivity (0.60) and moderate specificity (0.70). It did not provide an efficient classification

rule. In contrast, JDINAC provided a good balance between sensitivity (0.84) and specificity

(0.87). Results from 10-fold cross validation in 50 independent repetitions on the whole data

set showed that JDINAC with pairwise interaction outperformed penalised logistic regression

with individual components, with area under the curve (AUC) equal to 0.94, compared with

0.73 (Fig 5).

These results suggest that the interactions between pairs of sIgE are more informative than

the individual components in asthma classification.

We then proceeded to infer the differential network of pairwise component-specific IgE

interactions that predict asthma by connecting the sIgEs pairs with high differential depen-

dency weights (defined as the number of repetitions in which b̂ ij 6¼ 0). A total of 18 pairs of

component-specific IgEs exhibited a significant differential interaction between children who

have asthma and children who do not have asthma (Fig 6). The network emphasises

Table 2. Evaluation and comparison of prediction performances of logistic regression based on individual components and JDINAC based on pairwise interactions

of sIgE allergens.

Performance metrics Age 11 Age 8

Penalised logistic regression JDINAC Penalised logistic regression JDINAC

individual components pairwise interactions individual components pairwise interactions

AUC 0.73 0.94 0.62 0.97

Accuracy 0.67 0.86 0.71 0.92

Sensitivity 0.60 0.84 0.46 0.79

Specificity 0.70 0.87 0.85 0.98

Precision 0.51 0.78 0.61 0.97

F measure 0.55 0.81 0.52 0.86

Abbreviations: AUC, area under the curve; JDINAC, joint density-based nonparametric differential interaction network analysis and classification; sIgE, specific

immunoglobulin E.

https://doi.org/10.1371/journal.pmed.1002691.t002
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multisource connections. HDM and animal components, which were central to the network,

showed higher connectivity than other components. The interactions between the grass-

related sIgEs (Phl p 2 and Phl p 12) and between Lep d 2 and Fel d 1 were linked to a healthy

state. In contrast, the remaining pairwise interactions were linked to asthma. The connections

between Fel d 1 and Can f 1, Der p 1 and Equ c 1, and Der f 2 and Der p 1 had a strong impact

on the prediction results because of the higher differential weights.

External narrow validation. Of 899 children who attended follow-up at age 8 years, CRD

data were obtained for 543 (60.4%). After removing 266 children who had CRD data at age 11

and were hence involved in the previous analyses (S1 Fig), 226 (41.6%) participants were

included in the validation set. The filtering procedure resulted in a final sample composed of

108 children who had at least one of the 31 active components >0.30 ISU, of whom 37 (34.2%)

had asthma at follow-up at age 8. A flowchart of participants included in the primary analysis

and validation is presented in S6 Fig.

JDINAC and penalised logistic regression were run with 10-fold cross validation in 50 inde-

pendent repetitions. Results were consistent with primary analyses (Table 2) in that penalised

logistic regression had low sensitivity (0.46) and high specificity (0.85), whereas JDINAC pro-

vided a good balance between sensitivity (0.79) and specificity (0.98). JDINAC had superior

performance in classifying asthma, with AUC of 0.97 compared with 0.62 (Fig 5). Most

Fig 5. ROC curves for JDINAC and penalised logistic regression. The curves were obtained through the prediction

averaging procedure on 50 independent repetitions combined with of 10-fold cross validation. JDINAC, joint density-

based nonparametric differential interaction network analysis and classification; ROC, receiver operating

characteristic.

https://doi.org/10.1371/journal.pmed.1002691.g005
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differential pairwise component-specific IgE interactions previously found were confirmed

(Fig 7). In particular, pairwise interactions between HDM and animal components had higher

differential weights and hence a strong impact on the prediction result, while connectivity

between IgE to grass- and tree-related components showed protective pairwise interactions.

Discussion

Key findings

Our study suggests that the relationship between allergic sensitisation and asthma is complex

and cannot be fully captured or explained by considering sIgE responses to any individual

allergenic molecule(s). In contrast to IgE-mediated food allergy, in which sensitisation to a

limited number of ‘informative’ allergenic proteins differentiates between true food allergy

and asymptomatic sensitisation (such as Ara h 2 in peanut allergy) [9], we did not identify

such ‘informative’ component(s) as a hallmark of an increased risk of asthma. By clustering

component-specific IgE responses only (i.e., not the children), we identified seven clusters of

component-specific sensitisation, with cluster membership mapped closely to the structural

homology of proteins and their biological source. By clustering study participants, we identi-

fied four sensitisation clusters that were characterised by unique patterns of sensitisation to

allergenic molecules from different component clusters. In this study, the analysis of the

Fig 6. Differential pairwise component-specific IgE interactions in asthma estimated by JDINAC. The presence of

an edge presented in the differential network means that the dependency of corresponding pair sIgEs is different

between those who have asthma and those who do not have asthma. The edge colour indicates the direction of

association. Red: interaction linked to asthma presence; green: interaction linked to reduced risk of asthma. Edge

width is proportional to differential weight. Only pairs of sIgEs that were significantly associated to the risk of asthma

in 25% of the validation runs were included in the network. IgE, immunoglobulin E; JDINAC, joint density-based

nonparametric differential interaction network analysis and classification; sIgE, specific immunoglobulin E.

https://doi.org/10.1371/journal.pmed.1002691.g006
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relationship between component clusters, sensitisation clusters, and asthma revealed that the

key associate of asthma was the interaction between component-specific IgEs, indicating that

the important feature of IgE response linked to an increased risk of asthma is not individual

IgE to any informative component(s), but the pattern of interactions between component-spe-

cific IgEs. Further analyses revealed a differential network of pairwise interactions between a

limited number of component-specific IgEs from different component clusters, which pre-

dicted asthma with a good balance between sensitivity and specificity. In this study, we found

that amongst sensitised children, some of these connectivities were associated with an

increased risk of asthma (e.g., between Fel d 1 and Can f 1, Der p 1 and Equ c 1), while others

decreased the risk (e.g., between sIgEs to grass components Phl p 1 and Phl p 5).

Limitations

One of the limitation of our study is that there may be a number of potentially important aller-

gens that are not included on the ISAC chip (e.g., those from fungi), and it is possible that the

clustering would provide different solutions if additional components had been available [13].

We acknowledge that our analysis identified only pairwise interactions, and that the relation

between asthma and the connectivity structure of sIgE may be more complex. Hence, higher-

order interactions will need to be investigated in the future. Furthermore, because of the itera-

tive nature of the JDINAC estimation procedure, we could not estimate the association

strength of the differential pairwise interactions. The interpretation is therefore limited to the

direction of the association, and further improvements in model design and further validations

are needed to fully capitalise on the potential of these findings.

Fig 7. Differential pairwise component-specific IgE interactions in asthma estimated by JDINAC on the 8-year-

old children data set. IgE, immunoglobulin E; JDINAC, joint density-based nonparametric differential interaction

network analysis and classification; sIgE, specific immunoglobulin E.

https://doi.org/10.1371/journal.pmed.1002691.g007
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We acknowledge that through our filtering process [19], some potentially important aller-

gens may have been excluded. However, the filtering process was necessary to moderate the

effect of measurement errors and noise. Zero-inflated variables can reduce accuracy and use-

fulness of a cluster analysis, as well as the reliability of the prediction model results. Filtering

also increased the confidence of discovering significant association between sIgEs and clinical

outcomes of interest. However, we cannot rule out that, despite their rarity, some of the ‘inac-

tive’ components might be associated with asthma and that the inclusion of inactive compo-

nents might have resulted in different clusters and classification results. We also acknowledge

that our findings do not take into account potentially important factors, such as gender and

ethnicity, and that they are derived and validated in the same birth cohort (although among

different study participants). Therefore, further validations in external populations are needed

to ascertain the generalisability of our findings and to evaluate the presence of population-spe-

cific characteristics.

Interpretation

In our previous study using machine learning techniques, we identified three patterns of IgE

responses to multiple allergens in the same study population, and each of these patterns was

associated with different risk for having asthma [13]. In the current study, we identified seven

component clusters that mapped closely to the structural homology of proteins and their bio-

logical source (PR-10 proteins, profilins, lipocalins, peanut, grass, trees, and mite clusters).

These patterns can be explained by the structural relationships of the allergen components

within protein families. The current analysis provided considerably finer granularity com-

pared with our previous analysis, which used Expectation Propagation algorithm implemented

in Infer.NET [13]. One possible explanation may be that current methodologies were able to

uncover nonlinear relations between the components. Our findings of component clusters are

consistent with previous observations that sensitised individual may have detectable IgE to

multiple members of the same protein family [36]. For example, one previous study has shown

a direct relationship between different representative molecules within three ’panallergen’

groups (tropomyosins, profilins, and PR-10s) but little evidence of sensitisation to more than

one panallergen [36]. In contrast, our study using a machine learning approach has shown

that the PR-10 proteins cluster was central to the network of connectivities and mediated con-

nections between components from other clusters.

Using CRD, several studies have shown that sensitisation to component-specific IgEs is an

important risk factor for asthma [37–39]. However, most current guidelines do not recom-

mend assessment of allergic sensitisation as an objective test for asthma diagnosis. This is not

surprising, given that in respiratory allergy, the interpretation of SPTs and blood tests that

measure specific serum IgE to whole allergen extracts traditionally relies on arbitrary cutoffs

(e.g., SPTs> 3 mm, sIgE > 0.35 kUA/L), which have a relatively poor ability to distinguish

between benign sensitisations and clinically relevant (‘pathologic’) sensitisation [1, 2]. For

example, UK National Institute of Health and Care Excellence (NICE) guidance on the diag-

nosis of childhood asthma proposes a diagnostic algorithm that incorporates the sequential

use of four measures of lung function and inflammation (spirometry, bronchodilator revers-

ibility, fractional exhaled nitric oxide, and peak flow variability, https://www.nice.org.uk/

guidance/ng80). We have recently tested the NICE algorithm in a cross-sectional analysis

amongst children in our birth cohort aged 13–16 years and found poor agreement between the

algorithm and asthma diagnosis; adherence to the algorithm resulted in a substantial number

of false positive diagnoses, and the majority of children with asthma were not identified as

such by adhering to the proposed algorithm [40]. It is clear that no single test exists for the
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diagnosis of asthma in children, and using any objective test for diagnosing childhood asthma

remains challenging [41]. One important question is whether incorporation of better tests or

interpretation algorithms for the assessment of allergic sensitisation would improve diagnostic

algorithms for asthma, both in terms of confirming asthma diagnosis and for the assessment

of future risk (e.g., of asthma exacerbations or disease persistence). The results of our current

study support our notion that ‘allergic sensitisation’ is heterogeneous [4], and provide further

evidence that there are several distinct subgroups of sensitisation that differ in their association

with asthma. In our previous studies, which used machine learning to investigate patterns of

skin test and IgE data to whole extracts of eight major allergens collected at multiple time

points throughout childhood, we have shown that some, but not all, classes of sensitisation are

associated with asthma presence, progression, and severity [4, 5]. However, these subtypes

(clusters/classes) of allergic sensitisation have been identified using statistical inference on

large amounts of data collected over long periods [4, 5], and their differentiation at any single

cross-sectional point was not possible [42, 43]. Therefore, these observations could not be

translated into clinical practice, in which a physician sees a patient at a single time point. It is

clear that disaggregation of sensitisation, and knowing which subtype a patient belongs to,

may help clinicians predict whether a sensitised patient is likely to have asthma. Our current

analysis provides evidence that by using machine learning–based methodologies on CRD data,

we can develop better diagnostic algorithms to help practicing physicians differentiate between

benign and clinically important allergic sensitisation to help asthma diagnosis [44]. It is of

note that our previous studies, which used machine learning but incorporated measures of

sensitisation using whole allergen extracts (rather than CRD), were markedly inferior in pre-

dicting asthma [12, 45]. Furthermore, compared with our previous studies, in which predic-

tion models correctly classified only one state [12, 45], JDINAC correctly distinguished

between children who have asthma and children who do not have asthma.

Another important question is whether similar approaches on CRD data can be used

for the assessment of future risk (e.g., of asthma exacerbations) and the prediction of

asthma persistence and later-life lung function and chronic obstructive pulmonary disease

(COPD) outcomes [6, 7]. In two population-based birth cohorts from the UK and Sweden,

we have recently shown IgE reactivity to a limited number of components in preschool

identified children at high risk of asthma in adolescence [46]. Persistent asthma at age 16

years in Sweden was predicted by IgE reactivity in early life to four risk molecules (peanut

Ara h 1, birch Bet v 1, cat Fel d 1, and grass Phl p 1), whilst in the UK, similar association

was observed for five allergenic components (dust mite Der p 1 and Der f 2, timothy grass

Phl p 1 and Phl p 5, and cat Fel d 1) [46]. We have also shown that different longitudinal

trajectories of sensitisation to allergenic molecules from timothy grass and HDM during

childhood had different associations with subsequent asthma [14]. These data suggest that

understanding developmental pathways of IgE responses to multiple allergenic compo-

nents may help development of prognostic algorithms for asthma. To address this, we

recently applied novel machine learning techniques to CRD sensitisation data throughout

childhood to describe the architecture of the evolution of IgE responses to >100 allergen

components from infancy to adolescence [19]. This analysis has shown that the timing of

onset of specific patterns of sensitisation may be a key indicator of the subsequent risk.

The above studies show that better resolution of longitudinal patterns of sensitisation to

multiple allergenic components may facilitate the development of prognostic algorithms

that can be used for the prediction of future risk of asthma. Based on the current results,

we propose that the pattern of interactions between component-specific IgEs may provide

additional valuable information.
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Conclusion

Our findings suggest that sIgE responses to multiple allergenic proteins are functionally coor-

dinated and co-regulated, and that the patterns of interactions within this complex network

may predict clinical phenotypes. In this study, we found that interactions between a limited set

of component-specific sIgEs, rather than individual ‘informative’ components, are associated

with increased risk of asthma and may provide the basis for designing diagnostic tools. We

need to fundamentally rethink the way we interpret data obtained using CRD and move away

from the focus on individual component-specific IgEs to a more holistic approach that takes

into account the patterns of connectivity between IgEs.
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