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Being one of the most dynamic entities in the human body, glycosylation of proteins
fine-tunes the activity of the organismal machinery, including the immune system, and
mediates the interaction with the human microbial consortium, typically represented
by the gut microbiome. Using data from 194 healthy individuals, we conducted an
associational study to uncover potential relations between the gut microbiome and
the blood plasma N-glycome, including N-glycome of immunoglobulin G. While lacking
strong linkages on the multivariate level, we were able to identify associations between
alpha and beta microbiome diversity and the blood plasma N-glycome profile. Moreover,
for two bacterial genera, namely, Bilophila and Clostridium innocuum, significant
associations with specific glycans were also shown. The study’s results suggest a non-
trivial, possibly weak link between the total plasma N-glycome and the gut microbiome,
predominantly involving glycans related to the immune system proteins, including
immunoglobulin G. Further studies of glycans linked to microbiome-related proteins in
well-selected patient groups are required to conclusively establish specific associations.

Keywords: mucosal microbiome, plasma N-glycome, 16S sequencing, IgG N-glycome, Bilophila

INTRODUCTION

Protein glycosylation is a posttranslational modification that consists of the binding of carbohydrate
chains, or glycans, to the polypeptide backbone. Such modifications regulate protein activity
and their half-life and even serve as a form of cellular memory, reflecting the past and current
processes in a cell, in both physiological and pathological conditions (Lauc et al., 2016). Changes
in the plasma glycome profile are evident for a variety of diseases, including congenital and
multifactorial disorders (Dotz and Wuhrer, 2019). By affecting the activity of immunoglobulins
and immune receptors (Wolfert and Boons, 2013; Cambay et al., 2020), glycosylation potentially
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exerts its influence on the interaction between the host
organism and its microbiome. Kudelka et al. (2020) showed
that the gut microbial community can itself manipulate the
glycosylation profile of the enteral epithelium, co-regulating the
gut homeostasis along with the host, but whether these effects
remain local or extend across organisms is unknown. The present
study aims to identify, for the first time, the potential links
between the total plasma N-glycome profile and the gut mucosal
microbiome composition. For this, we performed an analysis
of the association between the gut microbiome and the relative
abundance of different glycans attached to blood plasma proteins
(including immunoglobulin G) in a group of individuals from
the Correlated Expression and Disease Association Research
(CEDAR) cohort consisting a total of 323 well-characterized
healthy individuals with intestinal biopsies (ileum, transverse
colon, and rectum) available (Momozawa et al., 2018).

MATERIALS AND METHODS

Studied Population
The analyzed population samples included 194 healthy
Europeans visiting the Academic Hospital of the University
of Liège as part of a national screening campaign for colon
cancer. The enrolled individuals were not suffering from any
autoimmune or inflammatory disease and were not taking
corticosteroids or non-steroid anti-inflammatory drugs, with
the exception of low doses of aspirin to prevent thrombosis
(Momozawa et al., 2018).

16S rRNA Gene Sequencing
DNA was extracted from intestinal biopsies of the ileum, the
transverse colon, and the rectum using the QIAamp DNA Stool
Mini Kit (QIAgen, Germany). Three fragments of the 16S rRNA
gene with variable regions, namely, V1–V2, V3–V4, and V5–V6,
were amplified independently. (Primer sequences are listed in
Supplementary Table 4). For library preparation, locus-specific
deep sequencing was performed using a protocol of two PCR
strategies (Jervis-Bardy et al., 2015). The paired-end libraries
were sequenced on the Illumina MiSeq instrument with a read
length of 2× 300 bp.

Microbiome Data Processing
The read lengths with QV 20 were trimmed from the 3′ end
and demultiplexed, the primer sequences were removed, and
then, reads mapping to the human genome were removed
using the BBTools suite (Bushnell, 2014). The pipeline was
constructed using Snakemake (Köster and Rahmann, 2012).
A further analysis was performed by QIIME 2 2018.11 (Bolyen
et al., 2019). As a result, 180.5 mln paired-end reads were
obtained, of which 156.8 mn reads were retained after quality
filtering. The paired-end reads were denoised and clustered by
the DADA2 plugin (Callahan et al., 2016) using batch-specific
trimming length parameters yielding 9.1 ± 2.0 K amplicon
sequence variants (ASVs) per run for V1V2, 4.5 ± 1.6 K for
V3V4, and 6.8 ± 0.67 K for V5V6 amplicon. Taxonomy was
assigned at a genus level to all ASVs using the q2-feature-classifier

(Bokulich et al., 2018) classify−sklearn naïve Bayes taxonomy
classifier against the SILVA ribosomal RNA database release 132
(Quast et al., 2013). Accordingly, we obtained three microbiota
profiles for each of the intestinal locations.

A further analysis was performed in the R language, version
3.6.1 (R Core Team, 2019). Given the fact that the contamination
from reagents can significantly distort the observed taxa-
abundance distributions as described elsewhere (Salter et al.,
2014; de Goffau et al., 2018; Eisenhofer et al., 2019), we
aimed to identify taxa that demonstrate abnormal behavior
characteristics for contaminants. The list of taxa determined
in negative controls is given in Supplementary Table 5. We
modeled the taxa-abundance distribution to reveal genera that
behave as contaminants taking advantages of (i) the presence
of biological replicates for 25 sample–location combinations, (ii)
the dependence of taxon abundance on the sample coverage
depth for some taxa, and (iii) the batch effects traceable due
to the presence of nine sequencing batches. For centered log-
ratio-transformed data (zero read counts were imputed by a
minimal fraction of the taxon across all samples and locations),
we revealed genera that matched either of the conditions: (i)
a significant (p < 0.05 after Benjamini–Hochberg correction)
negative correlation with the coverage depth, (ii) low consistency
across biological replicates (Spearman’s correlation r < 0.3), (iii)
relatively low consistency across biological replicates (r < 0.4)
and not being characteristic for human gut microbiota, and
(iv) significant run discordance (p < 0.05 after the Benjamini–
Hochberg correction) and not being characteristic for human
gut microbiota. Run discordance and correlation with the
coverage depth were calculated using the ANOVA of a linear
model with the following explanatory variables: patients’ age,
sex, BMI, smoking status, sample collection batch, intestinal
location, and sequencer run batch crossed with 16S rRNA
amplicon nested into location. On average, across locations
and amplicons, 2.5% of sequencing reads were mapped to
contaminant taxa revealed above, which were removed from
further analysis.

Only the samples with at least 10,000x (for V1–V2 and V5–
V6) or 5,000x (for V3–V4) coverage were subjected to further
analysis. Taxa with < 0.01% average abundance in any location–
amplicon combination were removed. For other taxa, zero read
counts were imputed by a minimal fraction of the taxon across
all samples and locations. After performing a centered log-ratio
(CLR) transformation, the data were corrected for technical batch
effects (sequencing batch effect, amplicon, and location) using
a linear mixed model implemented in the lme4 package (Bates
et al., 2015):

taxon abundance ∼ (Run:Amplicon)%in%Location + (1|
Date.collection)+ Location+ Amplicon.

Then, nine available taxa-abundance distributions per sample
were averaged to get one more precise measurement for each
individual. Patients’ age, sex, body mass index, and smoking
status were considered as possible covariates. To additionally
refine the data, we performed PCA using the ade4 package
(Bougeard and Dray, 2018) and added the values of the first four
principal components (explaining 24.2% of the total variance) to
the covariates list.
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Plasma N-Glycome Quantification
Plasma N-glycome quantification of the CEDAR samples
was performed at Genos1 by applying the following protocol.
Plasma N-glycans were enzymatically released from proteins
by incubation with PNGase F, fluorescently labeled with 2-
aminobenzamide, and cleaned up from the excess of reagents
by hydrophilic interaction liquid chromatography–solid-
phase extraction (HILIC–SPE), as previously described by
Akmačić et al. (2015). The fluorescently labeled and purified
N-glycans were separated by HILIC on a Waters BEH Glycan
chromatography column, 150 × 2.1 mm, 1.7 µm BEH particles,
installed on an Acquity UPLC instrument (Waters, Milford, MA,
United States) consisting of a quaternary solvent manager, a
sample manager, and a fluorescence detector set with excitation
and emission wavelengths of 250 and 428 nm, respectively.
Following chromatography conditions previously described
in detail (Akmačić et al., 2015), total plasma N-glycans were
separated into 39 peaks. The amount of N-glycans in each
chromatographic peak was expressed as a percentage of the total
integrated area. Glycan peaks (GPs), quantitative measurements
of glycan levels, were defined by the automatic integration of
intensity peaks on a chromatogram. The composition of the
major N-glycan structures in chromatographic peaks had been
assigned previously (Zaytseva et al., 2020).

Immunoglobulin G N-Glycome
Quantification
IgG was isolated from 10 µl of human plasma per sample
using a 96-well CIM Protein G monolithic plate (BIA
Separations, Ajdovščina, Slovenia). Subsequently, IgG N-glycans
were enzymatically released by incubation with PNGase F,
fluorescently labeled with 2-aminobenzamide, and cleaned up
by HILIC–SPE as previously described (Trbojević-Akmačić
et al., 2017). Following previously established chromatographic
parameters, the fluorescently labeled and purified IgG N-glycans
were separated into 24 glycan peaks by HILIC on a Waters
BEH Glycan chromatography column, 100 × 2.1 mm, 1.7
µm BEH particles, installed on an Acquity UPLC instrument
(Waters, Milford, MA, United States) (Trbojević-Akmačić et al.,
2017). The amount of N-glycans in each chromatographic peak
was expressed as a percentage of the total integrated area,
and their N-glycan composition had been assigned previously
(Pučić et al., 2011).

Harmonization of Glycan Peaks
The similarity of the order of the glycan peaks (GPs) on a
UPLC chromatogram among studies is known (Sharapov et al.,
2019). However, depending on the cohort, some peaks located
near one another might be indistinguishable. In order to make
the protocol of our study applicable to other cohorts and
promote replication studies, we performed harmonization of
the total plasma N-glycome samples using a recently developed
protocol (Sharapov et al., 2019). In brief, according to the
major glycostructures within the GPs, we manually created the

1https://genos-glyco.com

table of correspondence between different GPs (or sets of GPs)
àcross several cohorts, where plasma glycome was measured
using the UPLC technology. Then, based on this table of
correspondence, we defined the list of 36 harmonized GPs (listed
in Supplementary Table 6) and the harmonization algorithm
for each cohort, including CEDAR. Using this algorithm, the
total plasma N-glycome profile of each CEDAR sample was
harmonized into 36 GPs.

Normalization, Batch Correction of
Glycan Peaks, and Derived Trait
Calculation
Normalization and batch correction were performed on the
harmonized UPLC glycan data. We used the total area
normalization (the area of each GP was divided by the
total area of the corresponding chromatogram). From the
36 directly measured glycan traits, 81 derived traits were
calculated (Supplementary Table 6). These derived traits average
glycosylation features such as branching, galactosylation, and
sialylation across different individual glycan structures, and
consequently, they may be more closely related to individual
enzymatic activity. For the original traits, CLR transformation
from the “compositions” R package (van den Boogaart and
Tolosana-Delgado, 2008) was implemented to account for
the compositional nature of the data (Galligan et al., 2013).
For the derived traits, different approaches of compositional
transformations were used depending on the type of the
features (Supplementary Table 6). In brief, if a derived trait
represented a relative concentration of the sum of some original
traits (e.g., the sum of PGP1, PGP2, and PGP3 in all 117
traits) in the whole composition, then the derived trait was
computed as the sum of these original traits followed by
CLR transformation [CLR(sum(PGP1.PGP3), other traits)]. If
a derived trait represented the sum of original traits in some
repertoire of glycans (e.g., the sum of PGP1, PGP2, and PGP3
in the first 10 traits), then at the first stage, the subcomposition of
this repertoire was obtained [PGP1.PGP10/sum(PGP1.PGP10)]
and the second stage is similar to the previous case. Finally, if
a derived trait represented the ratio between two parts of the
composition, the isometric log-ratio transformation was used
(Greenacre, 2018).

Polygenic Score Derivation and
Mendelian Randomization
A polygenic risk score (PRS) aggregates the effects of many
genetic variants into a single number, which predicts
genetic predisposition for the phenotype. In the standard
approach, the PRS is a linear combination of linear regression
effect size estimates and allele counts at single-nucleotide
polymorphisms (SNPs).

We developed PRS models using the SBayesR (Lloyd-Jones
et al., 2019) method that utilized summary statistics from a
genome-wide association study (GWAS). This tool reweighs the
effect of each variant according to the marginal estimate of
its effect size, statistical strength of association, the degree of
correlation between the variant and other variants nearby, and
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tuning parameters. Also, the SBayesR method requires a GCTB
(Lloyd-Jones et al., 2019)—a compatible LD matrix file computed
using individual-level data from a reference population. For these
analyses, we used publicly available shrunk sparse GCTB LD
matrix computed from a random set of 50,000 individuals of
European ancestry from the UK Biobank dataset (Bycroft et al.,
2018; Lloyd-Jones et al., 2019). The models were validated in
the CEDAR dataset, which was not part of the samples used for
GWAS. The prediction accuracy was defined as the proportion
of the variance of a phenotype that is explained by PRS values
(R2). To calculate PRS based on the PRS model, we used PLINK2
software (Chang et al., 2015), where PRS values were calculated
as a weighted sum of allele counts.

Associations between PRS values, acting as an instrumental
variable, and the microbial genera abundance were checked in a
linear regression analysis (Richardson et al., 2019).

Statistical Analysis
Statistical analysis was conducted in R language, version 3.6.1
(R Core Team, 2019). The principal component analysis of
the glycome data was performed using the standard prcomp
function of stats R package. The associations were examined
in a linear regression model. We separately tested associations
between (i) the total plasma N-glycome and the gut microbiome
composition; (ii) beta diversity and the total plasma N-glycome;
alpha diversity and the total plasma N-glycome—both; (iii) the
glycan traits; and (iv) the first 10 microbial principal components.
Patients’ age, sex, body mass index (BMI), and smoking status
were used as covariates. For the first model, the values of the
first four microbial principal components were used as additional
covariates. Before regression modeling, the bacterial abundances
were quantile-normalized via qqnorm R function.

P-values were adjusted to multiple hypothesis testing with
the Sidak correction procedure. Taking into consideration the
possible correlations between hypotheses, the number of effective
tests for Sidak correction was computed for both the glycome and
microbiome data. For the estimation of the number of effective
tests, the approach of Galwey (2009) implemented in the poolR
package (Cinar and Viechtbauer, 2020) was used. Visualization
was performed with the ggplot2 package (Wickham, 2009).

RESULTS

To access the gut mucosal microbiome composition, biopsies
were collected from consented donors who visited the
Department of Gastroenterology of Liege University Hospital in
the framework of the Belgian colon cancer prevention program.
Biopsies were collected from three different locations of the
gut, namely, the ileum, the transverse colon, and the rectum.
The study participants were selected based on their health
records. The exclusion criteria included autoimmune diseases
and any type of inflammatory bowel diseases, cancer or polyps
found during colonoscopy, antibiotics and anti-inflammatory
uptake at least 3 weeks prior to the biopsies collection, and
absence of diarrhea. Biopsies were snap-frozen and kept at
−80◦C until DNA extraction. The three amplicons, namely,

TABLE 1 | Demographic information of the cohort studied.

Characteristic Overall

Sample size 194

Age, mean (SD) 55.66 (13.05)

Body mass index, mean (SD) 26.37 (4.64)

Ethnicity, absolute n (%)

Caucasian 159 (82.0)

Mediterranean 23 (11.9)

Mixed 12 (6.2)

Sex (males), absolute n (%) 82 (42.3)

Smoking status (smokers), absolute n (%) 45 (23.2)

V1–V2, V3–V4, and V5–V6, were used to amplify microbial
16S rRNA genes. In total, nine Illumina MiSeq runs (three
amplicons × three gut locations) were performed on 2012
samples collected from 336 patients and 40 negative controls
for sequencing. DADA2 amplicon sequence variants were
analyzed by the q2−feature−classifier trained on the Silva
database to assign taxonomy at the genus level. Furthermore, we
measured the total plasma N-glycome for 234 CEDAR samples
and 15 standard samples, of which 230 samples passed quality
control. Chromatograms for each sample were separated into
39 peaks and harmonized into 36 glycome peaks for easier
comparison with other published research. In addition, based
on shared structural features, 81 derived traits were calculated.
Hereafter, we used “PGP_number” not only to refer to the
originally measured and derived glycan traits but also to provide
a description of the glycan structures along with their Oxford
notation (Harvey et al., 2009).

Metagenomic and glycomic data were simultaneously
available for 194 individuals (Table 1), thus allowing us to
investigate the inter-omics relationships on different levels of
detalization, from diversity and multivariate associations to
individual linkages.

The analysis was conducted on the level of genera.
After removing the contaminants and low-abundance
microorganisms, 145 microbial genera were retained and
used for further analyses. Among them, Bacteroides [ileum
34.6 (standard deviation 17.5)%, transversum 33.7 (19.0)%,
and rectum 31.6 (17.3)%], Prevotella 9 [ileum 8.3 (13.0)%,
transversum 9.9 (14.8)%, and rectum 8.6 (12.8)%], and
Faecalibacterium [ileum 6.0 (3.5)%, transversum 5.0 (4.3)%,
and rectum 5.4 (3.3)%] dominated in the microbiome of the
studied individuals irrespective of their localization. According
to the results of the permutational multivariate analysis of
variance, interindividual variation explains beta diversity of the
microbiome better than the bioptate localization (p = 0.0001,
Figure 1), which motivates averaging of the microbiome to
obtain a more precise measurement for each individual.

Univariate associations between levels of individual glycan
traits and microbial genera were studied using a linear model.
Before the regression analysis, the number of effective statistical
tests for the total plasma N-glycome and the gut microbiome
data was calculated. According to the effective statistical test
estimation, there were 24 effective tests in the glycome data
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FIGURE 1 | Non-metric multidimensional scaling of the microbial abundances on the genera level in Euclidean metric. The first two principal coordinates are shown.
The color dots represent microbiome samples from the ileum (red), colon transversum (blue), and rectal mucosa (green).

and 87 in the microbiome data, which give a product of 2,088
independent tests. Genera abundances were normalized and
adjusted for technical batch effects, and the known covariates,
such as patients’ age, sex, body mass index, and smoking status,
and the first four microbial PCs were added to the model.

Microbiome alpha diversity was calculated with the Shannon
index (Shannon, 1948). The regression analysis was performed to
identify possible links between the plasma glycome profile and
the gut microbiome diversity. Significant negative associations
were found between alpha diversity and the percentage of
sialylation of core-fucosylated galactosylated structures without
bisecting GlcNAc [derived trait PGP37, FGS/(FG + FGS),
p = 0.041] and the percentage of disialylation of core-
fucosylated digalactosylated structures without bisecting GlcNAc
[derived trait PGP43, FG2S2/(FG2 + FG2S1 + FG2S2),
p = 0.044] (Table 2).

We then computed the first 10 glycan PCs on 117 traits.
An association between alpha diversity and the value of the
fifth glycan principal component was identified (Table 2).
This principal component had a positive correlation with

glycan traits representing the abundances of FA2B [mostly
linked to immunoglobulin G (Vučković et al., 2016) and
A2G2 (mostly linked to serotransferrin Clerc et al., 2016;
Supplementary Table 1] but a negative correlation with glycan
traits representing the abundances of FA2BG2S2 (mostly attached
to immunoglobulins M and A) (Clerc et al., 2016) and FA2G2S2
(attached to various N-glycoproteins, mostly secreted to the
bloodstream by the liver) (Supplementary Table 1).

To check the interplay between microbial communities
and the plasma glycome profile, the Mantel correlation and
the Procrustes analysis with 9,999 permutations were used.
The result did not support a strong interrelation between
the studied omics (Mantel R = −0.014, p = 0.63; Procrustes
correlation = 0.22, p = 0.16). However, the individual glycan
traits associated with the microbiome of the studied individuals,
namely, traits PGP43 and PGP37, were positively correlated with
the microbiome-derived sixth principal component (Table 3 and
Supplementary Table 2).

In the regression analysis, 981 bacterial-glycan pairs out of
16,965 pairs tested, including all glycan traits and 117 out of 145
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TABLE 2 | Association between microbiome alpha diversity (Shannon index) and the plasma total N-glycome profile.

N-glycan trait Regression beta coefficient Beta standard error Nominal p-value Sidak-corrected p-value

PGP43 [FG2S2/(FG2 + FG2S1 + FG2S2)] −1.213 0.385 0.0019* 0.0440

PGP37 [FGS/(FG + FGS)] −1.270 0.400 0.0018* 0.0410

Glycomic principal component 5 0.275 0.096 0.0045# 0.0440

*Corrected for 24 tests (reflecting the effective number of glycomic traits).
#Corrected for 10 tests (the number of glycomic PCs tested).

TABLE 3 | Association between microbiome beta diversity (principal component 6) and the total plasma N-glycome profile.

N-glycan trait Regression beta coefficient Beta standard error Nominal p-value Sidak-corrected p-value*

PGP43[FG2S2/(FG2 + FG2S1 + FG2S2)] 2.992 0.734 6.8E-05 0.0161

PGP37[FGS/(FG + FGS)] 3.013 0.766 0.0001 0.0280

*The multiple testing correction was made accounting for 240 tests (24 × 10, where 24 is the effective number of glycomic traits and 10 is the number of microbiome
PCs).

bacterial genera, had a nominal p-value below the 0.05 threshold
(Supplementary Table 3). This indicates an enrichment (p-
value of binomial test = 0.0047) of the p-value distribution
for significant p-values. Three bacterial–glycan pairs remained
significant after adjustment for multiple testing. Specifically, we
identified an association between the abundance of Bilophila
genus and the level of FA2[3]G1 in total neutral plasma glycans
[PGP62 trait, beta = 1.600 (0.278), nominal p = 4.24e-08, and
Sidak-corrected p = 0.00009, Figure 2A], as well as the level
of FA2[3]G1 in total plasma glycans [PGP5 trait, beta = 1.164
(0.246), nominal p = 4.44e-06, and Sidak-corrected p = 0.009,
Figure 2B]. The abundance of the Clostridium innocuum
group (an ASV defined on the genus level) demonstrated a
negative association with the ratio of disialylated and trisialylated
trigalactosylated structures in total plasma N-glycans [PGP109,
G3S2/G3S3, beta = −1.460 (0.331), nominal p = 1.74e-05, and
Sidak-corrected p = 0.036, Figure 2C].

In addition, the univariate association analysis was
performed on levels of microbial phyla and families. We
estimated the number of effective statistical tests as 11 at
the phylum level and 69 at the family level, which, together
with the genus level, resulted in 167 tests for microbiome
data. The given 24 effective tests for the glycomic data
provide an estimate of 4,008 independent tests in total.
In this additional analysis, we did not identify significant
associations on the phylum level. However, the abundance
of the bacterial family, Tannerellaceae, was shown to be
negatively associated with the levels of FA2[3]G1 in total
plasma glycans, percentage of neutral glycan structures,
and monogalactosylated structures in total plasma glycome
(Supplementary Table 7 and Supplementary Figure 1).
Identified genus-level associations remain significant after
correction for additional statistical tests.

The validation of univariate findings on the genus level
was performed in two steps. First, as N-glycosylation of
immunoglobulin G (IgG) is the main source of FA2[3]G1 in
the total plasma N-glycome (Clerc et al., 2016), we measured
plasma IgG glycome profiles for 192 out of 194 individuals for
the technical validation of association with FA2[3]G1. Using

these data, we were able to validate the association between the
abundance of FA2[3]G1 in IgG glycome and the abundance of
Bilophila genus [beta = 1.899 (0.306), nominal p = 3.62e-09,
Figure 2D].

As an external validation dataset, microbiome and total
plasma N-glycome profiles from McHardy et al. (2013) were used.
Given the differences in taxonomical databases used, metadata
availability, and protocols of glycome and microbiome analysis
between studies, it was possible to only study the association
between the level of FA2[3]G1 in the total plasma N-glycome
and the abundance of the Bilophila. The 47 samples for which
microbiome and the total plasma N-glycome were available had
an expected 56% power to replicate the results. We were unable
to validate this association [beta = −109.192 (174.668), nominal
p = 0.53], although the sign of association was consistent.

The fact that strong and robust genetic instruments are
becoming available both for total plasma (Sharapov et al., 2019,
2021) and for IgG (Klarić et al., 2020) N-glycomic traits opens
up an opportunity to investigate causal relations between plasma
N-glycans and microbiome using Mendelian randomization. As
instrumental variables for Mendelian randomization, we used
polygenic scores computed for glycan traits that showed a
significant association with the individual genera abundances.
As a result, we found that the abundance of Bilophila genus
was associated with a polygenic score for FA2[3]G1 in total
plasma glycans [PGP5 trait, beta = 0.987 (0.429), nominal
p = 0.0226] and suggestively associated with the polygenic
score for FA2[3]G1 in total neutral plasma glycans [PGP5 trait,
beta = 0.025 (0.137), nominal p = 0.0663]. This suggests a
potentially causal link between the level of FA2[3]G1 and the
abundance of Bilophila genus.

DISCUSSION

Overall, while our results suggest the presence of the association
between the gut microbiota and the total plasma N-glycome,
this interrelation seems to be relatively weak, with the largest
proportion of variance explained to be equal to 14.7%.
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FIGURE 2 | Univariate associations between microbial genera and glycan traits. On the plot, dots represent samples, and the regression line is shown in black.
(A) The association between the abundance of Bilophila genus and the level of FA2[3]G1 in total neutral plasma N-glycans. (B) The association between the
abundance of Bilophila genus and the level of FA2[3]G1 in total plasma N-glycans. (C) The association between the abundance of the Clostridium innocuum group
genus and the ratio of disialylated and trisialylated trigalactosylated structures in total plasma N-glycans. (D) Technical validation of an association between IgG
FA2[3]G1 glycan level and the abundance of Bilophila genus.

The strongest associations we showed were predominantly
for N-glycans [FA2B, FA2(3)G1, and FA2BG2S2] linked to
immunoglobulins. Both FA2G1 and Bilophila abundances
showed a negative correlation with the risk of UC (Trbojević
Akmačić et al., 2015; Hirano et al., 2018), which is consistent with

the observed positive correlation between FA2[3]G1 glycan and
Bilophila.

The Clostridium innocuum group showed an inverse
association with the ratio of disialylated and trisialylated
trigalactosylated structures in total plasma glycans. This ratio
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was reported to be negatively correlated with the blood level of
C reactive protein, a known biomarker of inflammation (Suhre
et al., 2019). Clostridium innocuum, the type species of the genus,
treated as an unusual nosocomial agent, mainly caused infections
in patients with immunodeficiency (Crum-Cianflone, 2009) and
could be linked to antibiotic-associated diarrhea and may cause
colitis (Chia et al., 2018).

In conclusion, in this study of 194 healthy individuals, we
observed several associations between plasma N-glycome and the
gut microbiome. We were able to perform technical validation of
our strongest finding but were not able to replicate our finding
in an independent dataset, perhaps due to its limited sample
size (n = 47, expected power 56%). Taken together, this study’s
results suggest the weak link between the gut microbiome and
the composition of the total plasma N-glycome. The obtained
results may suggest that a study of glycosylation of specific
proteins, potentially connected with the microbiome, could be
a more fruitful approach than an untargeted analysis performed
here. One could also consider taking into account additional
covariates, such as blood groups status, that may influence both
the microbiome and the glycome.
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Vučković, F., Theodoratou, E., Thaçi, K., Timofeeva, M., Vojta, A., Štambuk, J.,
et al. (2016). IgG glycome in colorectal cancer. Clin. Cancer Res. 22, 3078–3086.
doi: 10.1158/1078-0432.ccr-15-1867

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York, NY:
Springer-Verlag. doi: 10.1007/978-0-387-98141-3

Wolfert, M. A., and Boons, G.-J. (2013). Adaptive immune activation: glycosylation
does matter. Nat. Chem. Biol. 9, 776–784. doi: 10.1038/nchembio.1403

Zaytseva, O. O., Freidin, M. B., Keser, T., Štambuk, J., Ugrina, I., Šimurina, M., et al.
(2020). Heritability of human plasma N-glycome. J. Proteome Res. 19, 85–91.
doi: 10.1021/acs.jproteome.9b00348

Conflict of Interest: YA was a co-founder of PolyOmica and PolyKnomics.
GL was the founder and owner of Genos Ltd.,—a private research organization
that specializes in high-throughput glycomic analyses and has several patents
in this field, and of Genos Glycoscience Ltd.,—a spin-off of Genos Ltd., that
commercializes its scientific discoveries. MH and MP were employed of Genos
Ltd. MP were also employed by Genos Glycoscience Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Petrov, Sharapov, Shagam, Nostaeva, Pezer, Li, Hanić, McGovern,
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