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Abstract: Treatment-resistant schizophrenia (TRS) is an important and unresolved problem in biolog-
ical and clinical psychiatry. Approximately 30% of cases of schizophrenia (Sch) are TRS, which may
be due to the fact that some patients with TRS may suffer from pathogenetically “non-dopamine”
Sch, in the development of which neuroinflammation is supposed to play an important role. The
purpose of this narrative review is an attempt to summarize the data characterizing the patterns
of production of pro-inflammatory and anti-inflammatory cytokines during the development of
therapeutic resistance to APs and their pathogenetic and prognostic significance of cytokine im-
balance as TRS biomarkers. This narrative review demonstrates that the problem of evaluating
the contribution of pro-inflammatory and anti-inflammatory cytokines to maintaining or changing
the cytokine balance can become a new key in unlocking the mystery of “non-dopamine” Sch and
developing new therapeutic strategies for the treatment of TRS and psychosis in the setting of acute
and chronic neuroinflammation. In addition, the inconsistency of the results of previous studies on
the role of pro-inflammatory and anti-inflammatory cytokines indicates that the TRS biomarker, most
likely, is not the serum level of one or more cytokines, but the cytokine balance. We have confirmed
the hypothesis that cytokine imbalance is one of the most important TRS biomarkers. This hypothesis
is partially supported by the variable response to immunomodulators in patients with TRS, which
were prescribed without taking into account the cytokine balance of the relation between serum levels
of the most important pro-inflammatory and anti-inflammatory cytokines for TRS.

Keywords: cytokines; cytokine status; treatment-resistant schizophrenia; biomarker; chronic
neuroinflammation

1. Introduction

Schizophrenia (Sch) is a common socially significant mental disorder associated with
premature mortality and reduced life expectancy of patients [1,2]. Epidemiological studies
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show that the life expectancy of patients with serious mental disorders, including Sch,
is reduced by 7–24 years [3]. This is partly due to the development of serious adverse
reactions to drugs (primarily metabolic syndrome caused by antipsychotics (APs)) and
therapeutic resistance to APs [4].

Therapeutic resistance (TR) is a condition in which a mental disorder cannot be treated
or corrected despite an adequate course of treatment. Currently, the TR problem remains
relevant in relation to a wide range of mental disorders: depressive disorder, obsessive-
compulsive disorder, bipolar affective disorder, Sch, etc. [5].

Due to the fact that APs of the first and new generations affect different mechanisms
of action in the treatment of Sch, the risk of developing TR to some APs of new generations
remains high, almost similar to APs of the first generation. This may be due to the fact that
the pathophysiological mechanisms of TRS development are more complex than previously
thought. All currently available APs are able to antagonize dopamine D2 receptors, and the
APs’ therapeutic effects in psychosis are related to their action on the limbic system reducing
dopamine transmission [6]. This is confirmed by several reports that therapeutic doses
of typical APs block D2 receptors in 70–89% of cases in young adults, while atypical APs
block D2 receptors in 38–63% of cases [7]. In addition to the effect of AP on dopaminergic
neurons, other possible mechanisms are being considered [6,8].

TR to APs in patients with Sch or treatment-resistant Sch (TRS) is one of the urgent
problems of psychiatry and clinical pharmacology and is far from being resolved, despite
the development and use in real clinical practice of new generations of APs (Figure 1).
The average incidence of TRS occurs in approximately 30% of individuals diagnosed with
Sch [9]. However, according to a meta-analysis by Suzuki et al. [10], the frequency of
occurrence of TRS varies from 0 to 76%. This may be due to both the difference in the
methodology and design of epidemiological studies of TRS, and different definitions of
TRS, which have been revised several times. In 2004, the American Psychiatric Association
considered TRS to be a minor or no symptomatic response to multiple (at least two) APs
given for an adequate duration (at least 6 weeks) and in an adequate therapeutic dose
(therapeutic range), while at least one AP must be of a new generation [11]. The 2012 World
Federation of Societies for Biological Psychiatry (WFSBP) Biological Treatment of Sch guide-
lines define TRS as a disorder in which no significant improvement in psychopathological
symptoms and/or other target symptoms has been achieved despite treatment with at least
two different APs from two different chemical classes (at least one must be an atypical AP)
at recommended therapeutic doses for a treatment period of at least 2–8 weeks [12]. The
National Institute for Health and Clinical Excellence (NICE) in 2014 defined the criteria
for TRS as insufficient response to at least two different consecutively prescribed APs at
appropriate doses taken over an appropriate period of time (4–6 weeks); however, at least
one AP must be new-generation non-clozapine APs [13]. According to the Diagnostic and
Terminology Working Group Guidelines, Treatment Response and Resistance in Psychosis
(TRRIP), TRS is considered to be at least moderately severe, with <20% improvement in Sch
symptoms, at least moderate functional impairment (based on the appropriate approved
scale), and confirmed adherence to APs by measuring the concentration of APs by taking
two different APs at adequate therapeutic doses for at least 6 weeks, while at least one
AP is a prolonged injectable form [14,15]. In addition to the above criteria, TRS criteria
have also been proposed by other Sch treatment guidelines, such as The Texas Treatment
Algorithm Project [16] and the International Psychopharmacological Algorithm Project
(IPAP, 2006) [17]. All these definitions of TRS are different and subject to a wide range
of interpretations, which can lead to inconsistent clinical management and inaccurate
treatment [18], as well as variable results of epidemiological studies.
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In addition, TRRIP has developed current criteria for defining TRS and a consensus 
has been reached on “minimum requirements”. However, any definition of TRS must in-
dicate that the Sch patient received an adequate course of APs in terms of dosage (equiv-
alent to or greater than 600 mg chlorpromazine per day), two courses of two different APs 
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Sch and TRS Clinical Experts in 2017 reviewed the main areas of TRS research. They
concluded that the diagnosis of TRS required an inadequate response to two different APs,
each taken at an adequate dose and for an adequate duration. In each course of treatment,
it is recommended to use objective Sch symptom scores to assess response to APs to ensure
adherence to APs therapy. Once no response has been established (after ≥12 weeks for
positive symptoms [2 courses of ARs lasting ≥6 weeks]), it is recommended that the
Sch treatment plan be reviewed and alternative pharmacological or non-pharmacological
treatments be considered [9].

In addition, TRRIP has developed current criteria for defining TRS and a consensus has
been reached on “minimum requirements”. However, any definition of TRS must indicate
that the Sch patient received an adequate course of APs in terms of dosage (equivalent to
or greater than 600 mg chlorpromazine per day), two courses of two different APs lasting
6 weeks (each course) at a therapeutic dose, active control of adherence to treatment (≥80%
of prescribed doses), as well as the use of structured clinical assessments to establish the
presence and severity of symptoms [20].

The mechanisms of TRS development are heterogeneous (Table 1) and have been
actively studied for many years, but there is no single view. Several hypotheses have
been proposed (Figure 2), among which the TRS inflammatory hypothesis is of particular
scientific and clinical interest, since the use of APs is ineffective in approximately 30% of
all patients with Sch. This may be due to the fact that some patients with TRS may suffer
from pathogenetically “non-dopamine” Sch [21]. In each case of TRS, it is important to
rule out pseudo-resistance, the underlying mechanism of which may lie in an imbalance of
pro-inflammatory and anti-inflammatory cytokines (cytokine status).
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Table 1. Hypotheses for the development of treatment-resistant schizophrenia.

Hypothesis Mechanism References

Genetic Genetic predisposition to low affinity of targets (dopaminergic receptors) to APs
of the first and new generations. [22,23]

Neurodevelopmental Congenital minor anomalies of brain development (microdysgenesis) in brain
regions critical for Sch development. [24,25]

Neurotransmitter Violation of the synthesis, release, or breakdown of dopamine and other
neurotransmitters (serotonin, melatonin, etc.). [19,26–28]

Metabolic Primary (genetically determined) and secondary metabolic disorders of APs of
the first and new generation in the liver. [29–31]

Transport
Primary (genetically determined) and secondary impairment of expression
and/or functional activity of APs transporter proteins of the first and new

generations across the blood–brain barrier.
[32–34]

Oxidative stress

Violation of the prooxidant-antioxidant balance in favor of the former, which
leads to oxidative damage to cellular lipids, proteins, enzymes, carbohydrates
and DNA, which contributes to a worsening of the course and an unfavorable

outcome of Sch.

[35–37]

Inflammatory Primary (genetically determined) and secondary violation of the cytokine status
(absolute or relative hyperproduction of pro-inflammatory cytokines). [38–40]

Microbiome Microbiota through the gut–brain axis is associated with the development and
severity of Sch, intestinal microbiota is associated with the response to APs. [41–43]

Nutritional Deficiency or excess of nutrients (vitamins, minerals, amino acids) necessary for
the functioning of the dopaminergic system of the brain. [44–46]

Note: APs—antipsychotics; DNA—deoxyribonucleic acid; Sch—schizophrenia.
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The purpose of this narrative review is an attempt to summarize the data characteriz-
ing the patterns of production of pro-inflammatory and anti-inflammatory cytokines during
the development of therapeutic resistance to APs and their pathogenetic and prognostic
significance of cytokine imbalance as TRS biomarkers.

2. Pathogenetic Aspect of Inflammation in Treatment Resistance Schizophrenia

There are many factors leading to a chronic neuroinflammatory process in Sch. Re-
search in this area has led to the formation of several mechanisms of TRS (Figure 3), which
will be discussed in detail later.
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2.1. Changes in the Functional Activity of Microglia in Treatment Resistance Schizophrenia

Microglia account for 10–20% of all cells found in the brain and are an important
component of the CNS immune system [47]. Microglia play an important role in neuroin-
flammation, providing protection in the event of damage or disease to the CNS. When neu-
roinfection occurs, activation of microglia, synthesis and release of central pro-inflammatory
cytokines, which leads to various mental and behavioral disorders [48]. There is now ev-
idence that aging [49], neurodegeneration [50] and stress [51] lead to “sensitization” or
“priming” of microglia, which subsequently causes an exaggerated immune response.
Exposure of primed microglia to, for example, minor systemic inflammation leads to prolif-
eration and increased production of pro-inflammatory cytokines [52], which, in turn, can
exacerbate the immune response in the CNS and be expressed in a change in behavior [53].
One drug thought to reduce microglial activation is minocycline, a broad-spectrum tetracy-
cline antibiotic with broad anti-inflammatory activity [54]. First and second generations
of APs regulate the secretory profile of microglia in vitro. They inhibit the release of proin-
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flammatory cytokines from activated microglia and alleviate oxidative stress [55]. However,
some recent reports have shown conflicting results on the effect of some APs on the release of
pro-inflammatory cytokines [56]. At the same time, not all APs have an anti-inflammatory
effect, which may be due to the role of microglia in the development of TRS.

2.2. Sensitization or Kindling in Treatment Resistance Schizophrenia

“Firing”/“sensitization” refers to the process by which the initial immune response
to some stimulus (stress or infection) raises or lowers the threshold to respond to the
next exposure to the same stimulus. At the same time, a weaker stimulus is required to
activate the immune response or release cytokines than with the initial exposure to an
unfavorable (damaging) factor. It is believed that the memory function of the acquired
immune system is responsible for this process [51]. The action of factors such as systemic
inflammation or stress on healthy people leads to the stimulation of the immune response.
As a result, cell proliferation is activated, an increase in the production and release of
pro-inflammatory cytokines is observed [57]. “Firing up”/“sensitization” supports the
hypothesis that neuroinfection in early childhood may lead to increased release of cytokines
when the immune system is activated later in life. These processes lead to neurotransmitter
disorders. Stress induces a pro-inflammatory immune response in CNS. However, this is
usually reduced after a stressful event. Psychopathological symptoms and neuroinflamma-
tion are associated with the immune response of CNS cells to stress, and neuroinflammation
is involved in stress-related behavioral changes induced by cytokines and mediated by
neurotransmitters. Studies have found that after exposure to chronic stress or repeated
stressful events, the threshold for physiological responses of the CNS to stress decreases.
As a result, less stimulus is enough to activate an immune or neurotransmitter response. In
an animal study, it was shown that with age, the brain is in a sensitized state and produces
more cytokines for inflammatory stimuli than the brain of young animals [52]. Repeated
exposure to pro-inflammatory cytokines leads to increased neurotransmitter responses [58]
as, for example, with tumor necrosis factor alpha (TNF-α) [59]. Stress causes activation
and proliferation of microglia in the CNS, which may possibly mediate these cytokine
effects [52]. Chronic stress is known to affect the glutamatergic system, ionotropic and
metabotropic glutamate receptors and excitatory amino acid transporters [60], which may
also play a role in the development of TRS, as it is associated with higher levels of glutamate
in the anterior cingulate cortex [61].

2.3. Vulnerability-Stress-Inflammation in Treatment Resistance Schizophrenia

The risk of developing TRS increases with stressful life events or psychological stress,
especially those that act at key periods in the development of the CNS. The Sch vulnerability-
stress model was first proposed by Zubin and Vesna [62], who suggested that stress above
the vulnerability threshold in humans contributes to the development of a psychotic
episode. It is important to add inflammation to this model, forming the vulnerability-stress-
inflammation model, since neuroinflammation plays an important role in the pathogenesis
of TRS and can in turn be caused by stress [63]. For example, if an inflammatory response
in the CNS is stimulated in a second trimester of pregnancy or offspring while the CNS
is still developing, the offspring may be a risk of developing Sch. Animal studies have
shown that exposure to stress at an early age leads to an increase in the level of pro-
inflammatory cytokines [64], which play an important role in the development of Sch and
TRS. Vulnerability-stress-inflammation-induced immune dysregulation is associated with
dysregulation of many neurotransmitter systems that APs cannot therapeutically address.
Thus, the development of TRS is likely associated with stress-induced inflammation [5].

2.4. Prenatal, Perinatal and Postnatal Infection in Treatment Resistance Schizophrenia

Existing epidemiological studies give us the idea that prenatal exposure to maternal
infection is associated with an increased risk of Sch in the offspring [65]. The risk of
developing Sch may be related to the direct effects of neuroinfection (e.g., disruption of
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structure due to cyst formation, exposure to inflammatory factors) as well as neurochemical
changes such as increased dopamine levels associated with poor performance. Catechol-
O-methyl transferase (COMT) and increased dopamine synthesis caused by Toxoplasma
gondii infection [66]. Exposure to viruses and other infectious agents—influenza, herpes
simplex virus type 2, Coronavirus Disease 2019 (COVID-19) during pregnancy and at the
time of conception—is associated with a greater risk of psychotic disorders [67]. Given the
changes in pro-inflammatory cytokine production in pregnant women with COVID-19,
schizophrenic and psychotic disorders may potentially be a long-term risk in the offspring
of pregnant women who have experienced COVID-19 [68]. Animal studies have also
provided evidence for the role of pre- and perinatal infections in the later development of
Sch [69]. For example, after prenatal exposure to viruses, offspring show typical symptoms
of Sch, such as cognitive impairment or startle reflex abnormalities [70]. Maternal bacterial
infection during pregnancy is closely associated with the development of psychosis in
the offspring and varied depending on the severity of the infection and the sex of the
offspring. At the same time, the effect of a multisystem bacterial infection was almost
two times higher than that of a less severe localized bacterial infection [71]. Of interest
are studies that have demonstrated the association of Sch development with prenatal or
early childhood exposure to various viruses [72], respiratory infections [73] and infections
of the genital organs or reproductive tract [74]. Because Sch develops more frequently
during adolescence or adulthood, it is important to establish a possible mechanism for the
association between early infection and Sch in adults. Studies in animal models show that
early infection or immune activation affects several processes of neurogenesis, including
dopaminergic and glutamatergic neurotransmission [75]. The study of bacterial [71] and
some other infections in humans [76] are examples that highlight this connection. The risk
of developing TRS is also indicated by an increased level of C-reactive protein (CRP) or
cytokines in childhood [77]. In addition, neuroinfection at a later age has been shown to
be associated with an increased risk of developing TRS. A large epidemiological study
conducted in Denmark showed that autoimmune disorders, as well as severe infections,
increase the risk of developing Sch and Sch spectrum disorders. This is especially true for
patients with both risk factors for TRS [78].

2.5. Cytokine Imbalance in Treatment Resistance Schizophrenia

Based on the meta-analyses by Momtazmanesh et al. [79], it is possible to conditionally
classify cytokines according to their serum levels in patients with TRS into four groups:
group 1—elevated cytokines, including interleukin 6 (IL-6), tumor necrosis factor alpha
(TNF-α), interleukin 1 beta (IL-1β), interleukin 12 (IL-12) and transforming growth factor
beta (TGF-β); group 2—unchanged cytokines, including interleukin 2 (IL-2), interleukin
4 (IL-4) and interleukin 17 (IL-17); group 3—elevated or unchanged cytokines, including
interleukin 8 (IL-8) and interferon gamma (IFN-γ); group 4—interleukin 10 (IL-10) with
increased, decreased and unchanged serum levels. However, this grouping is not unam-
biguous and includes mainly pro-inflammatory cytokines. In addition, the authors did
not provide an analysis of the relationship between the levels of pro-inflammatory and
anti-inflammatory cytokines in patients with TRS.

Higher serum levels of pro-inflammatory cytokines are characteristic of both patients
with the first episode of Sch and patients with relapse and TRS, compared with the control
group [80]. IL-1β, IL-6 and TGF-β were elevated at the first psychotic episode, and Sch
flare normalized after AP treatment. Conversely, the levels of IL-12, IFN-γ, TNF-α and
soluble interleukin 2 receptor (sIL-2R) remained elevated during exacerbations and during
AP therapy [81]. A study of interleukins in the cerebrospinal fluid (CSF) showed that the
levels of interleukin 6 (IL-6) and IL-8 were increased in Sch, but not significantly increased
in affective disorders [82]. A meta-analysis of CSF cytokines showed higher levels of
pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines in patients
with Sch and TRS [83].
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It is known that dopaminergic dysfunction is a significant feature in the pathophysi-
ology of TRS [84]. Interactions between cytokines and neurotransmitters in certain areas
of the brain, and also during brain development, are important in the pathophysiology of
TRS. Apparently, the pro-inflammatory cytokine IL-1β, which induces the transformation
of rat mesencephalic progenitor cells into a dopaminergic phenotype [85], and IL-6, which
reduces the survival of serotonergic neurons in the fetal brain, seem to play an important
role in influencing neurotransmitter systems in TRS. [86]. Studies have found abnormalities
in the cytokine system in patients with TRS [87,88]. There is evidence that the levels of
IL-2 and IL-6 were elevated in patients with TRS, which is probably associated with the
activation of the inflammatory response system (IRS). Moreover, serum IL-2 or IL-6 and cor-
tisol are positively correlated with Sch, supporting the hypothesis that hypercortisolemia
may also be caused by pro-inflammatory cytokines [89,90].

So, a summary of the results of studies on the role of neuroinflammation in the
development of TRS is presented in Table 2.

Table 2. Studies of the role of neuroinflammation in the development of treatment-resistant schizophrenia.

Author, Year Mechanism Pathogenesis Reference

Meehan et al.,
2017

Prenatal, perinatal
and postnatal

infection

Immune activation. Violation of neurogenesis processes,
including dopaminergic and glutamatergic

neurotransmission.
[75]

Frank et al.,
2018

Sensitization or
kindling

Stimulation of the immune response. Activation of cell
proliferation, increased production and release of

pro-inflammatory cytokines.
[57]

Momtazmanesh et al.,
2019 Cytokine imbalance Increased serum levels of pro-inflammatory cytokines IL-1β,

IL-6 and TGF-β. [79]

Wang et al.,
2020 Cytokine imbalance

Interactions between cytokines and neurotransmitters in
certain areas of the brain, as well as during brain
development. Induction of IL-1β conversion of

mesencephalic progenitor cells into a dopaminergic
phenotype. Reduced survival of serotonergic neurons

through IL-6.

[83]

Kumar et al.,
2020

Sensitization or
kindling

Stimulation of the glutamatergic system, ionotropic and
metabotropic glutamate receptors that excite amino acid
transporters. Increased levels of glutamate in the anterior

cingulate cortex.

[61]

Woodburn et al.,
2021

Changes in the
functional activity of

microglia

Priming of microglia causes an exaggerated immune
response. Proliferation and increased production of

pro-inflammatory cytokines.
[52]

Müller et al.,
2021

Prenatal, perinatal
and postnatal

infection

Increased levels of CRP and pro-inflammatory
cytokines in childhood. [76]

Dziurkowska et al.,
2021 Cytokine imbalance

Increased plasma levels of IL-2 and IL-6, activation of IRS.
Positive correlation of IL-2, IL-6 and cortisol,

hypercortisolemia.
[89]

Woodburn et al.,
2021

Sensitization or
kindling

Pro-inflammatory immune response in the CNS.
Activation and proliferation of microglia.

Mediated neurotransmitter disorders.
[52]

Rovira et al.,
2022

Prenatal, perinatal
and postnatal

infection

Violation of the structure, exposure to inflammatory factors,
neurochemical changes. Increased dopamine levels,

impaired COMT activity.
[66]

Note: CNS—central nervous system; COMT—catechol-O-methyl transferase; CRP—C-reactive protein;
IL-1β—interleukin 1 β; IL-2—interleukin 2; IL-6—interleukin 6; IRS—inflammatory response system;
TGF-β—transforming growth factor beta.
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3. Cytokines Alteration in Treatment-Resistant Schizophrenia

Cytokines, which comprise a family of proteins—interleukins (IL), lymphokines,
monokines, interferons and chemokines—are important components of the immune system
(Table 3).

Table 3. Pro-inflammatory and anti-inflammatory cytokines.

Pro-Inflammatory Cytokines Anti-Inflammatory Cytokines

Ciliary neurotrophic factor (CNTF)
Granulocytic-macrophage colony-stimulating

factor (GM-CSF)
Interferon gamma (IFN-γ)

Interleukin 20 (IL-20)
Interleukin 1 alpha (IL1-α)

Interleukin 1 β (IL1-β)
Interleukin 11 (IL-11)
Interleukin 12 (IL-12)
Interleukin 17 (IL-17)
Interleukin 18 (IL-18)
Interleukin 18 (IL-8)

Interleukin 33 (IL-33)
Interleukin 6 (IL-6)

Leukemia inhibitory factor (LIF)
Oncostatin M (OSM)

Transforming growth factor beta (TGF-β)
Tumor necrosis factor alpha (TNF-α)

Interleukin 1 receptor antagonist (IL-1Ra)
Interleukin 10 (IL-10)
Interleukin 11 (IL-11)
Interleukin 13 (IL-13)

Interleukin 4 (IL-4)
Interleukin 6 (IL-6)

Interleukin-18-binding protein (IL-18BP)
Transforming growth factor beta (TGF-β)

Cytokines act in concert with specific cytokine inhibitors and soluble cytokine recep-
tors to regulate the human immune response [91]. Their physiologic role in inflammation
and pathologic role in systemic inflammatory states are now well recognized. An imbal-
ance in cytokine production or cytokine receptor expression and/or dysregulation of a
cytokine process contributes to various pathological disorders, including Sch [92]. Cy-
tokines are classified as pro-inflammatory and anti-inflammatory. The time-dependent pro-
and anti-inflammatory imbalance determines the outcome of an inflammatory response in
development of TRS [93]. It should be clarified that the division of cytokines into pro- and
anti-inflammatory is very conditional, because depending on the conditions, the cytokine
can behave as a pro- or anti-inflammatory cytokine (for example, IL-6) [94]. Indeed, the
number of cytokines, the nature of the activating signal, the nature of the target cell, the
nature of the cytokines produced, the timing, the sequence of action of cytokines and even
the experimental model are parameters that strongly affect the properties of cytokines [95].

3.1. Pro-Inflammatory Cytokines

Pro-inflammatory cytokines play a central role in neuroinflammatory disorders of
infectious or noninfectious origin. Pro-inflammatory cytokines are produced predomi-
nantly by activated macrophages and are involved in the upregulation of inflammatory
reactions [96]. These cytokines serve to contain and resolve the inflammatory foci through
activation of local and systemic inflammatory responses. Pro-inflammatory cytokines
may directly modulate neuronal activity in various classes of neurons in CNS, including
dopaminergic neurons [97]. The major pro-inflammatory cytokines that are responsible for
early responses are interleukin 1 alpha (IL1-α), interleukin 1 β (IL1-β), interleukin 6 (IL-6)
and tumor necrosis factor alpha (TNF-α). Other pro-inflammatory mediators include mem-
bers of the interleukin 20 (IL-20) family, interleukin 33 (IL-33), leukemia inhibitory factor
(LIF), interferon gamma (IFN-γ), oncostatin M (OSM), ciliary neurotrophic factor (CNTF),
transforming growth factor beta (TGF-β), granulocytic-macrophage colony-stimulating
factor (GM-CSF), interleukin 11 (IL-11), interleukin 12 (IL-12), interleukin 17 (IL-17), inter-
leukin 18 (IL-18), interleukin 18 (IL-8) and a variety of other chemokines that chemoattract
inflammatory cells. These cytokines either act as endogenous pyrogens (IL-1, IL-6, TNF-α),
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upregulate the synthesis of secondary mediators and pro-inflammatory cytokines by both
macrophages and mesenchymal cells, stimulate the production of acute phase proteins or
attract inflammatory cells [98]. IL-1β, TNFα, IFN-γ, IL-12 and interleukin 11 (IL-18) are
well characterized as pro-inflammatory cytokines.

3.1.1. Interleukin 1 β

IL-1β is produced by myeloid blood cells, pathogenic lymphocytes, resident microglia
and CNS astrocytes in autoimmune diseases, neurodegeneration and metabolic diseases. It
is a key pro-inflammatory cytokine that is involved in the regulation of the innate immune
response [99]. IL-1β is a pleiotropic cytokine that can activate microglia and astrocytes
and lead to subsequent synthesis of other pro-inflammatory cytokines and chemotactic
mediators in the CNS [100]. IL-1β leads to aberrant release and accumulation of glutamate,
which subsequently leads to neuronal death in most neurodegenerative diseases [101]. In a
cross-sectional study by Enache et al. [102], investigating the association of plasma cytokine
levels with TRS, no association of IL-1β with TRS was found. However, other studies have
conflicting results [103].

3.1.2. Tumor Necrosis Factor Alpha

TNF-α regulates several processes, including sleep, learning and memory, synaptic
plasticity and astrocytic-induced synaptic reinforcement in the healthy CNS [103]. The
biological functions of TNF-α are mediated through its two main receptors: tumor necrosis
factor receptor 1 (TNFR1 or p55) and tumor necrosis factor receptor 2 (TNFR2 or p75).
TNFR1 activation initiates inflammatory, apoptotic and degenerative cascades, while TNF-
α signaling through TNFR2 is anti-inflammatory and cytoprotective, resulting in induction
of proliferation, differentiation, angiogenesis and tissue repair [104]. TNF-α is also an
important pro-inflammatory cytokine produced by both neurons and glial cells. Genetic
association studies have provided evidence of Sch-associated gene variations in the innate
and adaptive immune systems [105]. In a recent genetic study, which examined the
relationship between TNF-α polymorphism–238 G/A and response to APs treatment, it
was shown that while TNF-α polymorphisms–238 G/A and -308 G /A were not associated
with Sch, TNF-α–238 G/A polymorphism may be associated with treatment resistance
and suicide attempts in patients with Sch in the Turkish population [106]. Another study
on the prognosis of TRS using immune-inflammatory biomarkers reported that TRS is
associated with a specific cytokine-chemokine profile, i.e., elevated levels of C-C motif
chemokine ligand 11 (CCL11), macrophage inflammatory protein-1 alpha (MIP-1α), soluble
tumor necrosis factor receptors 1 (sTNF-R1) and soluble tumor necrosis factor receptors
2 (sTNF-R2), as well as decreased levels of interferon gamma induced protein 10 (IP-10),
TNF-α, IL-2 and IL-4 [107]. Data from a 2021 crossover study showed, however, that both
TRS and ultra-treatment-resistant Sch (UTRS) patients tended to increase TNFα expression,
which, however, did not reach statistical significance [108].

3.1.3. Interferon Gamma

IFN-γ is a soluble cytokine that is predominantly released from T helper type 1
(Th1), cytotoxic T lymphocytes and natural killer cells. IFN-γ serves to prime microglia,
which is associated with various cellular adaptations, including changes in morphology,
upregulation of receptors and increased levels of pro-inflammatory cytokines [38]. Data
regarding the level of IFN-γ and TRS remain contradictory. For example, in a study by
Upthegrove et al. [109], evidence has been obtained that elevated IFN-γ levels are associated
with TRS. However, another study reported that IFN-γ was not associated with response
to APs therapy [110].

3.1.4. Interleukin 12

IL-12 secreted mainly by macrophages and dendritic cells in response to components
of the bacterial cell wall. IL-12 stimulates proliferation, and also activates and increases the
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cytotoxicity of natural killer cells (NK cells) and T cells, promoting the differentiation of
the latter into Th1. It is also known to induce the secretion of IFN-γ and TNF-α and has
a synergistic effect with Interleukin 18 (IL-18) [92]. When examining the plasma level of
IL-12, it was found to be elevated in TRS and UTRS [109].

3.1.5. Interleukin 18

Research on the presence of IL-18 in the CNS began shortly after its discovery as
a stimulator of inf-γ production in the immune system. IL-18 has been investigated for
its similarity to IL-1β as a possible mediator of disease behavior and local inflammatory
responses associated with neuronal injury. IL-18 promotes loss of appetite, sleep, and inhi-
bition of long-term potentiation (LTP), and is also produced by and active in microglial cells
and possibly contributes to neurodegeneration. IL-18 represents a link between the immune
and nervous systems, since IL-18 and its receptors in the CNS mediate neuroinflammation
by modulating homeostasis and behavior [111]. There is some evidence that IL-18 levels are
elevated in patients with Sch but do not appear to be the cause of the disorder itself [112],
although it is likely that elevated serum IL-18 levels may be a biomarker for TRS and UTRS.

3.1.6. Interleukin 8

IL-8 is secreted predominantly in response to an antigen by macrophages, T-lymphocytes,
neutrophils, and other cells; IL-8 is also the most potent human chemokine [113]. IL-8, being a
pro-inflammatory cytokine, enhances the migration of neutrophils, T-lymphocytes and mono-
cytes, whose enzymes produce free oxygen radicals and, thus, increase oxidative stress,
which can lead to neuronal death [114]. Studies have shown that IL-8 significantly predicted
non-response to APs therapy and positively correlated with negative Sch symptoms [102]
and can be considered as a potential TRS biomarker.

3.1.7. Interleukin 17

IL-17 is secreted by helper lymphocytes 17 (Th17) and stimulates macrophages and
microglia to secrete pro-inflammatory cytokines [115]. According to some data, no effect
of APs on peripheral levels of IL-17 has been demonstrated [116]. However, it has been
reported that activation of the IL-17 pathways may be present from the onset of Sch and
appears to increase with disease progression up to the development of TRS and UTRS.
The IL-23/IL-17 pathway is being considered as a therapeutic target for patients with TRS,
especially since many anti-inflammatory drugs have been proposed as adjuncts to treat Sch
symptoms, such as N-acetylcysteine, which appears to reduce they produce IL-17 [38].

Summary, the role of pro-inflammatory cytokines in TRS is presented in the Table 4.

Table 4. Role of pro-inflammatory cytokines in treatment-resistant schizophrenia.

Cytokine Gene:
OMIM Role in Neuroinflammation Role in TRS References

IL-1β IL1B:
147720

Stimulation of the synthesis of other pro-inflammatory
and chemotactic mediators in the CNS.

Stimulation of aberrant release and accumulation of
glutamate, which subsequently leads to neuronal death

in most neurodegenerative diseases.

+/− or + [99–102]

TNF-α TNFA:
191160

Regulation of several processes including sleep, learning
and memory, synaptic plasticity and astrocytic-induced

synaptic strengthening. Initiation of inflammatory,
apoptotic and neurodegenerative cascades, while TNF-α

signaling via TNFR2 is anti-inflammatory and
cytoprotective, resulting in induction of proliferation,

differentiation, angiogenesis and tissue repair.

+++ [38,104–108]
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Table 4. Cont.

Cytokine Gene:
OMIM Role in Neuroinflammation Role in TRS References

IFN-γ IFNG: 147570

Priming of microglia, which is associated with various
cellular adaptations, including changes in morphology,

upregulation of receptors and an increase in
pro-inflammatory cytokines.

+/− [102,109,110]

IL-12A IL12A: 161560

Stimulation of proliferation. Activation and increase in
the cytotoxicity of NK cells and T cells.

Stimulation of differentiation in Th1. Induction of IFN-γ
and TNF-α secretion, synergism with pro-inflammatory

cytokines with IL-18.

+++ [38,92]

IL-18 IL18:
600953

Potentiation of the development of the relationship
between the immune and nervous systems, since

IL-18 and its receptors in the CNS mediate
neuroinflammation of the brain, modulating homeostasis

and behavior.

++ [111,112]

IL-8 CXCL8:
146930

Increased migration of neutrophils, T cells and
monocytes, whose enzymes produce free oxygen radicals

Indirect increase in oxidative stress, which can lead to
neuronal death.

+++ [102,113,114]

IL-17 IL17A: 603149 Stimulation of macrophages and microglia to secrete
pro-inflammatory cytokines in the CNS. +++ [38,109,115]

Note: (+/−)—questionable prognostic role in the development of TRS; (+)—mild prognostic role in the devel-
opment of TRS; (++)—moderate prognostic role in the development of TRS; (+++)—significant prognostic role
in the development of TRS; CNS—central nervous system; IFN-γ—interferon gamma; IL-12—interleukin 12;
IL-17—interleukin 17; IL-18—interleukin 18; IL-1β—interleukin 1 β; IL-8—interleukin 8; NK cells—natural killer
cells; T cells—T-lymphocytes; Th1—type 1 helper T cells; TNFR2—tumor necrosis factor receptor 2; TNF-α—tumor
necrosis factor alpha.

3.2. Anti-Inflammatory Cytokines

The anti-inflammatory (immunosuppressive) cytokines are a series of immunoregula-
tory molecules that control the pro-inflammatory cytokine response. The anti-inflammatory
cytokines act in concert with specific pro-inflammatory cytokine inhibitors and soluble
cytokine receptors to regulate the human immune response. Major anti-inflammatory cy-
tokines include interleukin 1 receptor antagonist (IL-1Ra), IL-4, IL-6, IL-10, IL-11, interleukin
13 (IL-13) and TGF-β. Specific cytokine receptors for IL-1, TNFα and IL-18 also function as
pro-inflammatory cytokine inhibitors: IL-1Ra as an interleukin 1 alpha (IL-1α) and IL-1β
antagonist; Interleukin-18-binding protein (IL-18BP) as an IL-18 antagonist [109]. Several
newly found cytokines, such as IL-33, interleukin 35 (IL-35) and interleukin 37 (IL-37), also par-
ticipate in regulating the function of neurons and neuroglia. Anti-inflammatory cytokines,
in particular IL-10, inhibit pro-inflammatory cytokine synthesis and adhesion molecule
expression, while increasing the levels of specific cytokine inhibitors [117]. IL-1Ra, IL-4,
IL-6 and interleukin 10 (IL-10) are well characterized as anti-inflammatory cytokines.

3.2.1. Interleukin 4

IL-4 is produced by activated Th lymphocytes, mainly Th2 helper lymphocytes, natural
killer T cells (NK cells), mast cells and basophils. Its role is to promote the differentiation of
Th into Th2 lymphocytes, as well as to increase their cytotoxicity. IL-4 affects macrophages
and microglial cells and may be neuroprotective by reducing their ability to induce oxidative
stress. In addition, IL-4 also plays a role in cognitive processes [118]. A study of serum IL-4
levels in patients with TRS did not reveal a significant difference in IL-4 levels between the
three groups—patients with TRS, patients without TRS and a healthy control group [119].
In another study, Şükrü et al. [120] also found no significant differences between patients
with TRS and the control group in terms of serum IL-4 levels.
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3.2.2. Interleukin 6

IL-6 is a multifunctional pro-inflammatory cytokine that is secreted primarily through
monocytes and macrophages. They play a key role in processes related to immunity and
neuroinflammation. IL-6 regulates the transmission of neuronal excitability, metabolism
and sensitivity of CNS neurotransmitters to them. High concentrations of IL-6 at baseline
have been associated with the development of TRS and prolonged hospital stay [121].
Mongan et al. [122] showed that serum IL-6 was significantly higher in TRS patients than
in normal volunteers, while Sch patients without TRS showed intermediate values. In
addition, elevated levels of IL-6 were found in not only patients with TRS, but also in
patients with UTRS, confirming the significant predictive role of IL-6 in TRS. IL-6 is one of
the main effector cytokines of Th17 cells. However, it is also possible that the high levels
of IL-6 observed in the UTRS subgroup may indicate a bias towards the Th2 pathway
associated with the chronicity of the schizophrenic process [123]. TRS is also accompanied
by signs of IRS and compensatory immunoregulatory system (CIRS), including activation
of M1 cells (especially IL-6 and TNFα trans-signaling) [96]. Clear immune abnormalities
are seen in TRS patients, and IL-6 may be an important marker of TRS [124].

3.2.3. Interleukin 10

IL-10 and receptors to IL-10 (IL-10R) are synthesized in the CNS, including by microglia
and astrocytes; they can be considered an important modulator of neuroinflammation [125].
After IL-10 binds to its receptor, this cytokine initiates its cellular effects through canonical
Janus kinase (JAK)/signal transducer and transcriptional activator (STAT), which includes
JAK1 and STAT3, which subsequently induces the expression of genes associated with
immunosuppression [126]. Taken together, the evidence suggests that IL-10 plays a critical
role in limiting inflammation in the CNS, similar to that seen in peripheral sites, by altering
the ability of resident glia and infiltrating leukocytes to respond to activating stimuli and
decreasing the production of inflammatory mediators by these cells [127]. Patients with
TRS show high levels of IL-10. The upregulation of this potent anti-inflammatory cytokines
may reflect the induction of contractive homeostatic processes [38]. A meta-analysis by
Marcinowicz et al. [116] demonstrated a decrease in serum IL-10 levels in patients with a
first psychotic episode after APs.

A summary of the role of anti-inflammatory cytokines in TRS is presented in the Table 5.

Table 5. Role of anti-inflammatory cytokines in treatment-resistant schizophrenia.

Cytokine Gene:
OMIM Role in Neuroinflammation Role in TRS References

IL-4 IL4: 147780

Initiation of T-helper differentiation into T-helper 2 lymphocytes.
Increased Th2 cytotoxicity.

Modulation of the function of macrophages and microglial cells.
Decreased cytotoxicity.

+/− [118,119]

IL-6 IL6: 147620
A key role in the processes associated

with immunity and neuroinflammation.
Modulation of the sensitivity of neurons to neurotransmitters.

+++ [120–124]

IL-10 IL10: 124092

Initiation of cellular effects through canonical JAK/ STAT,
which includes JAK1 and STAT3.
Induction of expression of genes

associated with immunosuppression.

+++ [38,116,
125–127]

Note: +/−—mild prognostic role in the development of TRS; +++—significant prognostic role in the development of
TRS; IL-10—interleukin 10; IL-10R1—inter-leukin-10 receptor 1; IL-10R2—interleukin-10 receptor 2; IL-4—interleukin 4;
IL-6—interleukin 6; JAK—Janus kinase; JAK1—Janus kinase 1; STAT—signal transducer and activator of transcription;
STAT3—signal transducer and activator of transcription 3.
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4. Correction of Cytokine Status Imbalance as a Promising Therapeutic Strategy for
Treatment-Resistant Schizophrenia

Current treatment of Sch considers the use of APs as the first line of therapy [128,129].
This is often followed by the use of non-steroidal anti-inflammatory drugs (NSAIDs) in ad-
dition to nutrients (vitamins, minerals, plant and animal products) that affect inflammation
and the immune system [130]. The effect of APs and NSAIDs on the level of cytokines has
also been shown with a decrease in the expression levels of pro-inflammatory cytokines,
such as IL-18, IL-1β, IL-6 and IL-8 [131,132].

The heterogeneity of the phenotypes underlying Sch and the high likelihood of adverse
drug reactions (ADRs) with APs support the need to explore new treatment strategies
for TRS, most of which are under study. Therapy for TRS with monoclonal antibodies,
intravenous immunoglobulins (IVIG), NSAIDs, corticosteroids, tetracycline antibiotics,
antioxidants and statins have been described as possible strategies for disease-modifying
therapy [130]. Prospects also have a correction of the cytokine imbalance in patients with
TRS. Thus, this issue remains open and is actively studied in connection with the relevance
of the task (Table 6).

Table 6. Perspective strategies for anti-inflammatory therapy in treatment-resistant schizophrenia.

Drug Mechanism Results References

Non-steroidal anti-inflammatory drugs

Celecoxib Selective inhibition of COX-2.

Significant reduction in PANSS positive
TRS symptom scores and overall

PANSS score, but no significant change
in negative TRS symptoms.
Improvement in conceptual

disorganization and abstract thinking
by PANSS in patients with TRS.

[133,134]

Acetylsalicylic acid Inhibition of COX-1 and c COX-2. Improvement in PANSS symptoms. [135,136]

Statins

Simvastatin

Inhibition of HMG-CoA reductase,
anti-inflammatory effect, reduction of

pro-inflammatory cytokines (IL-1β,
IL-6, TNF-α) and CRP.

Decrease in negative symptom scores
on the PANSS scale in patients with

TRS, decrease in the total score on the
PANSS scale.

[137]

Pravastatin

Inhibition of HMG-CoA reductase,
anti-inflammatory effect, reduction of

pro-inflammatory cytokines (IL-1β,
IL-6, TNF-α) and CRP.

Marked decrease in scores
positive symptoms on the PANSS scale. [138]

Corticosteroids

Cortisone

Influence on carbohydrate and
electrolyte metabolism,

anti-inflammatory (inhibition of
phospholipase A2), desensitizing

and anti-allergic,
immunosuppressive effects.

Most patients with Sch did not show
significant changes in Sch symptoms. [139]

Prednisolone

Suppression of the function of
leukocytes and tissue macrophages.

Limitation of migration of leukocytes to
the area of inflammation, impairment

of the ability of macrophages to
phagocytosis, as well as to the

formation of IL-1, inhibition of the
activity of phospholipase A2,
suppression of the release of

COX-1 and COX-2, etc.

There was no significant difference in
improvement in the severity of Sch

symptoms with the placebo group in
patients with Sch.

[140]
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Table 6. Cont.

Drug Mechanism Results References

Monoclonal antibody

Tocilizumab
Selective binding and suppression of
expression and functional activity of

IL-6 receptors.

No significant change in scores for
positive and negative TRS symptoms,
but improvement in BACS cognition.

[141,142]

Cytokines

- IFN-γ-1b

Activation of macrophages and
induction of expression of the class II

major histocompatibility complex
molecule, inhibition of

virus replication.

A pronounced decrease in the total
PANSS score in patients with TRS. [143]

Intravenous immunoglobulins

- IgG
Increasing the content of antibodies in

the blood to a physiological level,
creating passive immunity.

A pronounced decrease in the total
PANSS score in patients with antibody
positive psychosis. Most patients gave

a clinical response to therapy.

[144,145]

Other groups of drugs

Mucolytics/antioxidants:
- N-acetylcysteine

Precursor of the biological antioxidant
glutathione, anti-inflammatory and

antioxidant effect.

A decrease in scores on all three PANSS
scales, an improvement on the CGI-S,
CGI-I scales in patients with TRS. The
reduction in negative symptom scores

on the PANSS scale was more
significant in patients with TRS.

[146,147]

Antibiotics:
- Minocycline

Bacteriostatic action due to the
suppression of protein synthesis by

reversible binding to the 30S ribosomal
subunit of sensitive microorganisms.

Decrease in scores on all three PANSS
scales, improvement in BPRS scores, no

changes in cognitive function in
patients with TRS.

[148]

Polyunsaturated
fatty acids:

- Omega-3 fatty acids

Antioxidant, anti-inflammatory and
neuroprotective effect.

Significant improvement on the three
PANSS scales, as well as improvement

in cognitive functions,
was not revealed.

[149,150]

Note: BACS—Brief Assessment of Cognition in Schizophrenia; BPRS—Brief Psychiatric Rating Scale; CGI-I—Clinical
Global Impression—Improvement; CGI-S—Clinical Global Impression—Severity; COX-1—cyclooxygenase-1;
COX-2—cyclooxygenase-2; CRP—C-reactive protein; HMG-CoA—3-hydroxy-3-methyl-glutaryl-coenzyme A reduc-
tase; IFN-γ-1b—interferon-γ-1b; IgG—immunoglobulins G; PANSS—Positive and Negative Syndrome Scale.

5. Discussion

The delicate balance between pro-inflammatory and anti-inflammatory cytokines
determines the net effect of a neuroinflammatory response in patients with TRS. Perturba-
tions in this equilibrium can drive the patient defense immune response towards chronic
neuroinflammation (pro-inflammatory) or towards healing (anti-inflammatory). Thus, a
cytokine imbalance may be beneficial to the patient with Sch by initiating the neuroinflam-
matory response. However, overproduction or underproduction of pro-inflammatory or
anti-inflammatory endogenous mediators (cytokines) may actually be deleterious to the
patient with “non-dopamine” Sch (Figure 4).

In addition, chronic neuroinflammation, supported by an imbalance between pro-
inflammatory and anti-inflammatory cytokines, and persistent dopaminergic neurotransmis-
sion disorder can be considered as an overlap syndrome in patients with “dopamine” Sch.
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A genetic predisposition that determines the balance of pro-inflammatory and anti-
inflammatory cytokines and, hence, susceptibility to TRS is very important in the patients
with Sch. Various single nucleotide variants (SNVs) have been identified within pro-
inflammatory and anti-inflammatory cytokine and cytokine receptor genes that alter their
expression. These SNVs of cytokine and cytokine receptor genes may determine the
imbalance of pro-inflammatory and anti-inflammatory cytokines in the neuroinflammatory
response in patients with “non dopamine” and “dopamine” Sch.

To date, therapeutic strategies targeting pro-inflammatory cytokines may be effective
in treating TRS. Pro-inflammatory cytokines are known to be crucial for initiating a neu-
roinflammatory response. However, their level in the CNS may have reached its absolute
or relative peak before the clinical signs of TRS became apparent.

In addition, therapy that blocks pro-inflammatory cytokines, paradoxically, may lead to
increased inflammation [151]. Various inflammation paradoxes have been reported, includ-
ing new inflammations ocurring when: (1) particular cytokine and inflammatory regulators
encoding genes are mutated [152]; (2) patients experience somatic mutations [153] and in-
flammation [154]; (3) pro-inflammatory cytokines are weakened due to SNVs of the genes
encoding them [155]; (4) pro-inflammatory cytokine blockage therapies are used; etc. [144].
Pro-inflammatory cytokines and regulators are interconnected through evolution; single
cytokine blockade therapies may result in significant upregulation of a long list of genes
and signaling pathways, presumably the “second wave of inflammation” [156]. For exam-
ple, the second wave of inflammation may be the main mechanism of ADRs observed in
patients receiving Mab therapy that blocks pro-inflammatory cytokines [151].
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Nevertheless, our narrative review provides a new insight into the role of imbalance
between pro-inflammatory and anti-inflammatory cytokines in the pathogenesis of TRS
and in new approaches to predicting and early diagnosis of the development of TR to APs,
as well as new targets for future therapeutic interventions in “non-dopamine” Sch.

6. Conclusions

Our narrative review demonstrates that the problem of evaluating the contribution
of pro-inflammatory and anti-inflammatory cytokines to maintaining or changing the
cytokine balance can become a new key in unlocking the mystery of “non-dopamine” Sch
and developing new therapeutic strategies for the treatment of TRS and psychosis in acute
and chronic neuroinflammation. In addition, the inconsistency of the results of previous
studies on the role of pro-inflammatory and anti-inflammatory cytokines indicates that
the TRS biomarker, most likely, is not the serum level of one or several cytokines, but
the cytokine balance. We have demonstrated a hypothesis that the cytokine imbalance
is one of the most important TRS biomarkers. Partially, this hypothesis is supported by
the variable response to immunomodulators in patients with TRS, which were prescribed
without taking into account the cytokine balance of the relation between serum levels of
the most important pro-inflammatory and anti-inflammatory cytokines for TRS.
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