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ABSTRACT 
Dryas octopetala L. var. asiatica (Nakai) Nakai 1918 is a dwarf shrub that mainly grow in alpine and arctic 
zones of the Northern Hemisphere, representing an endemic variety in Asia. In the present study, the com-
plete chloroplast (cp) genome of D. octopetala var. asiatica was first characterized and used for its phylo-
genetic analysis. The cp genome span 158,271 bp with an overall GC content of 36.5%. A total of 129 
genes were identified, including 84 protein-coding genes (PCGs), 37 tRNA genes, and 8 rRNA genes. In 
addition, repetitive sequences and microsatellites were detected within this species. Phylogenetic analysis 
involving 39 cp genomes from Rosaceae family indicated that D. octopetala var. asiatica was sister to the 
clade of Amygdaloideae. This study contributes fundamental insights into the cp genome of Dryas octope-
tala var. asiatica, which will have expanded its use in photosynthesis and evolutionary study.
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Introduction

Dryas octopetala L. var. asiatica (Nakai) Nakai 1918 is a dwarf 
shrub belonging to Dryadoideae, Rosaceae. Typically found in 
alpine and arctic zones of the Northern Hemisphere, this 
plant faces various environmental challenges such as low 
temperatures and limited nutrient availability that impact its 

growth and reproduction. Known for forming ectomycorrhiza 
(ECM) and engaging in nitrogen-fixing root nodule symbiosis 
(Gardes and Dahlberg 1996; Bjorbækmo et al. 2010; Li et al. 
2016; Billault-Penneteau et al. 2019), Dryas species play a sig-
nificant role in mycology community ecology. Moreover, 
D. octopetala is of particular importance in research on climate 

Figure 1. Reference image of Dryas octopetala var. asiatica taken by Limin Yang at Changbai Mountain of Jilin province, China. Note: Dryas octopetala var. asiatica 
is characterized by its prostrate growth habit, leathery leaves, showy white flowers, and its ability to thrive in harsh alpine conditions.
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change (McGraw et al. 2014; Panchen and Gorelick 2017). 
Dryas octopetala var. asiatica as the Asian endemic variety is 
sparsely distributed in alpine regions of northeastern Asia. A 
recent study has highlighted the sensitivity of photosynthesis 
to climate warming and its adaptability to temperature 
increase in D. octopetala var. asiatica (Zhou et al. 2019). 
Chloroplast (cp) is the site of photosynthesis, in which light 

energy is converted to chemical energy and the oxygen and 
energy-rich organic compounds are produced. However, little 
is known about the whole cp genome for this variety. In this 
study, the cp genome of D. octopetala var. asiatica was first 
sequenced using next-generation sequencing. We mainly 
focused on the analyses of cp genome features, repeat 
sequences and phylogenetic reconstruction. This study not 
only offers the valuable cp genome data but also contributes 
to understanding the phylogenetic relationships within 
Rosaceae.

Materials and methods

Dryas octopetala var. asiatica was collected from Changbai 
Mountain in Jilin province, China (Figure 1; GPS coordinates: 
42�0301700N 128�0400000E). A voucher specimen (voucher 

Table 1. Information of the chloroplast genome in Dryas octopetala var. 
asiatica.

Regions Length(bp) GC(%)

Number

protein-coding genes tRNAs rRNAs

Genome 158,271 36.5 84 37 8
LSC 86,980 34.1 62 22 0
SSC 18,461 30.2 12 1 0
IRA 26,415 42.5 5 7 4
IRB 26,415 42.5 5 7 4

Figure 2. Chloroplast genome map of Dryas octopetala var. asiatica. 
Note: Genes are depicted as differently sized and colored boxes on the outermost circle, with inner and outer boxes representing genes transcribed in clockwise and counter-clockwise 
directions. The middle circle illustrates changes in GC content at different positions, while the inner circle highlights the regions and lengths indicated by the tetrad structure (LSC, SSC, 
IRa, and IRb) in different colors.

1186 L.-Z. LING ET AL.



number: ZhouHC1243) was deposited in the Herbarium of 
Kunming Institute of Botany, CAS (KUN, http://www.kun.ac. 
cn/, Tao Deng, dengtao@mail.kib.ac.cn). Genomic DNA was 
extracted from the silica gel-dried leave using a modified 
CTAB method (Yang et al. 2015) and the constructed libra-
ries were sequenced using Illumina NovaSeq PE150 plat-
form. High-quality reads were filtered and de novo 
assembled with SPAdes software (Prjibelski et al. 2020). The 
cp genome of D. octopetala var. asiatica was annotated 
using PGA software (Qu et al. 2019) with manual adjust-
ments and visualized with the online CPGView program (Liu 
et al. 2023). The annotated cp genome of D. octopetala var. 
asiatica was deposited in GenBank under accession number 
OQ420424. Phylogenetic reconstruction was performed with 

one representative species from 39 genera of Rosaceae down-
loaded from NCBI GenBank database with D. octopetala var. 
asiatica. Morus alba from Moraceae and Rhamnus globose from 
Rhamnaceae were used for the outgroups. Multiple sequence 
alignments of the complete cp genomes were carried out 
using MAFFT v.6.833 (Katoh et al. 2005) and used to construct 
phylogenetic trees with maximum likelihood (ML) and 
Bayesian inference (BI) methods as previously described 
(Zhang et al. 2017).

Results and discussion

The complete cp genome of D. octopetala var. asiatica was 
158,271 bp long with an average sequencing depth of 

Figure 3. The phylogenetic tree based on the complete chloroplast genomes of 40 species of Rosaceae. Numbers at nodes correspond to maximum likelihood 
bootstrap percentage and the posterior probability of Bayesian inference. The sequences employed for the construction of the phylogenetic tree are detailed as fol-
lows: Adenostoma fasciculatum (KY387915, Zhang et al. 2017), Agrimonia coreana (MF135594, direct submission), Alchemilla argyrophylla (MT382661, direct submis-
sion), Argentina phanerophlebia (MT114192, Aogan 2020a), Aruncus aethusifolius (MZ882398, direct submission), Bencomia exstipulata (MG682353, direct 
submission), Chamaebatiaria millefolium (KY420017, Zhang et al. 2017), Comarum salesovianum (MT017928, Aogan 2020b), Dasiphora fruticosa (MF683841, Zhao 
et al. 2018), Dryas octopetala var. asiatica (OQ420424, this study), Fragaria chiloensis (MW537844, direct submission), Geum elatum (MT982432, direct submission), 
Gillenia stipulata (MN068263, direct submission), Hagenia abyssinica (KX008604, direct submission), Holodiscus argenteus (KY420013, Zhang et al. 2017), Kelseya uni-
flora (KY419988, Zhang et al. 2017), Kerria japonica (MN418902, Huo et al. 2019), Lindleya mespiloides (MN068248, direct submission), Luetkea pectinata (KY419971, 
Zhang et al. 2017), Lyonothamnus floribundus (KY420005, Zhang et al. 2017), Malus prattii (MH929090, direct submission), Morus alba (MW465954, direct submis-
sion), Neillia incisa (MT683856, direct submission), Pentactina rupicola (JQ041763, Kim and Kim 2016), Petrophytum caespitosum (KY419970, Zhang et al. 2017), 
Phippsiomeles mexicana (MN062003, Liu et al. 2019), Potaninia mongolica (MN691039, Cong and Jiang 2020), Potentilla anserina (OW176989, direct submission), 
Prinsepia uniflora (MZ270554, direct submission), Prunus cerasus (MW477432, direct submission), Pyrus spinosa (HG737342, Korotkova et al. 2014), Rhamnus globosa 
(MT360052, Xie et al. 2020), Rosa acicularis (MK714016, Chen et al. 2019), Rubus amabilis (MN652918, direct submission), Sanguisorba filiformis (MF678800, Meng 
et al. 2018), Sibbaldia aphanopetala (MT178810, Zhang et al. 2020), Sibbaldianthe adpressa (MT114191, Tian et al. 2020), Sibiraea angustata (MT982125, direct sub-
mission), Sorbaria arborea (MN901450, Sun et al. 2020), Spiraea japonica (OP194001, Zhang et al. 2023), and Vauquelinia australis (MN068250, direct submission).
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2696� and the minimum sequencing depth of 11 � (supple-
mental Figure S1). The overall GC content of this cp genome 
was 36.5% (Table 1). The cp genome exhibited a typical 
quadripartite structure, consisting of two copies of inverted 
repeats (IRs) and one large single- copy (LSC) and one small 
single-copy (SSC) region (Figure 2). The length of the four 
segments in this cp genome varied, with the LSC region 
being the largest at 86,980 bp, followed by the two IR 
regions at 26,415 bp each (Table 1). The GC contents of the 
four segments differed, with the IR regions having the high-
est GC content at 42.5% and the SSC region having the low-
est at 30.2%. The IR regions were flanked by the LSC and SSC 
region, forming a circular structure (Figure 2). These results 
indicated the cp genome structure of D. octopetala var. asiat-
ica is typical with most other land plants (Han et al. 2019; 
Huang et al. 2021; Zhang and Ling 2022).

The cp genome of D. octopetala var. asiatica was found to 
contain a total of 129 genes, including 84 protein-coding 
genes (PCGs), 37 tRNA, and 8 rRNA genes (Figure 2). The 
major functions of these genes were associated with photo-
synthesis and metabolic processes (Figure 2), with 20 genes 
specifically encoding proteins related to photosynthesis 
(Figure 2). The majority of PCGs were located in the LSC 
region, while 16 genes, including 7 tRNA genes, all 4 rRNA 
genes and 5 PCGs were duplicated in the IR region (Table 1
and Figure 2). Furthermore, 11 genes contained one intron 
and 2 genes had two introns (supplemental Figure S2), 
potentially undergoing cis or trans-splicing during the tran-
scription process (supplemental Figure S2 and S3).

Repeats are often associated with genome rearrange-
ment through gene inversion that reverses the order and 
orientation of multiple genes (Cavalier-Smith 2002). In this 
study, the dispersed repeats and long tandem repeats were 
identified and shown in the first two tracks (from the center 
going outward) (Figure 2). Of them, the majority were 
located in the LSC region, with a few repeats in the SSC 
region (Figure 2). Short tandem repeats or microsatellite 
sequences were shown in the third track and exhibited the 
similar distribution pattern. These repeat types were also 
found in other Rosaceae genera like Sorbus (Zhang and Ling 
2022). Previous studies have indicated that repeat sequen-
ces have promoted the generation of substitutions and 
indels during chloroplast genome evolution (McDonald 
et al. 2011; Ahmed et al. 2012). Therefore, the repeats 
within D. octopetala var. asiatica cp genomes could poten-
tially induce mutations, influencing mutation rates and the 
evolution of this species.

The phylogenetic position of D. octopetala var. asiatica 
as the representative species of Dryadoideae was investi-
gated using 39 species from different genera of Rosaceae. 
Both BI and ML methods were employed, resulting in the 
identical topology (Figure 3). Rosaceae was resolved into 
three main clades representing the subfamilies: Amygdaloideae, 
Dryadoideae and Rosoideae. Amygdaloideae and Dryadoideae 
(the respective species, D. octopetala var. asiatica) had the closer 
relationship and formed two sister clades with strong supports 
(Figure 3), consistent with the previous studies (Potter et al. 
2007; Zhang et al. 2017). In fact, Amygdaloideae and 
Dryadoideae have the similar chemical compounds, like 

cyanogenic glycosides and sorbitol (Zhang et al. 2017). 
However, some analyses based on the partial sequences of cp 
genome (Zhang et al. 2017) suggested a sister relationship 
between Dryadoideae and Rosoideae. Given the presence of 
hybridization, apomixis and polyploidy present in Rosaceae 
(Vamosi and Dickinson 2006; Burgess et al. 2015), further 
research is needed to definitively resolve the phylogenetic rela-
tionships among these subfamilies.

Conclusions

In this study, we first sequenced and characterized the com-
plete cp genome of D. octopetala var. asiatica. Our results 
revealed that the cp genome of D. octopetala var. asiatica fol-
lows a typical quadripartite and circular DNA structure. 
Various important features related to structure and sequence 
divergence such as genome size, gene/intron content, 
repeats and microsatellite, were analyzed in this species. 
Additionally, the phylogenetic analysis positioned D. octope-
tala var. asiatica as a representative species of Dryadoideae 
sister to the clade of Amygdaloideae. These basic knowledge 
of the cp genome of D. octopetala var. asiatica will enhance 
its utility in comparative studies and contribute valuable data 
for research on photosynthesis.
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