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Abstract

In order to fully understand protein kinase networks, new methods are needed to identify regulators and substrates of
kinases, especially for weakly expressed proteins. Here we have developed a hybrid computational search algorithm that
combines machine learning and expert knowledge to identify kinase docking sites, and used this algorithm to search the
human genome for novel MAP kinase substrates and regulators focused on the JNK family of MAP kinases. Predictions were
tested by peptide array followed by rigorous biochemical verification with in vitro binding and kinase assays on wild-type
and mutant proteins. Using this procedure, we found new ‘D-site’ class docking sites in previously known JNK substrates
(hnRNP-K, PPM1J/PP2Czeta), as well as new JNK-interacting proteins (MLL4, NEIL1). Finally, we identified new D-site-
dependent MAPK substrates, including the hedgehog-regulated transcription factors Gli1 and Gli3, suggesting that a direct
connection between MAP kinase and hedgehog signaling may occur at the level of these key regulators. These results
demonstrate that a genome-wide search for MAP kinase docking sites can be used to find new docking sites and substrates.
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Introduction

Protein kinases – enzymes which catalyze covalent addition of

phosphate groups to substrate proteins – are essential components

of the vast majority of eukaryotic signal transduction and

regulatory networks. The human proteome contains just over

500 protein kinases [1], while it has been estimated that at

least one-third of all proteins in a typical mammalian cell are

phosphorylated [2]. Given these numbers, it is clear that most

protein kinases have many different physiological substrates, and

that the majority of these substrates remain to be identified.

Many biochemical methods have been developed to identify novel

substrates of protein kinases, such as mass-spectrometry, 2D gel

electrophoresis, chemical tags used for in vitro phosphorylation assays,

and others, but most of these methods are biased against weakly

expressed proteins (reviewed in [2,3]). In contrast, computational

scanning of genomes to predict novel substrates is blind to protein

expression levels, and will also not miss those proteins that are

only expressed in rarely studied cell types. The success of such

approaches, however, is predicated upon the existence of sufficiently

non-degenerate sequence patterns to search for.

Protein kinases phosphorylate serine/threonine or tyrosine

residues in proteins, and a few residues on either side of the

target phosphoacceptor residue typically also influence kinase-

target selection [4,5]. For example, both cyclin-dependent kinases

and mitogen-activated protein kinases recognize a core motif

consisting of Ser/Thr-Pro, which is influenced by nearby residues

[6]. Phosphorylation-site consensus motifs have been compiled

from known examples and from data obtained using peptide

libraries [7,8]. Unfortunately, these motifs are typically short and

degenerate, so that they are found in many proteins by chance.

Hence, while there have been successes using these motifs to find

new substrates (e.g. [9,10,11]), this approach has not generally

been applied systematically on a genomic level.

Substrate prediction based on target peptide specificity is even

more problematic for those kinases that recruit their substrates via

interactions outside of the catalytic pocket [12]. Work over the

past 15 years or so has established the paradigm that many protein

kinases bind with relatively high affinity to interaction motifs on

substrates that are distal to the target phosphorylation site(s)

[13,14,15], and that these interactions can be crucial for efficient

signal transmission [16]. This type of ‘‘docking’’ strategy is used

extensively in mitogen-activated protein kinase (MAPK) signaling

[16,17]. For example, when the MAP kinase JNK2 phosphorylates

its transcription factor target c-Jun, it first tethers itself to a dock-

ing site located within residues 30–45 of c-Jun, and then
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phosphorylates c-Jun on Ser63 and Ser73. Mutation or deletion of

this docking site drastically reduces the ability of JNK2 to

phosphorylate these residues [18].

Although there are several classes of MAPK-docking site, many

of the known substrates of MAP kinases contain a docking motif

known as the ‘D-site’ (see Fig. 1). D-sites are also found in MAPK-

regulating proteins such as MAPK kinases (MKKs), scaffold

proteins and MAPK phosphatases. The D-site consensus consists

of a basic cluster of 1–4 residues, a short spacer, and a

hydrophobic-X-hydrophobic submotif. Crystallographic and mu-

tagenesis studies have established that D-sites on substrates and

regulators bind in an extended fashion to complementary surface

patches and grooves on their cognate MAPKs [19].

MAPKs are essential components of eukaryotic signal trans-

duction networks that enable cells to respond appropriately to

growth factors, differentiation cues, stresses, and other signals [20].

MAPK pathways are dysregulated in many diseases, including

cancer, developmental disorders, degenerative diseases (e.g.

Alzheimer’s, Parkinson’s, Huntington’s, muscular dystrophy) and

metabolic disorders (e.g. obesity and diabetes) [21,22]. Many

substrates of MAPKs have been identified [23,24], but given the

widespread involvement of MAPKs in fundamental and disease

processes, it is suspected that many more remain to be found [25].

In addition, MAPK target phosphosites are too degenerate to use

for genome-scale screening [26]. With this in mind, we developed

a program to search genome sequences for putative D-sites, with

the aim of identifying novel MAPK substrates and regulators.

Here we report the success of this approach, when applied to the

human genome, both in identifying previously unknown D-sites in

known substrates, and in discovering novel D-site-containing

MAPK substrates.

Results

An algorithm for detecting MAPK-docking sites
In mammalian cells, four major MAPK pathways have

been characterized: ERK1/2, JNK, p38, and ERK5 [27,28].

D-site-mediated interactions are used extensively by the first three

of these [29], and perhaps by ERK5 as well [30]. While some D-

sites show selectivity in their ability to bind to either the ERK,

JNK or p38 families of MAPKs [31], other D-sites bind to

members of more than one MAPK family [17]. This suggests that

it is both possible and desirable to devise a search procedure that

can utilize family-specific information, and also suggests that there

is hidden information, outside the core consensus, that dictates

family preferences. For these reasons we decided to focus on

developing a search procedure that could identify novel substrates

and regulators of the JNK family of MAPKs.

We believed that our recent characterization of four new JNK

D-sites [32,33] had pushed the number of literature-verified sites

towards the critical mass needed to implement a machine-learning

approach [34]. A profile Hidden Markov Model (HMM)

architecture, which statistically represents a pattern of position-

specific conservation for a series of related sequences, is a

probabilistic machine learning approach that has the potential to

discover patterns in sets of data that are difficult to notice by direct

observation [35]. HMMs have proven useful, for example, in

sequence alignment of protein families and prediction of novel

family members [36,37], prediction of signal peptides [38], and

prediction of p53-binding sites [39]. HMMs also form the

foundation of Pfam’s homology searching capabilities [40]. Within

the profile HMM architecture, a ‘‘training set’’ of validated

sequences is used to update a set of emission and transition

probability matrices. Following enough iterations to converge each

parameter’s value, the HMM can be used to compute the

probability that any test sequence is related to the training set.

Essentially, the computer infers what the sequences in the training

set have in common, and then evaluates the probability that a test

sequence will be generated by the same rules it has inferred from

the training set [41,42,43].

To evaluate the utility of an HMM-based approach for finding

novel D-sites, a list of 20 proteins containing functionally verified

JNK-docking sites was compiled from our own results and the work

of many others [17,18,44,45,46,47,48,49,50,51,52,53,54,55,56]

(Fig. 1B). Members of the training set included D-sites from the

JNK activating kinases MKK4 and MKK7 [32,33], JNK scaffold

proteins such as JIP1-3, JIP4/SPAG9, JSAP1, and beta-arrestin2

[46,47,48,49,55,56], and JNK substrates such as the transcription

factors c-Jun, ATF2, Elk-1 and Net [18,45,54]. We limited the

training set to experimentally-validated JNK-docking sites, and

excluded those D-sites known to bind preferentially to ERK or p38

over JNK, as well as those which had not been tested with JNK. We

also excluded MAPK phosphatases from our training set because of

evidence that they use an extended docking motif [57]. This training

set was used to train a profile HMM architecture designated ‘D-

learner’ (see Methods for further details); the trained HMM was

designated D-learner.T1 (short for ‘D-learner trained with Training

Set #1’).

Validation of the HMM algorithm
A training set of only 20 members is close to the minimum

number needed to derive a useful HMM; this small set was

necessitated by our decision to limit the training set only to those

D-sites that were literature verified. Therefore, several tests were

carried out to assess the ability of D-learner.T1 to accurately

discriminate D-sites from other sequences.

First, the probabilistic ‘‘Viterbi score’’ (see Methods) given by

D-learner.T1 to each member of the training set was computed.

The HMM gave the best score to training set members JIP1/

MAPK8IP1 and JIP2/MAPK8IP2 (2.4E-14 and 3.3E-17, respec-

tively), and the ‘worst’ score to members IRS1 and GR (5.0E-26

Author Summary

Protein kinases are enzymes that regulate key cellular
processes by covalently attaching a phosphate group to
substrate proteins; they are crucial components of
signaling pathways involved in cancer, diabetes, and many
other diseases. Identifying the substrates of particular
protein kinases is challenging, and many existing bio-
chemical methods are biased against weakly expressed
proteins like transcription factors. Here we exploited the
observation that mitogen-activated protein kinases
(MAPKs) briefly attach to many of their substrates before
phosphorylating them, docking onto a sequence known as
the ‘D-site’. We developed D-finder, a computational tool
that uses a combination of expert knowledge and machine
learning to search genome databases for D-sites. We then
verified several of D-finder’s predictions using rigorous and
well-established biochemical assays. The most intriguing
predicted and verified substrates were the Gli1 and Gli3
transcription factors of the ‘hedgehog’ signaling pathway.
Gli transcription factors are involved in embryonic
development and stem cell differentiation, and have also
been found to be hyperactive in several types of cancer.
There is emerging evidence that crosstalk with MAPK
pathways is important in Gli-mediated regulation. Our
study, however, is the first to show that MAPKs directly
phosphorylate Gli transcription factors.

Predicting MAP Kinase Substrates and Docking Sites
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and 1.5E-26, respectively). In contrast, randomly-permuted

sequences derived from training set members generated scores

ranging from 1E-24 to 1E-36. Note that the closer a Viterbi score

is to 1, the ‘better’ it is (where better scoring sequences presumably

have a higher probability of being a bona fide D-site), yet very good

scores may still be very small numbers; this is standard in HMM-

based approaches [42].

Next, the full-length sequences of the proteins in the training set

were tested. In each case, the HMM was able to identify the

published D-site as the top scoring window within the full-length

polypeptide. Graphs of the scores for successive windows running

from the amino- to the carboxy- terminus in three test proteins are

shown in Fig. 2. The single D-site in MKK4 [32] resulted in a

single peak near the N-terminus of this protein (Fig. 2A).

Moreover, the three known D-sites in the N-terminus of MKK7

[33] resulted in three corresponding peaks in the D-learner.T1

output (Fig. 2B). In contrast, an arbitrarily chosen coding sequence

with no known D-sites has no obvious peaks (Fig. 2C). This

Figure 1. MAP kinases interact with D-sites on substrates and regulators. (A) JNK and several classes of JNK-interacting proteins. The D-site
on JNK-binding proteins is shown as a triangle. (B) Literature-verified JNK D-sites that were used as a training set for the hidden Markov model
component of D-finder. (C) Sequence logo [111] of the central 14 residues of the D-sites shown in B.
doi:10.1371/journal.pcbi.1000908.g001

Predicting MAP Kinase Substrates and Docking Sites
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Figure 2. Validation of the D-learner hidden Markov model. (A–C). The HMM accurately identifies known D-sites in full-length sequences. Full-
length sequences run through the HMM give a Viterbi probability for every window tested. The x-axis displays the window number and the y-axis
shows the log of the Viterbi probability for each window. The dashed lines represent the threshold of E-23 for a window to be considered a predicted
D-site. MKK4 (A) has one peak, MKK7 (B) has three peaks, and the arbitrarily-chosen full length sequence SEMA3C (C) has zero peaks above the
threshold. (D) The HMM does not score randomized sequences highly, even if they have the same composition as a high-scoring D-site. Histogram of
scores assigned to 1,000 scrambled sequences with same sequence composition as the MKK4 D-site (blue, left ordinate labels) and the 20 training set
D-site sequences (green, right ordinate labels). Sequences were binned by score, with no sequences scoring below 237 or above 214. For the MKK4
randomized set, zero sequences surpassed the 223 threshold (dashed line). For the 20,000 total randomized D-site sequences, 30 sequences (0.15%)
scored above this threshold. For the training set, 16 sequences (80%) surpassed the E-23 threshold. (E) The HMM scores JNK D-sites higher than D-
sites selective for ERK- or p38-family MAPKs. The name, D-learner-assigned score, and sequence of all known human MKK D-sites are shown. The JNK
D-sites (MKK4 and the 3 MKK7 D-sites) surpass the 223 threshold; however, the non-cognate D-sites, although they contain the core consensus basic
(blue) and hydrophobic (red) residues, do not score above the threshold.
doi:10.1371/journal.pcbi.1000908.g002

Predicting MAP Kinase Substrates and Docking Sites
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arbitrarily chosen sequence is representative of any of over 30,000

sequences in the translated human transcriptome in which D-

learner.T1 did not find any window with a score above 1E-23 (this

cutoff is represented by the dashed lines Fig. 2A–D).

Third, as a test of the ability of D-learner to identify literature-

verified D-sites that it had not been trained on, a leave-one-out

cross-validation (LOOCV) test was implemented. In this test, each

of the original 20 training set sequences was removed from the

training set one at a time (so that 19 D-sites remained in the

training set), the HMM was retrained, and the removed sequence

(in the context of its full length protein sequence) was used as a test

sequence. In every case, the removed sequence was still the top

scoring window within the full-length polypeptide (data not

shown). It should be noted that the LOOCV test is most stringent

when the left out sequence is not overly similar to the training

sequences, as was true in many but not all of the LOOCV tests we

performed (see Text S1 Fig. 1 for a multiple sequence alignment of

the training set D-sites). We also performed a combinatorial series

of ‘‘leave-four-out’’ cross validation tests. In these tests the ability

of D-finder to identify the bona fide D-sites in the left-out sequences

degraded to 70%. This is evidence that the 20-member training set

is indeed near the minimum required for an effective HMM.

As a fourth test, we assessed the range and distribution of

probabilities that D-learner.T1 assigned to scrambled D-site

sequences. Each of the D-sites in the training set was randomly

permuted 1,000 times and scored by the HMM. Fig. 2D shows the

result obtained when the randomized strings of MKK4 were

binned and plotted. The median of the 20,000 total sequences was

2.5E-30, with a minimum score of 6.2E-37 and a maximum

of 2.2E-19. This can be compared to the scores given to the

unrandomized training set of 20 sequences, which had a median,

minimum and maximum of 6.2E-20, 1.5E-26 and 2.4E-14,

respectively. Thus, D-learner.T1, on average, assigned much

better scores to bona fide D-sites than to scrambled sequences of

the same composition.

Next, we used receiver operating characteristic (ROC) analysis,

which compares how the true positive and false positive rates vary

as the threshold used to discriminate predicted positives from

predicted negatives is varied. As a set of true positives, we used the

training set members. To estimate the false positive rate as a

function of threshold, we ran D-learner.T1 on the predicted

proteomes of the bacteria E. coli and B. subtilis. As bacteria do not

contain MAP kinases, any D-site-like sequences found in these

organisms either occur by chance or have evolved to serve some

other function. In either case, they can be considered false

positives. The results of this analysis are shown in Text S1 Fig. 2.

The area under the curve is 0.92, where 1.0 would be the score of

a perfect classifier, and 0.5 would be the score obtained by flipping

a coin to classify each window. A score of 0.92 thus indicates very

good performance.

Based on these data, we set the threshold for a top scoring

subsequence to be considered a ‘‘high-quality’’ predicted D-site to

1E-23. This threshold represents a compromise between the goals

of (1) including members of the training set while (2) excluding all

but the very tail of the scrambled distribution. The threshold of

1E-23 is a point that only 0.15% (30/20,000) of the scrambled

sequences surpassed, yet 80% (16/20) of the training set members

did. In addition, less than 0.005% (1/30,000) of 19mers randomly

chosen from either the human, E. coli or B. subtilis proteomes

surpassed this threshold. This threshold is represented by the

dashed lines in the graphs in Fig. 2A–D.

As a final assessment of D-learner.T1, we compared the scores it

gave to cognate vs. non-cognate D-sites. MKK4 and MKK7 are

the physiological (cognate) activators of JNK1-3, whereas the

MAPK kinases MEK1/2 and MKK3/6 activate the ERK1/2 and

p38 MAP kinases, respectively, and do not phosphorylate JNK1-3.

Consistent with these strong enzymatic preferences, JNK proteins

bind selectively to MKK4- and MKK7-derived D-sites and do not

bind appreciably to D-sites in other MKKs [31], despite the

observation that all MKK-derived D-sites share the core consensus

basic and w-X-w motifs (Fig. 2E). In accord with these biochemical

results, D-learner.T1 ranked the D-sites in the cognate JNK

kinases MKK4 and MKK7 much higher than those in non-

cognate MAPKs. The cognate MKK4 D-site and all three cognate

MKK7 D-sites had Viterbi scores ranging between 1E-18 to 1E-

20, whereas the non-cognate D-sites in MEK1/2 and MKK3/6

had lower scores ranging between 1E-25 and 1E-27. In addition,

all four cognate D-sites scored well above the cut-off of 1E-23,

whereas all four non-cognate D-sites scored below this cut off.

Thus, the trained hidden Markov model was able to discriminate

JNK-docking sites from docking sites for other MAP kinases.

Development of a hybrid algorithm
To explore the potential utility of D-learner.T1 to predict novel

D-sites from genome-scale information, it was run on the

translated human transcriptome. Examination of the top-ranked

sequences revealed a potential weakness in the D-learner.T1

model: it was giving high-ranking scores to many sequences that

did not contain a canonical w-X-w submotif, and in some cases

also to sequences lacking even a single-residue basic submotif (see

Text S1 Fig. 3). Mutagenesis studies have shown that the basic

submotif, as well as both hydrophobic residues in the w-X-w
submotif, are crucial for D-site function [32]. Therefore, we

concluded that sequences that did not contain a canonical basic or

w-X-w submotif would be enriched for false positives relative to

those that did.

In parallel with the development of D-learner, we also

developed an expert knowledge-based pattern-matching algorithm

that we dubbed D-matcher. The first version of D-matcher

searched for w-X-w submotifs and appropriately-spaced clusters of

basic residues (see Methods). D-matcher performed well in several

validation tests, but produced too many sequences with similar

scores. Also, we believed that there was additional information

contained within D-site sequences that was difficult to incorporate

into a rule-based algorithm. It was therefore deemed unsuitable for

genome-scale screening on its own.

Because neither D-learner nor D-matcher was ideal for

genome-scale screening as separate algorithms, we developed a

hybrid program named D-finder, which incorporates a simplified

D-matcher as a pre-screen for sequences suitable to pass to D-

learner. This program was used for all subsequent analyses.

Transcriptome screening
To identify putative novel JNK-interacting proteins in the

human genome, 33,730 full-length protein sequences, representing

the predicted human translated transcriptome, were scored by D-

finder (Fig. 3A). Overall, 403 proteins contained predicted D-sites

that surpassed our conservative threshold (see Table S1 Table 1),

corresponding to a hit rate of 1.19%. To provide a basis for

comparison, we also ran D-finder on the predicted proteomes of

the bacteria E. coli and B. subtilis, obtaining per protein hit rates of

0.58% and 0.36%, respectively.

The top 25 predicted human D-sites sequences, ranked

according to Viterbi score, are shown in Fig. 3B. Six of the top

seven and ten of the top nineteen are training set members

(colored green in Fig. 3B), indicating that the literature-verified D-

sites were given an appropriately high ranking in the context of a

whole genome search. In general, predicted human D-sites

Predicting MAP Kinase Substrates and Docking Sites
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sequences were conserved in the orthologous mouse sequences

(median D-site sequence identity 89%, see Table S1 Table 2), in

those cases where orthologs could be readily discerned.

Scansite is a published motif-finding tool that uses a weight

matrix-based scoring algorithm to search for many sequence

motifs, including ERK D-sites [7]. Since ERK D-sites share a core

consensus with JNK D-sites, we compared Scansite to D-finder.

Comparing the highest scoring D-site when each tool was run on

the same sequence revealed that D-finder and Scansite often

prioritized the same site. For example, for the proteins in the

Figure 3. D-finder architecture and results of human genome search. (A) Overview of D-finder. D-finder consists of D-matcher, a pattern
matching algorithm employing expert knowledge, and D-learner.T1, a profile HMM trained on the training set shown in Fig. 1B. D-matcher filters out
most windows, but found many acceptable windows in most sequences. D-learner assigns a probability score to each window it is passed, and found
above-threshold windows in only 403 of the sequences passed to it by D-matcher. When D-learner was run without D-matcher interceding, it found
2,260 above-threshold windows in 1,784 sequences. (B) The top 25 D-sites found by D-finder in the human genome.
doi:10.1371/journal.pcbi.1000908.g003

Predicting MAP Kinase Substrates and Docking Sites
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D-finder training set, Scansite found the same D-site as D-finder in

65% of the cases. When we compared their performances in

database searches, however, Scansite and D-finder were quite

different. For example, only one of the top 25 predictions from D-

finder was also among the top 25 predictions of Scansite, and only

three of D-finder’s top 25 predictions were in Scansite’s top 500

predictions. Notably, none of the four proteins analyzed in detail

below (hnRNP-K, PPM1J, Gli3 and Gli1) were in Scansite’s top

2000. Thus, Scansite and D-finder prioritize different sequences.

Identification of a D-site in hnRNP-K
The list of predictions generated by D-finder was first scanned

for known JNK substrates or regulators that were not previously

known to contain a D-site. Heterogeneous nuclear ribonucleo-

protein K (hnRNP-K) is an RNA and DNA binding protein that

regulates transcription and translation [58,59], and has been

implicated in the pathology of several types of cancer [60,61]. It is

also a known substrate of several different kinases, including both

JNK and ERK. Although ERK and JNK phosphorylation have

been shown to modulate the regulatory activities of hnRNP-K

[61,62,63], and key MAPK phosphorylation sites on hnRNP-K

have been mapped [62,63], no MAPK-docking sites have

heretofore been identified on hnRNP-K. D-finder assigned a

Viterbi score of 4.5E-22 to a putative D-site (core sequence:

RGGSRARNLPL) that it found at residues 296–310 of hnRNP-

K; overall, this D-site ranked 206 of the 403 above-threshold sites.

A diagram of hnRNP-K with its three RNA/DNA-binding K

homology (KH) domains is shown in Fig. 4A [58]. The predicted

D-site lies within the K-protein-interactive (KI) domain, a region

known to mediate protein-protein interactions with several other

hnRNP-K binding partners [58,64,65,66].

To assess the nature of the interaction between human JNK1

and human hnRNP-K, JNK1 was fused at its N terminus to

Schistosoma japonicum glutathione S-transferase (GST), and the

resulting fusion protein was expressed in bacteria and purified by

adsorption to glutathione-Sepharose beads. JNK1 prepared in this

manner is obtained in its unphosphorylated, unactivated state.

GST-JNK1 (or GST alone as a negative control) was then

incubated with full-length human hnRNP-K that had been

produced in radiolabeled form by in vitro translation (Fig. 4B).

Bead-bound complexes were collected by sedimentation, washed

extensively, and analyzed by SDS-PAGE and autoradiography. As

shown in Fig. 4C, full-length hnRNP-K bound efficiently to JNK1;

this binding was specific, because only trace precipitation of

hnRNP-K occurred when GST was used instead of the GST-

JNK1 fusion protein.

To test the hypothesis that the predicted D-site in hnRNP-K is

important for JNK binding, the ability of wild-type full-length

hnRNP-K to bind to JNK1 was compared to a D-site mutant of

hnRNP-K, in which the critical basic and hydrophobic residues of

the D-site consensus were mutated to alanine (Fig. 4B). As shown

in Fig. 4C, the D-site mutant of hnRNP-K did not bind to JNK1

above background. Thus, the predicted D-site in hnRNP-K

mediates binding to JNK1.

The predicted D-site lies within 100 residues of mapped JNK

and ERK phosphorylation sites in hnRNP-K (Fig. 4A) [57,58].

Having established that this D-site mediated JNK binding to

hnRNP-K, we next wanted to determine if it also facilitated the

phosphorylation of hnRNP-K by JNK at the known JNK target

phosphosite Ser353. To limit the possible phosphoacceptor sites to

Ser353, two N-terminally truncated versions of hnRNP-K, one

with the D-site (w/D, residues 281–464) and one without (w/o D,

residues 317–464), were fused to GST and expressed and purified

from bacteria. These two protein substrates were incubated with

purified active JNK1 and radiolabeled ATP in a standard in vitro

kinase assay (Fig. 4D). Active JNK1 efficiently phosphorylated the

GST-hnRNP-K fragment containing an intact D-site (Fig. 4E). In

contrast, the level of phosphorylation was significantly diminished

(approx 9-fold) for the GST-hnRNP-K fragment lacking the D-

site. GST alone was not phosphorylated by any of the active

MAPK enzymes used in this work (data not shown).

Because hnRNP-K is also a substrate of ERK2, we tested the

ability of ERK2 to bind to and phosphorylate hnRNP-K in a D-

site-dependent manner. GST-ERK2 bound to hnRNP-K, and the

strength this interaction was reduced about 3-fold by mutation of

the D-site (data not shown). In addition, active ERK2 phosphor-

ylated the GST-hnRNP-K fragment, and the extent of phosphor-

ylation was slightly reduced by removal of the D-site (data not

shown). The simplest explanation of these results is that ERK2

utilizes the predicted D-site, but that there is also an additional

docking site for ERK somewhere within hnRNP-K residues 281–

464. This would not be surprising, as many MAPK substrates and

regulators have been shown to contain multiple MAPK-docking

sites [33,54,67]. A second possibility is that ERK2 phosphorylation

of Ser353 is largely independent of ERK2-hnRNP-K docking. We

did not examine whether the D-site promoted ERK-mediated

phosphorylation of Ser284 or JNK-mediated phosphorylation of

Ser216.

To summarize, D-finder predicted a novel D-site in the known

JNK substrate hnRNP-K; this D-site was found to be a bona fide D-

site that mediated JNK-hnRNP-K binding and promoted JNK-

dependent phosphorylation of Ser353 in hnRNP-K.

Identification of a D-site in PPM1J/PP2Czeta
PP2Czeta, also known as PPM1J, is type 2C protein

phosphatase that is enriched in testicular germ cells [68]. PPM1J

is a recently identified JNK substrate; JNK phosphorylates PPM1J

on Ser92 and Thr205, and more weakly on Thr202. Moreover,

JNK phosphorylation of Ser 92 of PPM1J reduces its phosphatase

activity [69]. No MAPK-docking sites have been reported in

PPM1J. D-finder assigned a Viterbi score of 2.7E-22 to a putative

D-site (core sequence: RPTFLQL) that it found in residues 68–74;

overall, this D-site was rank 256 of the 403 above-threshold sites.

To test the ability of this D-site to mediate the binding of PPM1J

to JNK in vitro, JNK binding to wild-type GST-PPM1J was

compared with binding to a PPM1J N-terminal deletion mutant

lacking the putative D-site (Fig. 5A). As shown in Fig. 5B,

radiolabeled JNK1, JNK2 and JNK3 all bound to wild-type

PPM1J but not to GST alone. In comparison, the binding of all

three JNK proteins to the PPM1J derivative lacking the D-site was

substantially reduced.

To determine if the novel D-site promoted the phosphorylation

of PPM1J by JNK, the GST-fused wild-type PPM1J protein and a

GST-fused D-site point mutant derivative (DSM) were incubated

with active JNK1, JNK2, and JNK3 and radioactive ATP in a

standard kinase assay (Fig. 5C). The results of these assays (Fig. 5D)

show a significant reduction in phosphorylation of the D-site

mutant protein relative to the wild type, at two different

concentrations for each of the three JNK enzymes.

As an alternative means to assess D-site-mediated phosphory-

lation of PPM1J by JNK, V5-epitope-tagged versions of the wild-

type and D-site point mutant of PPM1J were expressed in Cos-1

cells and immunoprecipitated with an anti-V5 antibody. Immu-

noprecipitates were then mixed with purified active JNK1 and

radioactive ATP (Fig. 5E). As shown in Fig. 5F, under these

conditions wild-type PPM1J was phosphorylated while the D-site-

mutant PPM1J was not.
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To summarize, D-finder predicted a novel D-site in the known

JNK substrate PPM1J; this was found to be a bona fide D-site

promoting JNK binding and JNK-mediated phosphorylation.

Verification of novel candidates by peptide array
To begin to weed through the novel D-finder predictions

resulting from the transcriptome search, a peptide array approach

was employed. Peptide arrays are macro arrays of short peptides

that are tethered to a nitrocellulose membrane via a chemical linker

attached to their C-termini [70]. Peptides (17-mers) representing the

training set members, as well as 59 of the predicted novel D-sites,

were arrayed in duplicate and probed for binding to radiolabeled

JNK1 (Fig. 6A, 6B, see also Table 3 in Table S1). Each array

contained two positive control peptides (MKK4 and MKK7-D2,

where MKK7-D2 is the second of the three D-sites in the N-

terminal domain of MKK7 [33]) and two negative control peptides

(D-site mutants of MKK4 and MKK7-D2, in which the critical

basic and hydrophobic residues of the D-site consensus were

Figure 4. Identification of a D-site in the known JNK substrate hnRNP-K. (A) Full-length hnRNP-K protein. KH, K homology domain; KI, K
interaction domain. The positions of known JNK and ERK phosphosites and the D-finder-predicted D-site are shown, with key consensus basic (blue)
and hydrophobic (red) residues highlighted by color. (B) Wild-type (WT) and D-site mutant versions (DSM) of hnRNP-K were tested for binding to GST-
JNK1. The sequence of the D-site mutant is shown. (C) As shown in B, 35S-radiolabeled full-length hnRNP-K protein and a D-site mutant derivative
were prepared by in vitro translation and partially purified by ammonium sulfate precipitation, and portions (5% of the amount added in the binding
reactions) were resolved on a 10% SDS-polyacrylamide gel (lane 1). Samples (,1 pmol) of the same proteins were incubated with 40 mg of GST (lane
2) or with 10 to 40 mg of GST-JNK1 (lanes 3–6), bound to glutathione-Sepharose beads, and the resulting bead-bound protein complexes were
isolated by sedimentation and resolved by 10% SDS-PAGE on the same gel. The gel was analyzed by staining with Coomassie Blue (CB) for
visualization of the bound GST fusion protein (a representative example is shown in the lowest panel) and by Phosphorimager analysis for
visualization of the bound radiolabeled protein (upper two panels). (D) Fragments of hnRNP-K were tested as substrates for in vitro phosphorylation
by active JNK. (E) As shown in D, GST fusions to hnRNP-K281–464 (containing the D-site, w/D) and hnRNP-K317–464 (deleted of the D-site, w/o D) were
purified and incubated with purified active JNK1 and [c-32]ATP for 20 min. Substrate concentration: 500 nM; Enzyme activity: 0, 0.8 mU, or 8mU.
Reaction products were separated by SDS-PAGE and incorporation of radioactive phosphate into the substrate was assessed on a PhosphorImager.
doi:10.1371/journal.pcbi.1000908.g004
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changed to alanine) (Fig. 6A). Binding of radiolabeled JNK1 to the

arrayed peptides was quantified with a PhosphorImager and

normalized to the signal obtained with the MKK7-D2 positive

control. MKK7-D2 was chosen as a normalization base because it is

known to exhibit real, but relatively weak, binding [33], and gave a

correspondingly weak signal in the peptide array assay (Fig. 6B).

Thus, we judged that any D-site peptide giving a lower binding

signal than MKK7-D2 was probably not worth pursuing.

Figure 5. Identification of a D-site in the PPM1J phosphatase. (A) Wild-type (WT) and N-terminal truncated versions (NT w/o D) of PPM1J were
fused to GST and tested for binding to JNK 1–3. The sequence of the D-site is shown. (B) As shown in A, 35S-radiolabeled JNK1, 2 or 3 (,1 pmole)
were tested for binding to 40 mg of GST (lane 1) or 30 mg of GST-PPMIJ K17–506 (containing the D-site, lanes 3 and 4) or GST-PPMIJ K80–506 (lacking the
D-site, lanes 5 and 6). Lane 1 shows a 5% of the total JNK input. The lower panel shows Coomassie Blue (CB) staining of the sedimented GST-fusion
proteins. Other details as in Fig. 4C. (C) Wild-type (WT) and D-site-mutant (DSM) versions of PPM1J were tested as substrates for in vitro
phosphorylation by active JNK1-3. (D) As shown in C, 1 mM of each GST-PPM1J protein was incubated with 0, 0.1 or 1 mU JNK1-3 and [c-32]ATP for
20 min. Incorporation of radioactive phosphate into the substrate, as assessed by autoradiography, is shown in 3 panels, and a representative
Coomassie blue (CB) stained gel, to demonstrate equal loading of the substrates proteins, is shown. (E) Wild-type and D-site mutant versions of
PPM1J were C-terminally-tagged with the V5 epitope, expressed in Cos-1 cells, immunoprecipitated, and used as substrates for JNK1-mediated
phosphorylation. (F). As shown in E, Cos-1 cells were transfected with either empty vecor (EV), PPM1J-V5 WT, or PPM1J-V5 DSM. 16 h post-
transfection, the cells were harvested, lysed, and immunoprecipitated with anti-V5 antibodies. MAPK buffer, [c-32]ATP, and active JNK1 were added to
the immunoprecipitated pellets, and phosphorylation of the immunoprecipitated proteins was visualized by PhosphorImager. In addition, portions
(20 mg) of each lysate were separated by SDS-PAGE and immunoblotted (WB, for Western Blot) with either anti-V5 (1:5000) or anti-total JNK (1:500)
antibodies.
doi:10.1371/journal.pcbi.1000908.g005
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Figure 6. Testing predicted D-sites with peptide arrays. (A) Membrane-attached peptides were probed for binding to radioactively-labeled
JNK1. Peptides containing functional JNK-docking sites (e.g. the MKK4 or MKK7-D2 positive controls or accurate predictions) bound to JNK1, while
those containing non-binding peptides (e.g. negative controls or false predicitions) did not. (B) Representative examples of peptide arrays probed
with 35S-labeled JNK1 and then visualized and quantified by Phosphorimager. Controls (circled, in duplicate on each membrane) are the published D-
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PhosphorImager images of two peptide arrays are shown in

Fig. 6B. The results of these experiments highlight the utility of this

approach. First, duplicate spots on the array exhibited similar

levels JNK1 binding (e.g., see control peptides, circled). Moreover,

comparable results were obtained when the same peptide

sequences were probed on different arrays on different days

(compare control peptides between top and bottom arrays). The

MKK4 and MKK7-D2 peptides both exhibited reproducible

positive signals on the arrays, with the MKK4 peptide binding

more efficiently, consistent with its lower Kd [33]. As anticipated,

the D-site mutant negative control peptides exhibited barely

detectable binding. Finally, the other members of the training set

bound almost as efficiently, on average, as the MKK4 D-site.

Thus, the peptide array methodology appeared to provide

reproducible and quantitative data on the binding of MAPKs to

D-site peptides. Furthermore, signal strength roughly correlated

with binding affinities measured by other methods. These

conclusions are consistent with our previous experiences using

this approach [32,71,72].

Fig. 6C shows the normalized JNK binding of 59 high scoring

D-finder-predicted D-sites (see Fig. 3B for scores of top 25

predictions and Table 3 in Table S1 for further annotation). These

peptides correspond to novel D-finder predictions and are not

members of the training set. Of these 59 peptides, 45 bound to

JNK1 at a level that was greater than MKK7-D2, our cutoff for

weak-yet-real binding. Thus, the predictive accuracy of D-finder

was ,76% (45/59). From these results it can be concluded that the

D-finder algorithm is effective at discovering novel peptides that

have the ability to bind to JNK.

Gli3 is a MAPK substrate
Selected candidates that gave a positive binding signal on the

peptide array were chosen for further analysis. We first focused on

the zinc-finger transcription factor GLI-Kruppel Family Member

3 (GLI3), which contained a D-site that was ranked 4th overall by

D-finder, the highest scoring prediction that was not a member of

the training set (see Fig. 3B). This D-site (core sequence:

RKRTLSI) comprises residues 290–296 of the 1580 residue Gli3

protein. A peptide version of this D-site bound to JNK1 at 193%

the level of the MKK7-D2 positive control in the array assay.

GLI3 encodes a transcription factor in the hedgehog signaling

pathway, and is homologous to the Drosophila gene/protein cubitus

interruptus (Ci) [73,74]. Germ line mutations in GLI3 have been

implicated in two human developmental disorders: Pallister-Hall

syndrome and Grieg cephalopolysyndactyly syndrome [75].

Furthermore, several recent studies strongly suggest the possibility

of crosstalk between MAPK signaling and hedgehog signaling, but

the molecular basis for this crosstalk remains to be identified

[76,77,78,79,80,81,82]. For all these reasons, Gli3 protein was

chosen for further analysis.

As large proteins often exhibit non-specific binding in pull-down

assays, we constructed a fragment consisting of amino acids 280–

478, stretching from the D-site to just before the beginning of the

five kruppel zinc-finger domains (Fig. 7A, bottom panel). At the

same time, we constructed a D-site mutant version of this protein

(DSM), changing the key basic and hydrophobic residues in the D-

site to alanine (Fig. 7A). Both versions were produced by in vitro

transcription/translation and assessed for binding to GST-fused

JNK1, JNK2 and JNK3. As shown in Fig. 7B and 7C, the wild-

type protein fragment bound well to all three JNK paralogs, with a

slight preference for JNK2 over JNK1/3. In contrast, the D-site

mutant exhibited greatly decreased binding to all three JNK

proteins. Thus the D-site in Gli3 binds to JNKs as predicted.

Although D-finder was trained with JNK docking sites and

showed an ability to discriminate JNK D-sites from ERK and p38

D-sites (see Fig. 2E), several of the D-sites in the training set are

known to bind to ERK as well as JNK, e.g. the Elk-1 D-site [45].

Therefore, wild-type and D-site mutant Gli3 were tested for

binding to ERK2. Indeed, Gli3 also bound ERK, while the D-site

mutant did not (Fig. 7B, 7C).

We hypothesized that the newly identified D-site might promote

the MAPK-mediated phosphorylation of Gli3. To test this

possibility, GST-Gli3280–478 WT and DSM proteins were purified

and used as substrates for in vitro kinase assays with purified

activated MAPKs. As shown in Fig. 7D and 7E, wild-type Gli3

was an efficient substrate for all 3 MAPKs tested (JNK1, JNK2

and ERK2), whereas the D-site mutant exhibited greatly reduced

phosphorylation. Thus the D-site promotes MAPK-mediated

phosphorylation of Gli3.

Identification of a target phosphosite for JNK on Gli3
Within the Gli3280–478 fragment, there are five possible MAPK

target phosphosites (S/T-P; Fig. 8A). To identify site(s) phosphor-

ylated by JNKs in a D-site-promoted manner, we used tandem

mass spectrometry to compare the phosphorylation of four

different samples, consisting of the wild-type and D-site mutant

versions of Gli3280–478, incubated either with or without active

JNK2 and ATP. Following real or mock phosphorylation

reactions, the products were separated by SDS-PAGE, digested

with chymotrypsin, and analyzed by LC MS/MS. MS/MS

analysis of the wild-type sample in the presence of kinase identified

a phosphopeptide (MH2
2+ 851.40) with a sequence of GHLSA-

SAI(pS)PALSFTY (Fig. 8B). As shown in the MS/MS spectrum

(Fig. 8B), the fragment ion (MH2
2+ 802.50) derived from the

parent ion with a loss of H3PO4 was observed, indicating that this

peptide is phosphorylated. The detection of a series of y ions (i.e.,

y2,y11) and b ions (i.e., b3, b5–b8, b11–b15) identified the peptide

sequence unambiguously. In order to compare the identified

phosphorylation in the four different samples, extracted ion

chromatograms of the phosphorylated peptide (MH2
2+ 851.40)

were obtained and compared as shown in Fig. 8C. A prominent

peak, eluting at around 38 minutes, is present in the phosphor-

ylated wild-type sample, diminished in phosphorylated D-site-

mutant sample, and absent in the unphosphorylated control

samples. The mass spectra of this peak at the given elution time

(Fig. 8D) further demonstrated that the identified phosphopeptide

(MH2
2+ 851.40) was only present in the samples with kinase and

absent in the no kinase controls. Taken together, these results

suggested that phosphorylation of Ser343 in the GST-Gli3280–478

protein was mediated by the D-site.

To validate the mass spectrometry results, we used site-directed

mutagenesis to change Ser343 to alanine and repeated the in vitro

kinase assay with active JNK1, JNK2, and JNK3. The result of this

assay (Fig. 8E) showed a reduction in phosphorylation of the

GST-Gli3280–478 S343A protein to the low levels seen with the

D-site mutant protein, confirming the mass spectrometry results.

sites of MKK4 and MKK7-D2, and their mutants with alanine substitutions at the critical basic and hydrophobic residues. The binding efficiency of the
average of the training set peptides and the positive and negative controls are plotted; this has been normalized by setting the efficiency of the
MKK7-D2 positive control to 100%. (C) Plot of the normalized binding percentages (with S.E.M. bars) for the 59 predicted D-site peptides that were
tested. The threshold for classification as positive is 100%. Red-colored bars are above threshold, green-colored bars are below threshold.
doi:10.1371/journal.pcbi.1000908.g006
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However, there was still detectable JNK-mediated phosphoryla-

tion in the S343A mutant. This could indicate that there is at least

one additional authentic target residue in this region (and that the

phosphorylation of this residue(s) is not strongly dependent on the

integrity of the D-site). Alternatively, it is possible that removal of

the D-site leads to non-authentic phosphorylation of cryptic sites,

as has been observed with the JNK substrate c-Jun [18]. These

possibilities are currently under investigation.

Figure 7. Gli3 is a novel MAP kinase substrate with a functional D-site. (A) Diagram of full length Gli3, shown with its transcriptional
repressor domain (Rep Dom, purple rectangle), the Suppressor-of-Fused binding site (SuFu BS, green rectangle), and its 5 Zinc Finger (ZF) DNA-
binding domains (gray oval). The position (triangle) and sequence of the D-finder-predicted D-site is also shown. Below, the Gli3280–478 wild-type (WT)
and D-site mutant (DSM) fragments used for binding and kinase assays are shown, along with the sequence of the D-site mutant. (B) The Gli3280–478

wild-type and D-site mutant proteins were tested for binding to GST, GST-JNK1, GST-JNK2, GST-JNK3, and GST-ERK2 (40, 30, 30, 20 and 30 mg
respectively). The upper two panels show the bound Gli3 derivatives, with 5% if the total input shown in lane 1; the lower panel shows Coomassie
Blue (CB) staining of the sedimented GST-fusion proteins. Other details as in Fig. 4C. (C) Graph of the results of three independent repetitions of the
binding assay shown in A and B, with duplicate points in each repetition. Standard error bars are shown (n = 3). (D) In vitro kinase assays assessing the
phosphorylation of the WT and DSM fragments of Gli3 by active JNK1 and JNK2. Three separate concentrations of substrate (0.1, 0.3 and 0.5 mM) were
incubated with 0.5 mU (,1 ng) of active enzyme. Image is representative of three independent experiments. Other details as in Fig. 4E. (E) In vitro
kinase assay assessing the phosphorylation of the WT and DSM fragments of Gli3 by activated ERK2. Substrate concentration: 0.5 mM. Enzyme activity:
ERK2 – 0, 1, or 10 units (10 units is ,1 ng).
doi:10.1371/journal.pcbi.1000908.g007
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Figure 8. D-site-directed phosphorylation of Gli3 Ser343. (A) There are five putative MAPK target sites in the portion of Gli3 protein found to
be phosphorylated in this work. To determine which sites were phosphorylated, Gli3 was incubated with active JNK2. (B), (C) & (D). Mass spectrometry
analysis of an identified phosphorylated peptide (m/z 851.40, GHLSASAIS(phospho)PALSFTY). Four samples were analyzed: WT Gli3 with active kinase,
DSM with active kinase, WT with no kinase, and DSM with no kinase. (B) MS/MS spectra of the identified peptide in the GST-GLI3280–478 WT plus active
kinase sample. bi* = [bi2H3PO4]; yi* = [yi2H3PO4]. (C) Extracted ion chromatograms (XIC) of the parent ion from the four samples during LC MS runs.
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ERK2-mediated phosphorylation of the S343A mutant of

Gli3280–478 was also reduced compared to the wild type; however,

it was not reduced all the way down to the level seen with the D-

site mutant (data not shown). This suggests that Erk2 phosphor-

ylates Ser343 and at least one additional residue in a D-site

dependent manner.

To summarize, we have identified Gli3 as a novel substrate of

JNK and ERK. The predicted D-site mediates binding of Gli3280–

478 to MAPKs, and also promotes the JNK-mediated phosphor-

ylation of Ser343, as well as the ERK-mediated phosphorylation of

both S343 and an additional target site(s).

Gli1 is also a MAPK substrate
Gli3 is one of three mammalian homologues of the Drosophila

transcription factor Ci [83]. Gli1, the founding member, was

initially identified as being highly amplified in gliomas, and Gli2

and Gli3 were subsequently cloned by hybridization [83]. A D-site

in Gli2 was identified by D-finder as having a high-ranking score

(3E-22, rank 234 of 403), while the D-site in Gli1 received a score

of 2E-24, not far below our cutoff of 1E-23. The three Gli proteins

contain regions/domains of homology with each other, separated

by stretches of divergence [84]. Notably, the putative D-sites in all

three proteins reside in a conserved region (Fig. 9A), and share

extensive sequence similarity, particularly among the key basic and

hydrophobic residues.

Although all three Gli proteins are implicated in stem cell

biology, development and disease pathogenesis [85,86], evidence

suggestive of crosstalk with MAPK signaling is especially enticing

for Gli1 [76,77,78,79,80,81,82], particularly in relation to a role in

tumorigenesis and cancer progression [87,88]. Thus, to study the

role of the putative Gli1 D-site in MAPK-mediated transactions,

we produced wild-type and D-site-mutant fragments correspond-

ing to the fragments we generated for Gli3. These polypeptides

run from the putative D-site to just before the start of the zinc

finger domain repeats (residues 68–232, Fig. 9B). As shown in

Fig. 9C, wild-type Gli168–232 bound to all MAPKs tested (JNK1-3

and ERK2), and bound particularly well to JNK3 and ERK2. In

addition, the D-site-mutant of Gli168–232 exhibited substantially

impaired binding (Fig. 9C) to MAPKs. When incubated with

active JNK1, JNK2, JNK3 or ERK2, wild-type GST-Gli168–232

was phosphorylated with high efficiency, whereas the D-site

mutant of the Gli1 fragment was phosphorylated to a much lower

extent (Fig. 9D). These data indicate that the conserved D-site in

Gli1 promotes binding and phosphorylation by JNKs and ERK2.

As detailed in the previous section, our mass spectrometry and

mutagenesis analysis revealed that Ser343 of Gli3 was phosphor-

ylated by JNKs. This region of Gli3 is conserved in Gli1 (and

Gli2), and Ser343 in Gli3 aligns with Ser130 in Gli1 (see Fig. 9A

and also Fig. 4 in Text S1). Thus it seemed reasonable to

hypothesize that Ser130 in Gli1 might be a target for MAPK-

mediated phosphorylation. To test this possibility, an S130A

mutant of Gli168–232 was constructed, purified, and incubated with

active MAPK enzymes and ATP in kinase assays. Fig. 9E shows

that for JNK1, JNK2 and JNK3-mediated phosphorylation,

removal of Ser130 in Gli1 resulted in a reduction of phosphate

incorporation down to the low levels seen in the D-site mutant.

This result indicates that Ser130 is the major target phosphosite

for D-site-directed JNK phosphorylation of Gli168–232.

Similar to the results seen with ERK2 phosphorylation of Gli3

S243A, there was considerable ERK-mediated phosphorylation of

GST-Gli168–232 even when Ser130 was mutated to alanine. This

contrasts with the substantial reduction in ERK-mediated

phosphorylation seen with the D-site mutant of Gli1. Thus, the

D-site in Gli1 must primarily direct ERK2 to target residue(s)

other than Ser130. Indeed, there are six other SP sites in

Gli168–232 that could be ERK target phosphosites.

To summarize, we have identified Gli1 as a novel substrate of

JNK and ERK. JNK phosphorylation of Ser130 in Gli1 is

mediated by the predicted and experimentally verified D-site;

however, this same D-site directs ERK2 to phosphorylate a

distinct target site(s) in Gli1.

Biochemical validation of additional selected candidates
Other candidates that gave a positive binding signal on the

peptide array were also tested in binding assays. The histone-lysine

N-methyltransferase Mixed Lineage Leukemia 4 (MLL4), a 2715-

residue transcriptional regulator that is a potential oncogene [89],

had a predicted D-site ranked number 15 overall by D-finder, and

displayed 161% normalized binding on the peptide array. Two C-

terminal fragments of this protein, one with, and one without, the

putative D-site were constructed (see Fig. 5A in Text S1). In

binding assays (see Fig. 5B in Text S1) the wild-type fragment

bound to JNK1 and JNK2, while the fragment lacking the D-site

did not. As the region near the D-site was devoid of potential

MAPK phosphosites, further analysis of MLL4 was not pursued.

A putative D-site in Nei endonuclease VIII-like 1 (Neil1), a 390

amino acid protein involved in DNA repair [90], was ranked

number 8 overall by D-finder, and bound at 198% of the level of

the MKK7-D2 positive control on the peptide array. As shown in

Fig. 5C and D in Text S1, full-length Neil1 protein bound to GST-

JNK1, but not to JNK2, while the corresponding D-site mutant

bound to neither JNK1 nor JNK2. Neil1, however, was not an

efficient substrate for JNK-mediated phosphorylation (data not

shown).

There were other cases where the predicted D-site had no

apparent effect on the larger protein’s ability to bind to JNK. In

several cases the larger protein did not bind to JNK (or exhibited

barely detectable binding) even though the predicted D-site

peptide did bind to JNK in the peptide array assay. These cases

included ARG1 (see Figs. 5E, F in Text S1), PIK3R1, SH3RF1/

POSH, FARP2, PKD1, and WNK1 (data not shown). A possible

explanation for this class of results is that the predicted D-site was

either buried or locked into position in the native structure and

thus not available for MAPK binding. In other cases, the full-

length protein bound to JNK, but this binding was not strongly

affected by mutation of the predicted D-site (e.g. PIF1, IRGQ,

H6PD, PLEKHA6, LAG3, DLEC1, CNKSR, NR4A, MIB2, data

not shown). In total, 21 proteins were given full biochemical

workup to the point of being tested in binding assays. Six of these

21 (hnRNP-K, PPM1J, Gli3, Gli1, MLL4 and Neil1) exhibited D-

site dependent binding, and for the first 4 of these 6 we found

strong evidence of D-site-dependent phosphorylation. For 15 of

the 21 biochemically-tested proteins (,70%), in contrast, we were

unable to find evidence that the predicted D-site was strongly

functional for binding in the context of the native polypeptide. In

at least some of these cases, it is possible that the predicted D-site is

redundant with other docking sites in the same polypeptide, or

(D) MS of parent ion. (E) Results of an in vitro kinase assay assessing the phosphorylation of the WT, S343A, and DSM fragments of GLI3280–478 by
activated JNK1, JNK2 and JNK3. Image is representative of three separate trials. The Coomassie Blue stained panels demonstrate equal loading of
substrates. Substrate concentration: 1 mM. Enzyme activity: 0, 0.2, or 1 mU.
doi:10.1371/journal.pcbi.1000908.g008
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Figure 9. Gli1 is a novel MAP kinase substrate with a functional D-site. (A) Sequence alignment of Gli1 and 2 with Gli3 in the regions around
the validated D-site (282–301 in Gli3) and target phosphosite (Ser 343 in Gli3). (B) Diagram of full length Gli1, shown with its Suppressor-of-Fused
binding site (SuFu BS, green rectangle), and its 5 Zinc Finger (ZF) DNA-binding domains (gray oval). The position (triangle) and sequence of the D-
finder-predicted D-site is also shown. Below, the Gli168–232 wild-type (WT) and D-site mutant (DSM) fragments used for binding and kinase assays are
shown. (C) The Gli168–232 wild-type and D-site mutant proteins were tested for binding to GST, GST-JNK1, GST-JNK2, GST-JNK3, and GST-ERK2 (40, 30,
30, 20 and 30 mg respectively). The upper two panels show the bound Gli1 derivatives, with 5% if the total input shown in lane 1; the lower panel
shows Coomassie Blue (CB) staining of the sedimented GST-fusion proteins. Other details as in Fig. 4C. (D) In vitro kinase assays assessing the
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that the predicted D-site might be more active in a kinase assay

than in a binding assay.

Discussion

Currently, substantial progress is being made in the computa-

tional and functional genomic investigation of the phosphopro-

teome [11,91,92,93]. However, considering that in humans about

500 protein kinases must phosphorylate over 6000 proteins on

multiple sites, it is clear that much still remains to be learned. Here

we have developed D-finder, a computational tool that uses a

hybrid pattern matching/hidden Markov model algorithm to

search protein sequences for kinase-substrate docking sites. The

first version of D-finder focuses on docking sites for the JNK family

of mitogen-activated protein kinases. Using this tool, we identified

previously undiscovered D-sites in the known JNK substrates

hnRNP-K and PPM1J. We also identified functional D-sites in the

DNA repair protein Neil1, and near the C-terminus of the histone-

lysine N-methyltransferase MLL4. Finally, we identified the

hedgehog pathway transcription factors Gli1 and Gli3 as novel,

D-site-dependent JNK and ERK substrates. The latter observa-

tions, if verified in vivo, could be important for understanding

crosstalk and integration between MAPK and hedgehog pathways

in stem cell biology, development and cancer.

D-finder
Accurate computational prediction of protein kinase target

phosphorylation sites (phosphosites) is limited by the short length

and consequent degeneracy of these sites. Nevertheless, predictions

based on phosphosite specificity have been successful for some

kinases (e.g. [9,10,11]). For other kinases, however, such as MAP

kinases, this approach has not been as fruitful. Here we have

attempted to leverage the observation that several important

families of kinases, including MAPKs, tether or dock themselves to

their substrates prior to phosphorylating them [13,14,15,16,17].

These docking interactions are mediated by docking motifs on

substrates that, while still relatively short, potentially contain more

information then phosphosites. We employed a profile hidden

Markov model –a data-driven machine learning approach– to

infer as much information as possible from a training set of

literature-verified docking sites. Although this model (D-learner)

performed well in multiple validation tests, when run on the

human genome, it made many high-ranking predictions that were

inconsistent with expert knowledge of D-site structure/function

that had been gleaned from site-directed mutagenesis studies. To

ameliorate this problem, D-matcher, a simple pattern-matching

scheme, was added as a pre-screen to find peptides suitable to pass

to D-learner. This addition was computationally trivial, yet quite

effective, judging on the ability of the resulting hybrid procedure,

D-finder, to predict binding peptides (see below). More elaborate

hybrid HMM approaches have been applied to other sequence

analysis tasks, e.g. hybrid HMM/neural networks [94,95].

When run on the translated human transcriptome, D-finder

found 403 above-threshold D-sites, about 8-fold the number that

would be predicted by chance. Based on the peptide array assay

(Fig. 6), D-finder was remarkably adept at identifying bona fide

docking site peptides: about 3/4 of the D-finder-predicted peptides

we tested bound to JNK1 at a level that exceeded the binding of

the known D-site MKK7-D2. Of course, just because a given

sequence can bind to JNK as a peptide, this does not necessarily

imply that it will bind in the context of the native protein. Indeed,

when worked up to the level of binding assays, ,30% of candidates

tested were found to bind to one or more of the JNK proteins in a

D-site-dependent manner. It should be noted that D-site-

dependent binding is a relatively stringent assay for D-site

functionality; D-sites with very low affinity in binding assays can

still effectively direct MAPKs to phosphorylate particular target

residues (our unpublished observations). In addition, two or more

docking sites can function redundantly with each other; thus the

functionality of a particular docking site may be missed.

Nevertheless, taking the numbers at face value, as 3 of 4 predictions

passed the peptide array test, and roughly 30% of these passed full

biochemical workup, it can be estimated that about 1 in 5 of D-

finder’s predictions are true positives. This may well be an

underestimate of the true positive rate for reasons given above.

In future modifications, D-finder could be improved in several

ways. First and most obvious, new members could be added to the

training set, including the novel D-sites identified in this work.

Second, the D-matcher front end could be improved by the

addition of further expert knowledge gleaned from additional

mutagenesis studies. Third, the possibility of using additional

information, such as predicted surface accessibility, intrinsic

disorder and evolutionary conservation, could be explored

[96,97]. Finally, the algorithm could be modified to search for

docking sites that are near to a putative phosphosite or to a cluster

of phosphosites [98]. In addition, ERK and p38-targeted versions

of D-finder could be created. MAPK docking sites are found in

diverse members of the plant and animal kingdom, and have

proven to be structurally and functionally conserved from yeast to

humans [99]; thus D-finder could be profitably run on additional

genomes.

A D-site in hnRNP-K
D-finder identified a previously unknown D-site in heteroge-

neous nuclear ribonucleoprotein K (hnRNP-K), a transcriptional

and translational regulator and known JNK/ERK substrate

that is dysregulated in both colon cancer and leukemia

[58,59,60,61,62,63]. We showed that this D-site mediated both

JNK binding and JNK-mediated phosphorylation of Ser384

(Fig. 4). Interestingly, this newly identified D-site lies within the

K-protein-interactive (KI) domain, a region known to mediate

protein-protein interactions between hnRNP-K and Src family

kinases, PKCdelta, WASP, transcription factors, and other

partners [58,64,65,66]. Indeed, the D-site overlaps with SH3-

binding site P3 (RARNLPLPPPPPPRGG), known to interact with

c-Src and Vav [100], and contains Ser302, a target site of

PKCdelta [65]. These considerations suggest that: (1) JNK may

compete with other partners for binding to hnRNP-K; (2) hnRNP-

K may serve as a scaffold to facilitate JNK-mediated phosphor-

ylation of other hnRNP-K binding partners; (3) PKC-mediated

phosphorylation of Ser302 may regulate JNK docking. ERK was

also found to utilize the newly identified docking site, although

mutation of the D-site did not strongly affect ERK-mediated

phosphorylation of Ser384.

Gli1 and Gli3 are MAPK substrates
Gli3, a transcription factor in the hedgehog pathway that is

mutated in human developmental disorders [75], contained the

phosphorylation of the WT and DSM fragments of Gli1 by active JNK1, JNK2, JNK3 and ERK2. Three separate concentrations of substrate (0.1, 0.3 and
0.5 mM) were incubated with the indicated units of active enzyme. Image is representative of three independent experiments. Other details as in
Fig. 4E. (E) As in D, but with the addition of the S130A mutant of Gli1.
doi:10.1371/journal.pcbi.1000908.g009
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top novel prediction made by D-finder. Verifying this prediction,

we found that this D-site (located in residues 281–300 of Gli3)

mediated binding to JNK1-3 and ERK2. In addition, we showed

that the 281–300 D-site promoted JNK- and ERK-mediated

phosphorylation of target site(s) within Gli3 residues 280–478.

Finally, using mass spectrometry, we identified Ser343 as a

prominent JNK phosphosite, and showed that JNK-mediated

phosphorylation of this site was dependent on the integrity of the

novel D-site.

D-finder also pinpointed highly similar D-sites in the paralogous

transcription factors Gli1 and Gli2, proteins that (like Gli3) are

important in regulators of stem cells and development, and which

are dysregulated in several types of cancer [83,85,86]. Examining

Gli1, we found that the homologous D-site (located within residues

72–91 of Gli1) mediated the binding of JNK1-3 and ERK2 to

Gli1. Further, we showed that this D-site promoted JNK- and

ERK-mediated phosphorylation of target site(s) within Gli1

residues 68–232, and that Ser130 (homologous to Ser343 in

Gli3) was a D-site-dependent JNK phosphosite.

Evidence for MAPK-Gli connection
There has been surprisingly little evidence for integration

between the hedgehog and MAP kinase pathways, two of the

major signaling pathways controlling early development [101].

Recently, however, several papers have provided evidence for such

a connection, particularly in cancer (reviewed in [87,88]).

Typically, these studies have employed both MAPK pathway

activation (using ligands such as epidermal growth factor or

fibroblast growth factor, or using constitutively active Ras or

MEK) and pharmacological inhibition to document effects on

hedgehog pathway readouts such as Gli-dependent transcription,

cell differentiation and proliferation [76,77,78,79,81,82,102,103].

For example, Kessaris et al. found that hedgehog-stimulated

differentiation of oligodendrocite progenitors required ERK

activation [102]. Using a tissue culture model of basal cell

carcinoma, Schnidar et al. [78] found that activation of the

MEK1/2RERK1/2 pathway synergized with Gli1 to transform

cells. Other cancer types where MAPK/Gli crosstalk has been

implicated in pathogenesis include medulloblastoma [103], gastric

cancer [79], melanoma [82], and pancreatic cancer [81]. Indeed,

Hanahan and colleagues have recently proposed that in pancreatic

cancer, non-canonical RAS-mediated activation of Gli proteins is

the primary mechanism of tumorigenesis [80].

Most of the above studies provide evidence for ERK

involvement in Gli regulation, but do not exclude the possibility

of JNK involvement as well. Positive evidence for crosstalk/

integration between Gli transcription factors and the JNK MAP

kinases is less extensive at present. Fogarty et al. [103] showed that

fibroblast growth factor blocked sonic hedgehog signaling in

neural precursor cells. This ability of FGF to inhibit the hedgehog

pathway was apparently mediated by both JNK and ERK, with

JNK predominating.

Intriguingly, two groups have narrowed down the region of Gli1

that responds to MAPK signaling. Riobo, et al. [76] found that

Gli1 transcriptional activity was enhanced by activation of ERK,

and that the first 130 residues of the 1100+-residue Gli1 protein

were required for sensing the ERK pathway. Likewise, Seto et al.

[79], using a similar assay, mapped the ERK-responsive regions to

the first 116 residues of Gli1. Hence, two independent studies have

narrowed down the ERK-responsive region of Gli1 to a small

portion of the protein that contains the D-site identified in this

work. This region appears to be a ‘hotspot’’ for the regulation of

Gli activity [84,104,105].

To summarize, there is considerable compelling recent evidence

for MAPK-mediated regulation of Gli transcription factors, and

for the importance of this crosstalk in stem cell development and

cancer. Our study, however, is the first to provide direct evidence

that ERK or JNK either bind to or phosphorylate Gli trans-

cription factors.

Specificity of docking sites and docking-directed
phosphorylation

A final set of observations that emerge from the present study

concerns the specificity of docking site action. It has been

established that different docking sites in the same substrate can

direct MAPKs to distinct target phosphosites. For example, an

FXFP-class docking site in Elk-1 directs ERK to phosphorylate

Ser383, whereas the D-site in Elk-1 directs ERK to phosphorylate

other residues [106]. Similarly, in the paralogous transcription

factor Net, ERK and JNK, via different D-sites, bind to and

phosphorylate separate domains of the protein [54]. Here, we

found evidence of a different phenomenon: the same D-site can

direct different MAPKs to distinct phosphosites on the same

substrate. In Gli3, Ser343 received the bulk of JNK-mediated

phosphorylation directed by the 281–300 D-site. In contrast, ERK

phosphorylation by the same D-site was directed both to Ser343

and to other residue(s). Even more strikingly, in Gli1 Ser130

received the bulk of JNK-mediated phosphorylation directed by

the 72–91 D-site, whereas this phosphosite was phosphorylated

hardly at all by ERK; instead the same D-site directed ERK to

phosphorylate completely different residue(s).

In conclusion, using D-finder, a tool developed to search

genome databases for JNK-docking sites, we have discovered new

MAPK docking sites, binding partners, and substrates, including

the hedgehog-pathway transcription factors Gli1 and Gli3.

Methods

D-learner hidden Markov model
A profile HMM architecture, composed of linked main, insert,

and delete states was implemented in the programming language

Java to perform the computational analysis and prediction. An

HMM model of length 19 was used to match the average length of

the available docking site sequences. The initial state transition

and emission probabilities were uniformly set across the model

prior to training. Using the available, experimentally determined

docking site sequences, the HMM was trained using Viterbi

learning [34] by running each sequence through the model and

updating the transition and emission probabilities accordingly.

This procedure was repeated 300 times allowing convergence of

the sum of the Viterbi probabilities to a constant value.

The probabilistic score produced by D-finder is technically

called the Viterbi score. This score is generated by calculating the

log-likelihood of the D-matcher-approved string (as a complete

Viterbi path in the HMM) based on the trained model. The

greater the generated score (i.e., the closer to 1), the closer the

likelihood is to the optimal Viterbi path. In other words, the

Viterbi score is the probability PV of the most likely HMM path

for the given sequence. The most likely path is a sequence of state

transitions and state emissions. Each transition and each emission

has a probability. These probabilities get multiplied with each

other along the most likely path; as a result, Viterbi scores are

typically very small numbers.

D-matcher algorithm
The D-matcher algorithm was predicated on the following three

pieces of expert knowledge, specifically drawn from general trends
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in experimental data on the JNK-MKK4 interaction ([32], DTH

unpublished data): (1) a w-X-w submotif, in which the middle

residue is not itself strongly hydrophobic, is optimal for high-

affinity JNK binding; (2) binding affinity is proportional to the

number of basic residues in the basic submotif, and gaps in

between the basic residues result in decreased binding affinity (3);

there is a limit to the allowable distance between these two

submotifs. The first version of D-matcher first identified all

hydrophobic-X-hydrophobic regions (with V, I, L, M defined as

hydrophobics, and X not allowed to be a hydrophobic). Substrings

12 amino acids long preceding each Q-X-Q were then pulled out

for further analysis. With each substring, a local-to-global

alignment [107] was performed using a 3 basic residue motif as

the local sequence; this was used to give a numerical score.

D-matcher consistently gave higher scores to the wild type

MKK4 D-site than to point mutants that have been shown

experimentally to reduce JNK binding affinities ([32], DTH

unpublished data). Also, when tested on other known JNK-binding

proteins, D-matcher correctly ranked the known D-site higher

compared to other potential D-sites (data not shown).

The simplified D-matcher incorporated into D-finder was

designed to be a minimal prescreen that simply checks for a basic

residue followed after a spacer of 1–3 residues by a hydrophobic-

X-hydrophobic (as defined above).

D-finder algorithm
D-finder is a hybrid of D-matcher and D-learner. Specifically, a

modified D-matcher is used to select suitable strings to pass to D-

learner, which then assigns a standard HMM Viterbi probability

score. Each full-length sequence was assigned a score equal to the

score of its highest probability D-matcher-passing string. The

sequences were then ranked yielding a sorted list of predicted D-

sites (see Table 1 in Table S1). D-finder is written in Java; the code

is downloadable from http://dfinder.sourceforge.net as a .zip file

that contains the Java files along with the original training set file,

a sample testing file, and a README file.

Transcriptome screening and human genes
The translated human transcriptome was obtained from the

UCSC Genome Browser (hg19; 33,730 protein sequences). The

human MAPK genes used in this study were JNK1a1 (MAPK8,

NCBI Accession Number NM_002750), JNK2a2 (MAPK9,

NM_002752), JNK3a1 (MAPK10, NM_002753) and ERK2

(MAPK1, NM_002754). Accession numbers for the MAPK

substrates examined in this work are given in Fig. 3 and Table S1.

Peptide array
Custom synthesis of the peptide arrays used in this study was

performed by JPT (Berlin, Germany), as described elsewhere [70].

The 17-mer peptides (see Table 3 in Table S1) were chemically

linked to a nitrocellulose membrane via the C-terminus. Two

separate array designs were synthesized twice each. Design 1 had

four control spots (two positive, two negative) and 42 predicted D-

site peptides synthesized in duplicate (total spots/array = 96).

Design 2 had the same four controls, 18 training set D-site

peptides, and 30 predicted D-site peptides synthesized in duplicate

(total spots/array = 104). The membrane was probed with [35S]-

methionine labeled JNK1 as described elsewhere [32].

Biochemical workup
An outline of our strategy to efficiently test selected candidates is

as follows: cDNA clones of candidates were obtained from the

mammalian gene collection [108] where available (in some cases

only fragments were available). Open reading frames were

subcloned downstream of a bacteriophage RNA polymerase

promoter, and the encoded protein was produced in radiopure

form by coupled in vitro transcription/translation, as described

elsewhere [109]. The in vitro-translated candidate protein was then

used in a binding assay (a.k.a. a GST pull-down assay) with various

GST-MAPKs. If a candidate exhibited MAPK binding, the

predicted D-site was mutated or deleted and the mutant protein

was retested. Selected candidates that exhibited D-site-dependent

binding were then subcloned into bacterial expression vectors as

GST-fusions. This step often involved considerable optimization

to find a suitable fragment that was expressed as soluble protein at

a reasonable yield. Purified GST-fusion proteins were then used as

substrates in protein kinase assays with purified active MAPK

enzymes.

Plasmids for in vitro transcription and translation
cDNA clones from mammalian gene collection [108] were

obtained from Open Biosystems (Huntsville, AL) or OriGene

(Rockville, MD). The Gli3 plasmid was a gift of Dr. Bert

Vogelstein, Johns Hopkins University. Regions of interest were

amplified by PCR using Pfu Ultra DNA polymerase (Stratagene).

PCR products were purified (Qiagen) and digested with restriction

enzymes designed into the primers, run on 1% agarose gels, and

excised for gel extraction (Qiagen). Digested, gel purified products

were inserted into pGEM-4ZStop, a variant of pGEM4Z that

contains multiple stop codons downstream of the cloning site (a gift

from A. Jane Bardwell of this laboratory). Plasmid sequences were

verified by DNA sequencing (Cogenics). To create D-site mutant

(DSM) constructs, basic and hydrophobic residues in the predicted

D-site were substituted with alanine residues using appropriate

primers and the Quickchange site-directed mutagenesis kit

(Stratagene). Mutations were verified by DNA sequencing.

Plasmids for the production of GST fusion proteins and
cell culture

Open reading frames of interest were subcloned into pcDNA

3.1 (+) and pGEX-LB (a derivative of PGEX-4T-1) as described

[99]. New primers were designed for amplification of smaller

fragments, where appropriate.

In vitro transcription and translation
Proteins labeled with [35S]-methionine were produced by

coupled transcription and translation reactions (SP6, Promega).

Translation products were partially purified by ammonium sulfate

precipitation [109] and resuspended in Binding Buffer (20mM

Tris-HCl (pH 7.5), 125mM KOAc, 0.5mM EDTA, 1mM DTT,

0.1% (v/v) Tween20, 12.5% (v/v) Glycerol). Comparable

translation products were normalized for GST pull down assays

by SDS-PAGE and quantification using a Typhoon Phosphor-

Imager (Amersham Biosciences).

GST pull down assays
Comparable amounts of [35S]-methionine labeled proteins (i.e.,

wild-type vs. D-site mutant) were pre-cleared against BSA-blocked

glutathione Sepharose beads, then incubated with GST-MAPK

fusion proteins or GST alone at 30uC for 15 min followed by an

additional 30 min at room temperature with gentle rocking.

Complexes were then sedimented, washed extensively with

binding buffer, and heated in reducing SDS sample buffer.

Samples were separated by SDS-PAGE, fixed in 40% Methanol/

12% Acetic Acid, Coomassie Blue stained (using Gelcode Blue,

Pierce), dried, visualized and quantified using a PhosphorImager.

Predicting MAP Kinase Substrates and Docking Sites

PLoS Computational Biology | www.ploscompbiol.org 18 August 2010 | Volume 6 | Issue 8 | e1000908



To generate values for percent binding, bands from experimental

lanes were normalized to the 5% input lane.

Purification of recombinant GST proteins
Expression of recombinant GST fusion proteins was induced in

Escherichia coli BL21 cells (Stratagene) at 30uC for 2 h by addition

of 1-thio-b-D-galactopyranoside [IPTG, 0.6 mM final]. Cell

pellets were resuspended in lysis buffer (16 PBS, 1mM EDTA,

5mM DTT, 0.1% Triton, 1mM PMSF, 15% Glycerol), and the

resulting extract was sonicated, clarified with 20% Triton X-100,

and centrifuged at 12,0006g for 10 min to remove cell debris and

nucleic acids. GST fusion proteins contained within the superna-

tants were purified by affinity chromatography using glutathione-

Sepharose (Amersham Biosciences), eluted from beads using

10mM reduced glutathione, and dialyzed overnight against lysis

buffer. Eluted proteins were quantified against BSA standards.

Protein kinase assays
Kinase reactions (20 ml) contained 16 MAP Kinase Buffer

(50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 1 mM EGTA, and

2 mM DTT), 50 mM ATP, 1 mCi of [c-32P]-ATP, enzyme, and

substrate. Enzymes were: JNK1a1, active; JNK2a2, active

(Upstate); JNK3/SAPK1b, active (all from Upstate Biochemi-

cals/Millipore); ERK2, active (New England Biosciences). Sub-

strates were: GST-hnRNP-K w/D, 1 mM (896 ng/20 ml); GST-

hnRNP-K w/oD, 1 mM (818 ng/20 ml); GST-PPM1J WT and

DSM, 0.5 mM (750 ng/20 ml); GST-Gli3280–478 WT and DSM,

0.5 mM (465 ng/20 ml); GST-Gli168–232 WT and DSM, 1 mM

(856 ng/20 ml). Reactions were incubated at 30uC for 30 min,

then stopped with SDS sample buffer, separated by SDS-PAGE,

fixed in 40% Methanol/12% Acetic Acid, Gelcode Blue stained,

dried, and visualized using a PhosphorImager. Unit definitions for

enzymes were as supplied by the manufacturer. Note that the unit

definition for ERK2 and the JNK proteins are different. For

ERK2, 10 units is about 1 ng of enzyme, corresponding to a

concentration of 1.2 nM in a 20 ml reaction. For the JNK proteins,

1 ng of enzyme corresponds to about 0.5 milliunits (mU).

Tissue culture and transfection
Cos-1 cells were cultured using Dulbecco’s modified Eagle’s

medium enriched with 10% heat-inactivated fetal bovine serum

(Invitrogen), penicillin, streptomycin, and sodium bicarbonate.

The cells were seeded at a density of 36105 cells per well in a 6-

well dish in antibiotic free media. The culture was maintained

in a humidified environment at 37uC and 5% CO2. Transient

transfection was performed with Lipofectamine (Invitrogen)

following the manufacturer’s recommended procedures.

Immunoprecipitation kinase assays
Cos-1 cells were transfected with 1 mg of plasmid DNA

encoding either V5-tagged wild-type (WT) PPM1J, docking site

mutated (DSM) PPM1J, or empty vector. After 16 h, the cells were

harvested and lysed in 200 ml HEPES Lysis Buffer (HLB, 20 mM

Hepes (ph 7.4), 137 mM NaCl, 2 mM EDTA, 10% glycerol (v/v),

1% Triton X-100 (v/v), 25 mM b-glycerophosphate, 1 mM

Sodium Vandate, 1:100 protease inhibitor cocktail (Sigma)) and

centrifuged at 14,0006g for 15 min at 4uC. Forty ml of each

supernatant was removed for immunoblotting. The PPM1J WT

and D-site mutant supernatants were cleared with 20 ml of a 50%

slurry of Protein G Plus/Protein A-agarose beads for 30 min at

4uC. The cleared lysates were incubated for 30 min at 4uC with

2 ml of anti-V5 antibody (Invitrogen). Twenty ml of beads (50%

slurry) were added and incubated overnight at 4uC. Complexes

were sedimented and then washed twice with HLB plus 0.1%

Triton X-100 and once with MAP Kinase buffer. The immuno-

precipitated complexes were then used in a kinase assay with

1 mU of active JNK1a1.

Liquid chromatography-tandem mass spectrometry (LC
MS/MS)

Phosphorylation reactions were as described above except that

ATP was raised to 200 mM and the radioactive ATP tracer was

omitted. Following real or mock phosphorylation reactions, the

products were separated by SDS-PAGE, and bands corresponding

to the mass of the Gli3 fragments were excised from the gel and

digested with chymotrypsin. The resulting peptide digests were

extracted and analyzed by LC MS/MS as described [110]. Briefly,

the LC analysis was performed using a capillary column (100 mm

ID6150 mm long) packed with C18 resins (GL Sciences) and the

peptides were eluted using a linear gradient of 2–35% B in 35 min;

(solvent A: 100% H2O/0.1% formic acid; solvent B: 100%

acetonitrile/0.1% formic acid). A cycle of one full FT scan mass

spectrum (350–1800 m/z, resolution of 60,000 at m/z 400) was

followed by ten data-dependent MS/MS acquired in the linear ion

trap with normalized collision energy (setting of 35%). Target ions

selected for MS/MS were dynamically excluded for 30 s.

Protein identification and characterization was carried out by

database searching using Protein Prospector [110]. LC MS/MS

data was extracted, and submitted to database searching using the

Batch-Tag against a decoy database consisting of a normal

SwissProt database including the engineered Gli3 sequences

concatenated with its random version. The mass accuracy for

parent ions and fragment ions were set as 620 ppm and 0.5 Da,

respectively. Phosphorylation of Serine and Threonine was

selected as the variable modification. MS/MS spectra of

phosphorylated peptides were inspected manually.

Supporting Information

Table S1 List of top D-finder predictions.

Found at: doi:10.1371/journal.pcbi.1000908.s001 (0.22 MB XLS)

Text S1 Supplementary figures.

Found at: doi:10.1371/journal.pcbi.1000908.s002 (0.31 MB PDF)
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