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Abstract

Extended synaptotagmins (E-Syts) are a recently identified family of proteins that

tether the endoplasmic reticulum (ER) to the plasma membrane (PM) in part by

conferring regulation of cytosolic calcium (Ca2+) at these contact sites (Cell, 2013).

However, the mechanism by which E-Syts link this tethering to Ca2+ signaling is

unknown. Ca2+ waves in polarized epithelia are initiated by inositol 1,4,5-

trisphosphate receptors (InsP3Rs), and these waves begin in the apical region

because InsP3Rs are targeted to the ER adjacent to the apical membrane. In this

study we investigated whether E-Syts are responsible for this targeting. Primary rat

hepatocytes were used as a model system, because a single InsP3R isoform

(InsP3R-II) is tethered to the peri-apical ER in these cells. Additionally, it has been

established in hepatocytes that the apical localization of InsP3Rs is responsible for

Ca2+ waves and secretion and is disrupted in disease states in which secretion is

impaired. We found that rat hepatocytes express two of the three identified E-Syts

(E-Syt1 and E-Syt2). Individual or simultaneous siRNA knockdown of these

proteins did not alter InsP3R-II expression levels, apical localization or average

InsP3R-II cluster size. Moreover, apical secretion of the organic anion 5-

chloromethylfluorescein diacetate (CMFDA) was not changed in cells lacking E-

Syts but was reduced in cells in which cytosolic Ca2+ was buffered. These data

provide evidence that E-Syts do not participate in the targeting of InsP3Rs to the

apical region. Identifying tethers that bring InsP3Rs to the apical region remains an
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important question, since mis-targeting of InsP3Rs leads to impaired secretory

activity.

Introduction

One of the primary functions of intracellular Ca2+ signaling in polarized epithelia

is the regulation of fluid and electrolyte secretion [1–3]. Ca2+ signals in these cells

are organized as polarized Ca2+ waves that are initiated apically due to local

clustering of the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release

channel [4, 5]. This apical targeting of InsP3Rs creates a ‘‘trigger zone’’ that allows

local increases in Ca2+ concentration [4, 6–8], which are important for exocytosis

[9], the insertion of key membrane transporters into the apical membrane [10, 11]

and their function [12, 13], which together drive the secretory activity of these

cells.

There are three isoforms of the InsP3Rs, namely I, II and III [14–16]. Some

polarized epithelial cells, including hepatocytes and bile duct cells (or

cholangiocytes), have one principal isoform tethered to the apical membrane

[4, 6] while others, such as pancreatic acinar cells, have more than one [17]. In

either case, loss of apical InsP3R expression, whether due to decreased InsP3R

expression [18] or redistribution away from the apical region [19], leads to

impaired Ca2+ signaling and consequently impaired secretion [10, 11, 18, 20].

Moreover InsP3R deficiency is a common feature in patients with different types

of secretory diseases [18].

Despite the importance for cell function, the exact mechanism that tethers

InsP3Rs to the apical membrane remains to be determined. There is evidence that

the apical localization of InsP3Rs and the function of the ‘‘trigger zone’’ depends

upon the integrity of detergent-resistant membranes or lipid rafts, suggesting that

these structures act as signaling microdomains that ensure the proper targeting of

these receptors [19]. However, it is not clear whether tethering proteins are

necessary to target InsP3Rs to these domains of the apical membrane.

Extended Synaptotagmins (E-Syts), which are homologous to tricalbins in

yeast, are recently identified and characterized ER integral membrane proteins

that contain a cytosolic synaptotagmin-like mitochondrial lipid binding protein

(SMP) domain (a lipid-binding module that is thought to mediate lipid exchange

between the ER and the PM), followed by multiple C2 domains (Ca2+ and

phospholipid-binding modules) [21, 22]. These tethers allow the formation of ER-

PM contacts through the InsP3 precursor PI(4,5)P2 and the regulation of cytosolic

Ca2+ [23, 24]. Here we investigated whether E-Syts participate in the tethering of

the InsP3R to the apical membrane in hepatocytes, a model of polarized epithelial

cells in which the machinery for calcium signaling and secretion has been carefully

defined [4, 10, 11].

Apical Localization of InsP3Rs and E-Syts in Hepatocytes
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Materials and Methods

Animals and materials

Male Sprague-Dawley rats weighing 180–250 g (Charles River Labs, Wilmington,

MA) were used for all experiments. All animal procedures were approved by the

Yale Animal Care and Use Committee. TaqMan Gene expression assays

containing Real Time PCR primers for rat E-Syt1, E-Syt2, E-Syt3 and GAPDH

were from Life Technologies (Grand Island, NY), as well as Rhodamine

phalloidin, Lipofectamine RNAiMAX and cell tracker green 5-chloromethyl-

fluorescein diacetate (CMFDA). Rabbit E-Syt1 and E-Syt2 antibodies and small

interfering RNAs (siRNAs) against E-Syt1 and E-Syt2 and scrambled negative

controls were from Sigma-Aldrich (Saint Louis, MO). Mouse GAPDH antibody

was from Ambion (Grand Island, NY). Rabbit InsP3R-II antibody was kindly

provided by Richard Wojcikiewicz (SUNY, Syracuse, NY) [25]. Monoclonal Mrp2

antibody (M2 III-6) was from Alexis Biochemicals (Plymouth Meeting, PA). Hela

cell lysate was from BD Biosciences (San Jose, CA). R-GECO was from Addgene

(Cambridge, MA). All other chemicals were of the highest quality commercially

available.

Isolation and Collagen Sandwich Culture of Rat Hepatocytes

Cells were isolated in the Cell Isolation Core of the Yale Liver Center, as described

[26, 27]. Briefly, rat livers were perfused with Hanks’ A and then Hanks’ B

medium containing 0.05% collagenase (Roche Applied Science, Indianapolis, IN)

and 0.8 units of trypsin inhibitor (Sigma-Aldrich (Saint Louis, MO) per unit of

tryptic activity. Livers were minced and passed through serial nylon mesh filters,

and the resultant cells were washed. Isolated hepatocytes were resuspended in

complete Williams’ medium E. Cells were then seeded onto collagen-I- coated

coverslips and incubated at 37 C̊ for 2 hrs before transfection with siRNAs. Cells

were coated with a second layer of collagen-I 24 hrs after transfection and were

used 96 hrs after plating [28]. All experimental procedures and euthanasia were

approved by the Institutional Animal Care and Use Committee (IACUC).

Real Time quantitative PCR

Total RNA was extracted from control rat hepatocytes, or from cells transfected

with control or E-Syts siRNAs using RNeasy MiniKit (QIAGEN, Valencia, CA).

cDNA was synthesized from 2 mg of RNA with the AffinityScript Multi Temp

cDNA synthesis kit (Agilent Technologies, Santa Clara, CA). Resulting DNA was

subjected to Real-Time qPCR with FastStart Universal Probe Master (Rox)

(Roche, San Francisco, CA) and TaqMan Gene expression assays (Life

Technologies, Grand Island, NY), according to manufacturer’s instructions.

Experiments were run in a 7500 Real Time PCR System (Yale Liver Center; Life

Technologies, Grand Island, NY,). Quantification results were expressed in terms

of the cycle threshold (Ct). All real-time qPCR reactions were run in triplicate,

and the Ct values were averaged from three independent samples. Data were

Apical Localization of InsP3Rs and E-Syts in Hepatocytes

PLOS ONE | DOI:10.1371/journal.pone.0114043 December 1, 2014 3 / 18



normalized to the reference gene GAPDH. Differences between the mean Ct

values of each gene and those of the reference gene were calculated as DCt 5

Ctgene - Ctreference and represented as 22DCt.

Immunoblotting

Immunoblots were performed as described previously [10, 11]. Briefly, cells and

whole liver pieces were lysed with mammalian protein extraction reagent (MPER)

lysis buffer (Thermo Scientific, Rockford, IL) and protein concentration was

determined spectrophotometrically. Thirty micrograms of total cellular protein

were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE), on a 4%–20% gel. Membranes were blocked with nonfat milk and

then incubated overnight at 4 C̊ with E-Syt1, E-Syt2, InsP3R-II or GAPDH-

specific antibodies. Membranes were washed and incubated with peroxidase-

conjugated secondary antibodies. Immunodetection was carried out by enhanced

chemiluminescence, and blots were quantitatively analyzed using Image J (NIH,

Bethesda, MD).

Transfection of small interfering RNAs

Validated small interfering RNAs (siRNAs) for E-Syt1 and E-Syt2 and a control

scrambled sequence were transfected using Lipofectamine RNAiMAX, according

to the manufacturer’s instructions. Cells were used 96 hrs after transfection.

Immunofluorescence

Confocal immunofluorescence was performed as described previously [10, 11].

Briefly, hepatocytes on glass coverslips were washed and then fixed in 4%

formaldehyde and permeabilized with 0.1% Triton X-100. Samples were then

blocked in phosphate- buffered saline (PBS) containing 1% bovine serum

albumin and 5% normal goat serum, and incubated with primary antibodies

overnight at 4 C̊. Subsequently, samples were washed with PBS, incubated with

fluorophore-conjugated secondary antibodies and Rhodamine-conjugated

Phalloidin for 1 hour at room temperature, washed again with PBS, and then

mounted with VectaShield (Vector Laboratories, Burlingame, CA) containing

DAPI. Negative controls were incubated with secondary antibodies alone.

Specimens were examined with a Zeiss LSM 710 Duo Confocal Microscope

(Thornwood, NY). Cells were observed with a 40X objective and fluorescence

intensity was quantified using Image J (NIH, Bethesda, MD) and Volocity

Software (Perkin Elmer, Waltham, MA).

Stimulated Emission Depletion (STED) Microscopy

Super resolution imaging was performed via gated detection, pulsed, Stimulated

Emission Depletion (STED) microscopy [29] using a custom built system with
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spatial resolution ,30 nm. The instrument is based around an 80 MHz mode-

locked Ti:Sapphire laser (Chameleon Ultra II, Coherent) acting as the depletion

beam tuned to 770 nm. Output pulses from the Ti:Sapphire laser (140 fs) for

depletion are initially stretched by traveling through approximately 40 cm of high

dispersion glass (SF6) before coupling into 23 meters of polarization maintaining

photonic crystal fiber (LMA-PM-15, NKT Photonics) and finally coupled into a

single mode polarization maintaining 100 meter pure silica core fiber. After

exiting the optical fiber the collimated depletion beam was incident on a spatial

light modulator (SLM) (X10468, Hamamatsu) conjugated to the back pupil plane

of the objective lens. The SLM was used to correct for system aberrations in the

depletion beam path and imprinted a 2p phase ramp on the depletion beam for

formation of the so-called ‘‘doughnut’’. Fluorescence excitation resulted from two

pulsed diode lasers emitting at 485 and 640 nm (LDH-P-C-485B, LDH-P-C-640B,

Picoquant). The 640 nm excitation diode was synchronized electronically using a

custom built electronic delay with 20 picosecond step size and 19 nanoseconds

total range. This same custom delay also provided detector gating with a detection

window width range of 640 ps to 10 ns and a detection window that can be

adjusted from 0 to 19 ns after the depletion synchronization signal is received with

20 ps step size. For STED imaging the window width was set to 6 ns and the

detection window began 2 ns after the excitation pulse. The excitation and

depletion beams were combined using dichroic mirrors directed onto a 16 kHz

resonant scanning mirror and galvo mirror (SC-30, Electro-Optical Products

Corp.) and subsequently through a quarter wave plate and into the back aperture

of a 100X 1.4 NA oil immersion objective lens (UPLAPO 100XO/PSF, Olympus)

resulting in diffraction limited focuses at the sample. The resonant and galvo

mirrors, which were imaged into the back pupil of the objective lens, allow the

excitation and depletion beam to be scanned laterally in the sample for imaging.

For this application unidirectional scanning was employed. Fluorescence was

collected by the same objective and de-scanned by the scanning mirrors. Dichroic

mirrors were used to separate fluorescence from back-scattered excitation and

depletion light and separate the ATTO647N signal from Alexa 488. After

separation and passage through a band pass filter (FF01-685/40, Semrock),

fluorescence was focused into 125 mm core (0.8 Airy units) multimode fiber and

finally detected by a single photon counting avalanche photodiode (APD)

(SPCM-ARQ-13-FC, Perkin Elmer). APD counts were collected via an FPGA

based data acquisition card (PCIe-7852R, National Instruments) and processed

into an image via custom microscope control software (LabVIEW, National

Instrument). Due to the sinusoidal motion of the resonance mirror counts APD

counts were linearized and accumulated on the FPGA card before transmission to

the host PC. Imaging of InsP3R-II was performed with 50 mW of 640 nm

excitation and approximately 200 mW of 770 nm depletion at the back aperture.

The mean pixel dwell time was 40 ns with an image format of 512 by 512 and

20 nm pixel size. For STED, each line of the image was accumulated 800 times.
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In vitro secretion assay

CMFDA canalicular accumulation was monitored as described previously [11].

Briefly, coverslips containing cells were transferred to a custom-built perfusion

chamber on the stage of an LSM 710 Duo confocal microscope (Zeiss,

Thornwood, NY), and the cells were then perfused with 4-(2-hydroxyethyl)-1-

piperazine ethanesulfonic acid-buffered (HEPES) solution containing 1mM

CMFDA for 4 min. For negative controls, cells were pre-incubated with 50mM

BAPTA-AM for 30 min at 37 C̊. Increases in canalicular organic anion secretion

were expressed as CMFDA fluorescence intensity and normalized by baseline

fluorescence. Cells were excited at 488 nm and observed at 505 to 550 nm. Cells

were observed with a 40X objective lens.

Detection of Ca
2+

signals

Cells were transfected with the red fluorescent protein-tagged genetically encoded

Ca2+ indicator for optical imaging R-GECO [30] with or without E-Syt siRNAs

using Lipofectamine RNAiMAX, according to the manufacturer’s instructions.

Ca2+ imaging experiments were performed after 96 hrs of transfection. Then,

coverslips containing the cells were transferred to a custom-built perfusion

chamber on the stage of an LSM 710 Duo confocal microscope (Zeiss,

Thornwood, NY). Cytosolic Ca2+ signals were monitored in R-GECO-transfected

cells during stimulation with 20mM ATP (Sigma, Saint Louis, MO) using a 40X

objective lens. Cells were excited at 561 nm and observed above 575 nm. Changes

in fluorescence were normalized by the initial fluorescence (F0) and were

expressed as (F/F0) x 100% [31]. Ca2+ signal amplitude, rise time and Ca2+ wave

speed were calculated as previously described [32].

Statistical analysis

Results are expressed as mean values ¡ standard deviation (SD) unless indicated

otherwise. PRISM software (GraphPad, La Jolla, CA) was used for data analysis.

Groups of data were compared using one-way analysis of variance (ANOVA),

followed by Bonferroni’s post-tests, and p,0.05 was taken to indicate statistical

significance.

Results

Rat hepatocytes express extended synaptotagmins and their

expression is maintained in fully polarized cells

Three isoforms of E-Syts have been identified and characterized in mammalian

cells: 1, 2 and 3 [21–23]. To determine which isoforms are expressed in the liver,

we performed Real Time quantitaive PCR (qPCR) in whole rat liver extracts and

primary rat hepatocytes in collagen sandwich culture. We used this cell system

because structural and functional polarity of hepatocytes is preserved [10, 33, 34].
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Additionally, polarity brings the region of the ER that is enriched in InsP3R in

close proximity to the PM [19], which allows proper function of these cells

[4, 10, 11]. E-Syt1 and E-Syt2 were detected, whereas E-Syt3 was absent from both

whole rat liver and rat hepatocytes. Moreover, E-Syt1 was the most abundant

isoform in both samples (Figure 1a-b). To determine whether E-Syt1 and E-Syt2

expression undergoes changes during rat hepatocyte collagen sandwich culture,

we monitored mRNA and protein expression levels in cells after 0, 4, 24, 48 or

96 hrs of plating. We observed that E-Syt1 and E-Syt2 mRNA expression is

maintained after 96 hrs in culture (Figure 2a-b), when cells reach full polarity

[33, 34]. We used this time point of culture to perform functional experiments. To

validate our qPCR results, immunoblots of primary rat hepatocytes at these time

points after plating were performed. Consistent with our mRNA results, E-Syt1

and E-Syt2 protein expression was maintained after 96 hrs of culture relative to

protein expression at time point 0 hrs. Hela cells were used as a positive control

for E-Syts [23] (Figure 2c-e). Together, these data demonstrate that rat

hepatocytes express E-Syt1 and E-Syt2 and that their expression is maintained in

fully polarized cells in culture.

Apical localization of InsP3Rs is independent of extended

synaptotagmins

Ca2+ signaling in hepatocytes is mainly mediated by InsP3Rs, which are InsP3-

gated Ca2+ channels localized in the ER. Two of the three isoforms of InsP3Rs are

found in hepatocytes (InsP3R-I and InsP3-II). InsP3R-II is the most abundantly

expressed isoform and is concentrated in the region of the ER near the apical

membrane [4, 32]. Of note, InsP3R-II protein expression and subcellular

localization is preserved in rat hepatocytes in collagen sandwich culture [10]

(Figure 2f). In order to determine whether E-Syts mediate the targeting of

InsP3R-II to the apical membrane, we used specific siRNAs that resulted in a

knockdown of 82% and 69% in E-Syt1 and E-Syt2 expression, respectively

compared to scrambled siRNA transfected cells (Figure 3a-d). Immunoblots of

cells under individual or simultaneous E-Syt1 and E-Syt2 knockdown showed that

silencing of these isoforms does not alter InsP3R-II protein expression (Figure 3e

and f). We also monitored InsP3R-II apical localization by confocal immuno-

fluorescence microscopy under these conditions, co-labeling with multidrug

resistance protein 2 (Mrp2), an organic anion transporter that resides in and

immediately beneath the apical membrane, and Rhodamine phalloidin, which

labels f-actin and facilitates the identification of the apical membrane [11]. InsPR-

II localizes in close proximity to both Mrp2 and Rhodamine phalloidin in control

non-treated cells or in scrambled siRNA-treated cells [10, 11] (Figure 4a and b).

InsP3R-II distribution did not change in cells treated with E-Syt1 and/or E-Syt2

siRNAs (Figure 4c-e and f). Additionally, InsP3R-II total and relative fluorescence

intensity per canaliculus were not affected under E-Syt knockdown conditions

(Figure 4g and h). Similarly, canalicular diameter remained unaltered in these

cells (Figure 4i). In order to investigate whether E-Syt1 and/or E-Syt2 knockdown
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affects InsP3R-II cluster size, we used Stimulated Emission Depletion (STED)

super-resolution microscopy [29]. The custom-built machine used in these

studies allowed us to resolve individual InsP3R-II clusters at ,30 nm resolution.

Average InsP3R-II cluster area did not change in cells treated with E-Syt1 and/or

E-Syt2 siRNA (Figure 5). Collectively, these results provide evidence that InsP3R-

II targeting to the apical membrane of hepatocytes is independent of E-Syt 1 and

E-Syt2.

Apical organic anion secretion is not affected by E-Syt knockdown

To investigate whether E-Syt knockdown affects hepatocyte secretory activity, we

monitored apical organic anion secretion of the fluorescent Mrp2 substrate

CMFDA by time-lapse confocal microscopy. Apical accumulation of CMFDA was

Figure 1. Rat hepatocytes express E-Syt1 and E-Syt2 but not E-Syt3. Relative mRNA expression of E-Syt
isoforms was measured by Real Time quantitative PCR in whole liver extracts (A) and in fully polarized rat
hepatocytes (after 96 hrs in sandwich culture) (B). E-Syt 1 and 2 were detected, and E-Syt3 was absent from
both samples. E-Syt1 was the most abundantly expressed isoform in both samples. (**p,0.001; ***p,0.0001;
n53 experiments). Values are mean ¡ SD. Data were analyzed by one-way ANOVA, followed by Bonferroni’s
post-tests.

doi:10.1371/journal.pone.0114043.g001
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Figure 2. E-Syt1, E-Syt2 and InsP3RII expression is maintained during rat hepatocyte collagen
sandwich culture. Relative E-Syt1(A) and E-Syt2 (B) mRNA expression was assessed by Real Time PCR in
rat hepatocytes at the indicated times in collagen sandwich culture. (C) Representative immunoblottings of E-
Syt1, E-Syt2 and InsP3R-II in rat hepatocytes at the indicated time points of collagen sandwich culture.
GAPDH was used as loading control. HeLa cell lysate was used as a positive control for E-Syts and whole
liver lysate was used as a positive control for InsP3R-II. Correct molecular weight is indicated by the arrows.
(D) Densitometric analysis of E-Syt1 blots in (C). (n54 experiments). (E) Densitometric analysis of E-Syt2
blots in (C). (n54 experiments). (F) Densitomteric analysis of InsP3R-II blots in (C). (n54 experiments).
Values are mean ¡ SD. Data were analyzed by one-way ANOVA, followed by Bonferroni’s post-tests.
Expression was compared among time points ranging from 0 to 96 hrs in collagen sandwich culture.

doi:10.1371/journal.pone.0114043.g002
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Figure 3. Specific siRNAs against E-Syt1 and E-Syt2 efficiently reduce E-Syt1 and E-Syt2 protein
expression but do not affect InsP3R-II expression. Representative immunoblotings of E-Syt1 (A) and E-
Syt2 (B) in rat hepatocytes after treatment with 25 nM of scrambled, E-Syt1 (A), E-Syt2 (B) or E-Syt1+2
siRNAs (A and B) for 96 hrs in sandwich culture. (C) Densitometric analysis of blots in (A). (***p,0.0001; n53
experiments) (D) Densitometric analysis of blots in (B) (*p,0.05; n53 experiments). (E) Representative
immunoblots of InsP3R-II after individual or simultaneous treatment with E-Syt1 and E-Syt2 siRNAs. (F)
Densitometric analysis of blots in (E) (n53 experiments). GAPDH was used as loading control. Values are
mean ¡ SD. Data were analyzed by one-way ANOVA, followed by Bonferroni’s post-tests.

doi:10.1371/journal.pone.0114043.g003

Apical Localization of InsP3Rs and E-Syts in Hepatocytes

PLOS ONE | DOI:10.1371/journal.pone.0114043 December 1, 2014 10 / 18



Figure 4. Apical localization of InsP3Rs is independent of E-Syt1 and E-Syt2. Confocal immunofluorescence images of InsP3R-II under control, non-
treated (A), scrambled (B), E-Syt1 (C), E-Syt2 (D) and E-Syt1+2 (E) siRNA conditions. InsP3R-II (green) was co-labelled with Rhodamine phalloidin (red),
the apical membrane marker Mrp2 (blue) and the nuclear stain DAPI (magenta). Scale bar510mm. (F) Distribution of InsP3R-II was quantified by its
normalized fluorescence intensity along a 6mm line perpendicular to the canalicular membrane. (n53 experiments; control: n563 canaliculi; scrambled
siRNA: n548 canaliculi; E-Syt1 siRNA: n548 canaliculi; E-Syt2 siRNA: n551 canaliculi; E-Syt1+2 siRNA: n530 canaliculi). Values are mean ¡ SEM. (G)
Total InsP3R-II fluorescence intensity per canaliculus. (H) Relative InsP3R-II fluorescence intensity, calculated as total InsP3R-II fluorescence normalized by

Apical Localization of InsP3Rs and E-Syts in Hepatocytes
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quantified as an indicator of Mrp2 function (Figure 6a). This assay was used

because it has been established previously that secretion of CMFDA in this system

depends on expression of InsP3R-II and calcium signaling [11]. We observed that

E-Syt1 and/or E-Syt2 siRNA-treated cells showed apical secretion kinetics that

were similar to those of non-treated and scrambled siRNA-treated cells, whereas

cells pre-treated with the cytosolic Ca2+ buffer BAPTA-AM had a significant

decrease in apical CMFDA secretion (Figure 6b and c). Additionally, pre-

treatment of E-Syt knockdown cells with BAPTA-AM did not change apical

secretion kinetics compared to non-treated or scrambled siRNA-treated cells that

were also treated with BAPTA-AM (Figure 6d and e). These data indicate that E-

Syt1 and E-Syt2 do not participate in apical secretion of organic anions in

hepatocytes.

InsP3-induced Ca
2+

signals are unaltered by knockdown of E-Syt

InsP3-induced Ca2+ signals begin as apical-to-basal Ca2+ waves in hepatocytes

[27], and this pattern is disrupted when InsP3R-II redistributes away from the

apical region [19]. To assess whether E-Syt knockdown alters the pattern of

cytosolic Ca2+ signals in hepatocytes, we used the red fluorescent protein-tagged

genetically encoded Ca2+ indicator for optical imaging R-GECO [30]. Fully

polarized control, scrambled- and E-Syt siRNA-treated rat hepatocytes were

stimulated with 20mM ATP and Ca2+ kinetics were analyzed by time- lapse

confocal microscopy. ATP induced the formation of apical-to-basolateral Ca2+

waves (Figure 7a), similar to previous reports [4, 19, 32]. Signal amplitude, rise

time and Ca2+ wave speed were unaltered in cells treated with E-Syt1 and/or E-

Syt2 siRNA compared to non-treated or scrambled siRNA-treated cells

(Figure 7b-e). Together, these results demonstrate that E-Syt1 and E-Syt2 do not

play a role in InsP3-induced Ca2+ signaling in hepatocytes.

Discussion

Apical clustering of InsP3Rs is important for the normal function of polarized

epithelia, and loss of apical InsP3Rs appears to result in impaired secretion in both

animal models of secretory disorders and in human disease. For example, loss of

InsP3R-II in hepatocytes leads to impaired targeting of the apical membrane

transporters Mrp2 [11] and bile salt export pump (Bsep) [10], and hence their

secretory activity is compromised. Moreover, InsP3R-II expression is lost in both

estrogen- and endotoxin-induced cholestasis [10], two different rodent models of

human bile secretory disorders [35]. Furthermore, the expression of InsP3R-III,

canalicular area. (n53 experiments; control: n5234 canaliculi; scrambled siRNA: n5134 canaliculi; E-Syt1 siRNA: n5163 canaliculi; E-Syt2 siRNA: n5299
canaliculi; E-Syt1+2 siRNA: n5220 canaliculi). (I) Canalicular diameter is shown as an indicator of canalicular morphology. (n53 experiments; control: n563
canaliculi; scrambled siRNA: n548 canaliculi; E-Syt1 siRNA: n548 canaliculi; E-Syt2 siRNA: n551 canaliculi; E-Syt1+2 siRNA: n530 canaliculi). Values are
mean ¡ SD. Data were analyzed by one-way ANOVA, followed by Bonferroni’s post-tests.

doi:10.1371/journal.pone.0114043.g004
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which is the main InsP3R isoform in bile duct epithelia, and which is also apically

localized [6], is greatly reduced or absent in the bile ducts of patients with a range

of cholestatic disorders including bile duct obstruction resulting from stone

disease or malignancy, biliary atresia, primary biliary cirrhosis and sclerosing

cholangitis [18]. Similarly, there is selective loss of InsP3R-III in bile ducts of

animals subjected to bile duct ligation (BDL) or endotoxin injection, both

accepted models of ductular cholestasis [18, 36]. Finally, InsP3R-II deficiency is

associated with accumulation of zymogen granules and impaired secretion in

pancreatic acinar cells [20]. Together, these observations provide evidence that

InsP3R deficiency participates in the development of secretory disorders.

The importance of ER-PM contacts has been shown in such diverse processes as

Ca2+ transport during excitation–contraction coupling in muscle cells [37], store-

operated Ca2+ entry (SOCE) [38, 39], nonvesicular sterol lipid transport [40, 41],

the regulation of phosphoinositide levels in the PM [42, 43], growth factor

receptor signaling [44–46], vesicle trafficking and plasma membrane domain

organization [47]. Therefore, this specialized inter-organelle communication is

important to maintain proper lipid synthesis, protein folding, cell growth,

polarity, hormone and calcium signaling, regulated secretion and endocytosis

[47]. Inter-organelle signaling at ER–PM contacts may furthermore control cell–

Figure 5. Average InsP3R-II cluster size is not altered by E-Syt knockdown. Confocal immunofluorescence (A, B, D) and STED super-resolution (C)
images of a control rat hepatocyte canaliculus. InsP3R-II (green) was co-labelled with Mrp2 (blue). Scale bar53.5mm. Box in (A) represents the area
depicted in (C) and (D). (C) Individual clusters (arrows) were observed in STED image, whereas they could not be resolved as well in confocal image (D). (E)
Average InsP3R-II cluster area was determined based on STED images (control: n5118 clusters; scrambled siRNA: n5129 clusters; E-Syt1 siRNA: n5118
clusters; E-Syt2 siRNA: n5109 clusters; E-Syt1+2 siRNA: n5103 clusters). Data were analyzed by one-way ANOVA, followed by Bonferroni’s post-tests.

doi:10.1371/journal.pone.0114043.g005
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Figure 6. Apical organic anion secretion is not affected by E-Syt knockdown. (A) Representative
differential interference contrast (DIC) (left), and confocal fluorescence time-lapse images at baseline (middle)
and after 4 min (right) of CMFDA secretion in control non-treated rat hepatocytes in collagen sandwich
culture. The cell-permeant fluorescent Mrp2 substrate was added to cells, and its secretion into the canalicular
spaces (green) was monitored every second for 4 minutes by confocal microscopy. (B) and (C) Quantification
of CMFDA canalicular accumulation under control (n555 canaliculi), scrambled (n549 canaliculi), E-Syt1
(n552 canaliculi), E-Syt2 (n565 canaliculi) and E-Syt1+2 (n552 canaliculi) siRNA conditions. Pre-treatment
with the cytosolic Ca2+ buffer BAPTA-AM (50 mM) (n548 canaliculi) was used as a negative control (*p,0.05;
n53 experiments). (D) and (E) Quantification of CMFDA canalicular accumulation under control (n5163
canaliculi), scrambled siRNA (n573 canaliculi), BAPTA-AM (n5111 canaliculi), scrambled siRNA+BAPTA-AM
(n581 canaliculi), E-Syt1 siRNA+BAPTA-AM (n5163 canaliculi), E-Syt2 siRNA+BAPTA-AM (n5146
canaliculi) and E-Syt1+2 siRNA+BAPTA-AM (n5164 canaliculi) conditions. (***p,0.0001; n53 experiments).
Values are mean ¡ SD. Data were analyzed by one-way ANOVA, followed by Bonferroni’s post-tests.

doi:10.1371/journal.pone.0114043.g006
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Figure 7. InsP3-induced Ca2+ signals are unaltered by E-Syt knockdown. (A) Representative DIC (left panels) and confocal fluorescence time-lapse
images (right panels) of R-GECO-transfected, fully polarized rat hepatocytes under non-treated, scrambled, E-Syt1, E-Syt2 and E-Syt1+2 siRNA conditions
and stimulated with 20mM ATP. Images were pseudocolored according to the scale shown at the bottom. Outlined structures represent the canalicular area
of each cell, where Ca2+ waves begin. Scale bar520mm (B) Representative tracings from cells under each experimental condition are shown. Based on
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cell communication during normal cell development and disease states, such as

tumor cell progression [47].

Our study shows that E-Syts do not participate in the tethering of InsP3R-II to

the apical membrane in hepatocytes. However, finding other protein candidates

that might be involved in this process is clinically relevant and remains an

important question in order to better understand the pathogenesis of secretory

diseases. Other possible ER-PM tethering candidates could be the vesicle-

associated membrane protein-associated proteins (VAPs) or the TMEMs (or

Anoctamins), which have been shown to establish ER-PM contacts in yeast

[42, 48]. Whether these proteins play a role in InsP3R targeting to the apical

membrane in secretory epithelia remains to be investigated.
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