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Abstract

The nematode Caenorhabditis elegans is central to research in molecular, cell, and developmental 

biology, but nearly all of this research has been conducted on a single strain. Comparatively little 

is known about the population genomic and evolutionary history of this species. We characterized 

C. elegans genetic variation by high-throughput selective sequencing of a worldwide collection of 

200 wild strains, identifying 41,188 single nucleotide polymorphisms. Unexpectedly, C. elegans 

genome variation is dominated by a set of commonly shared haplotypes on four of the six 

chromosomes, each spanning many megabases. Population-genetic modeling shows that this 

pattern was generated by chromosome-scale selective sweeps that have reduced variation 

worldwide; at least one of these sweeps likely occurred in the past few hundred years. These 

sweeps, which we hypothesize to be a result of human activity, have dramatically reshaped the 

global C. elegans population in the recent past.
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Introduction

Caenorhabditis elegans is a globally distributed, free-living nematode that colonizes human-

associated habitats, including compost heaps and rotting fruit1. For the past forty years, a 

single laboratory strain (N2) has proven invaluable to biomedical research as a model for 

animal development, programmed cell death, and RNA interference2. Studies of a small 

number of loci suggest that C. elegans has a small effective population size and low 

diversity compared to closely related species, despite large local population sizes and global 

gene flow3–14. The factors responsible for this low genetic diversity remain unknown. C. 

elegans reproduces primarily by hermaphroditic selfing, but the mating system alone is not 

sufficient to explain the observed reduction in diversity11. Polymorphism rate between the 

laboratory strain N2 and the wild isolate CB4856 correlates with recombination rate, 

suggesting that background selection against deleterious mutations also reduces 

diversity5,15,16. However, CB4856 is genetically isolated from the rest of the C. elegans 

population17, and analyses based on its divergence alone are subject to significant 

ascertainment bias and may not fully capture evolutionary processes relevant to the global 

population. To obtain a more complete description of C. elegans diversity, we sequenced 

thousands of genome fragments from a globally distributed collection of 200 wild isolates. 

Our results demonstrate that recent strong sweeps of positive selection have drastically 

reduced chromosome-wide diversity in this species.

C. elegans genome diversity and strain relationships

We studied 200 wild strains of C. elegans from 58 collection locations on six continents 

(Fig. 1, Supplementary Table 1). These strains cover virtually every known collection 

location, providing the most comprehensive set of C. elegans strains assembled to date. The 

samples were isolated from a variety of sources, including rotting fruits, compost, 

mushroom farms, soil, and snails. To characterize genomic variation among these strains, 

we examined restriction-site associated DNA (RAD)18 covering 8% of the 100 megabase 

genome. We sequenced 91 bp on both sides of each EcoRI restriction site, yielding a pair of 

RAD tags every 2.1 kb on average. We achieved a median coverage of 27 reads per tag per 

strain, allowing SNP identification with a false discovery rate (FDR) less than 0.6% (see 

Methods). Across all strains, we identified 41,188 SNPs in 8 Mb of sequence (an average of 

5.1 SNPs per kb).

C. elegans reproduces primarily as a selfing hermaphrodite, which can lead to clonal 

expansions of a single genotype. For this reason, we expected to find identical strains 

isolated from nearby locations. To find these cases, we examined the number and 

distribution of discordant genotype calls across all pairwise strain comparisons. Pairs with 

fewer SNPs than the expected number of false positives given our FDR (250 SNPs) were 

considered clonal, with the exception of the pair ED3046 and ED3049, for which the SNPs 

were clustered in a small region on chromosome II. Of the 200 sampled strains, 47 had 

unique haplotypes. The remaining 153 strains grouped into 50 near-identical sets 

(Supplementary Table 1). Most of these sets are from a single isolation or from separate 

samples in close proximity, likely representing strains sampled from a single clonal 

expansion. However, two sets spanned different continents: AB2 and CX11258 from 
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Australia and the United States, respectively, and JU1171 and MY23 from Chile and 

Germany, respectively. It is possible that these pairs of strains are the result of recent long-

range migrations. However, given previous evidence of strain confusion with wild strains 

isolated before good record-keeping17,19 and our own results, we conservatively analyzed 

only one strain from each of these sets. The set of 97 distinct genome-wide haplotypes, 

referred to as “isotypes” in subsequent analyses, comprises one isolate from each of the 50 

near-identical sets and the 47 unique isolates (Supplementary Table 1). Phylogenetic 

clustering of the isotypes revealed little to no grouping by isolation environment or country 

of origin (Fig. 2, Supplementary Fig. 1) but identified four highly diverged isotypes: 

CB4856, DL238, JU775, and QX1211. We identified an average of 3,613 SNPs per isotype 

compared to the reference strain N2, but these four diverged isotypes had an average of 

9,141 SNPs. In particular, 18% of the variants in the full SNP set are found only in QX1211, 

isolated in San Francisco.

Linkage disequilibrium and population structure

Among the isotypes, we found several large blocks of strong linkage disequilibrium (LD) (r2 

> 0.6) extending several megabases within chromosomes (Supplementary Fig. 2). 

Substantial LD also exists between chromosomes, with r2 often above 0.2. The population 

recombination rate (4Nr) on each chromosome, estimated by composite likelihood20, ranged 

from 90 to 185, suggesting an outcrossing rate between 1/100 and 1/1000 per generation, 

depending on the estimate of effective population size. To test for population subdivision, 

we used STRUCTURE21,22 and found statistical support for only one worldwide population 

(Supplementary Fig. 3). These results suggest that the observed LD is caused mainly by 

selfing, rather than by separation into distinct subpopulations. Principal Component 

Analysis (PCA) identified five significant axes that explain 29.7% of the genetic variation 

(Supplementary Fig. 3). These axes reveal some geographic structure but fail to clearly 

separate isotypes into distinct subpopulations. There is a weak correlation between 

geographic distance and genetic relatedness at the local scale (less than 700 km, 

Supplementary Figure 4), but we found no correlation at larger distances, in agreement with 

previous analyses3,6,13.

Despite the extensive LD, previous results demonstrated the feasibility of genome-wide 

association analysis in C. elegans by mapping two qualitative traits, hybrid incompatibility 

and copulatory plugging, using SNPs between N2 and CB485617. Because the causal 

variants for these traits are known and exhibit a near-perfect genotype-phenotype 

correspondence, we genotyped these variants as proxies for the traits, and showed that our 

set of SNPs can be used to map the variants to the correct genomic regions (Supplementary 

Fig. 5). We also applied association mapping to two quantitative traits (Supplementary Fig. 

5; Methods). Resistance to abamectin, an anthelmintic compound produced by the common 

soil bacterium Streptomyces avermitilis23, was significantly associated with a 28 kb 

haplotype on chromosome V, and aversion to the human pathogen Pseudomonas aeruginosa 

mapped to a 45 kb interval on chromosome IV. Because geographic structure might be 

observable using association analysis, we mapped the latitude at which a strain was isolated 

and found a significant locus in the center of chromosome II. This association could reflect 
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subtle population structure, or it might implicate this region in an unknown ecological niche 

preference, such as temperature.

Using these 97 C. elegans isotypes, association analyses will likely discover alleles only 

with large phenotypic effects. Additionally, the chromosomal location of the causal variant 

limits the resolution of mapping. Extensive linkage disequilibrium in the centers of 

chromosomes results in haplotype blocks over a megabase in size, as shown here for 

copulatory plugging and latitude. By contrast, causal variants on the more freely 

recombining chromosome arms can be localized to haplotype blocks smaller than 50 kb, as 

shown here for hybrid incompatibility, abamectin resistance, and P. aeruginosa avoidance. 

In this regard, it is worth noting that functional variants in C. elegans are more likely to be 

located on chromosome arms due to the correlation between rates of recombination and 

polymorphism15.

Genetic variation and chromosome-wide haplotype sharing

Despite a global distribution, with local populations likely containing millions of 

individuals6, our results confirm that genetic variation in C. elegans is low. Our genome-

wide coverage shows that the level of diversity varies across genomic regions (Fig. 3), as 

suggested by previous results derived from a small number of loci5,24. The estimated 

population mutation rate (θW, Methods) varies over two orders of magnitude, from greater 

than 3.5×10−3 per bp on some chromosome arms to a minimum of 2.5×10−5 per bp in the 

centers, averaging 8.3×10−4 per bp. The level of polymorphism correlates with the 

recombination rate on all autosomes17 – diversity is lower in the low-recombination 

chromosome centers and higher on the more freely recombining arms (Fig. 3, 

Supplementary Fig. 6). On the X chromosome, this pattern is much weaker, and the level of 

polymorphism is fairly constant across its entire length (θW ~8.5×10−4), which corresponds 

to its more uniform recombination rate17. The correlation between rates of polymorphism 

and recombination is consistent with previous results implicating background selection as a 

major force shaping patterns of C. elegans diversity5,15. Variation in pairwise diversity (π) 

follows the same general pattern as θW, but with a larger reduction in π than in θW in the 

centers of chromosomes I, IV, and V. This difference results in extremely negative values of 

Achaz’s Y (an analog of Tajima’s D, see Methods) and indicates an excess of low-frequency 

polymorphism relative to neutral expectation (Fig. 3, Supplementary Fig. 6). The left arm of 

the X chromosome also shows an excess of rare variants, but unlike on chromosomes I, IV 

and V, this region does not have a low recombination rate.

The genome of the wild strain CB4858 appears to contain large haplotypes shared with the 

reference strain N225, indicating recent common ancestry. To identify whether additional 

such relationships exist among the 97 isotypes, we used the program GERMLINE26 to 

search each pair for segments of at least two centimorgans or megabases with no more than 

two SNP differences, which we defined as “shared” segments (see Methods). Remarkably, 

we found extensive sharing of large haplotypes among the majority of isotypes, suggesting 

recent common ancestry (Fig. 4). The average pair shares roughly one third of the genome 

identical-by-descent when measured on either the genetic (median = 28%) or the physical 

map (median = 33%). The median block size of the shared segments is roughly a fifth of a 
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chromosome (2.5 Mb). Some blocks span more than a third of a chromosome, indicating 

that very few generations of outcrossing have occurred since the most recent common 

ancestor. Most strikingly, the patterns of sharing are unevenly distributed across the genome 

− 70% to 90% of isotypes share segments that span several megabases on chromosomes I, 

IV, V, and X (Fig. 5), but such sharing is not observed on chromosomes II and III 

(Supplementary Fig. 7). In particular, chromosome V shows one common haplotype that 

spans the majority of its length. These regions of high haplotype homozygosity correspond 

to the regions with an excess of rare SNPs noted above. Notably, the common haplotypes for 

chromosomes I, IV, and V are found on all six sampled continents; the chromosome X 

common haplotype is present on five.

Recent strong selective sweeps

The combination of high haplotype homozygosity extending over large regions and an 

excess of rare variants is expected after a strong selective sweep, especially when the 

recombination rate is low27. To estimate the population and selection parameters required to 

generate the observed patterns, we performed coalescent simulations of entire chromosomes 

over a range of demographic models, including single and multiple populations with varying 

migration rates and population sizes. All models incorporated the effects of background 

selection and recombination on chromosomal diversity patterns. Demographic forces and 

background selection are expected to affect the patterns of variation on all chromosomes 

equally, resulting in a single best-fitting model. Contrary to this expectation, the patterns of 

variation on chromosomes II and III are strikingly different from the patterns on 

chromosomes I, IV, and V. While the patterns of polymorphism on chromosomes II and III 

were compatible with models that did not include positive selection, fitting both the excess 

of rare variants and high haplotype homozygosity observed for chromosomes I, IV, V 

required incorporating positive selection (Fig. 6; X was not tested, Methods). Our estimates 

of the population selection parameter 4Ns for these chromosomes ranged from 100 to a 

maximum of 500. For an effective population size between 10,000 and 25,000, these values 

of 4Ns correspond to a selective advantage in the range of 0.1% to 1.3% per generation.

To estimate the timing of these selective sweeps, we focused on the largest and most highly 

shared segment found on chromosome V, shared by 84 of the 97 isotypes. Using coalescent 

simulations with two different models of population growth (Supplementary Fig. 8), we 

estimated that the haplotype arose between 600 and 1250 generations ago (90% credible 

interval). In the laboratory, C. elegans can go through 100 generations per year, but the 

average generation time in nature is likely much longer4. If we assume a conservative 

estimate of six generations per year28, the common haplotype on chromosome V likely 

expanded to its current frequency in the past 100 to 200 years. A lower bound is provided by 

the strain CB4851, which was isolated before 1949 and carries the selected haplotypes on 

chromosomes I, V, and X, making it likely that those sweeps began no less than 60 years 

ago. Even if the effective population size and generation time differ by an order of 

magnitude from our estimated values, the selective sweep still would have occurred in 

historical times.

Andersen et al. Page 5

Nat Genet. Author manuscript; available in PMC 2012 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

We report the most comprehensive survey of C. elegans diversity to date. Our results 

indicate that polymorphism rates are correlated with recombination rates, that linkage 

disequilibrium extends over long distances and often occurs between loci on different 

chromosomes, and that there is little detectable subdivision of the global population. 

Surprisingly, we found extensive sharing of large haplotypes on a subset of chromosomes, 

accompanied by a paucity of common variation in these regions. The shared haplotypes are 

distributed throughout the world (Supplementary Figure 9). These observations can only be 

explained by one or more strong recent global sweeps driven by positive selection, a 

scenario previously considered unlikely in C. elegans and Caenorhabditis in general5,29. 

Only QX1211 (recently isolated in California), CB4856, and DL238 (isolated in Hawaii) do 

not share any large haplotypes with the rest of the isotypes. These observations suggest that 

Hawaii and the Pacific Rim may be a fruitful ground for discovery of additional highly 

diverged isolates. Focused searches in these locations, as well as in other poorly sampled 

parts of the globe, may yield strains that represent the broader C. elegans diversity that 

existed prior to the selective sweeps that homogenized much of the global population.

Identification of the beneficial alleles that swept through the C. elegans population will be 

challenging. A selective advantage of 0.1 – 1% per generation is sufficient to drive a rapid 

selective sweep in nature, but phenotypic differences of that magnitude are difficult to 

reliably detect in the laboratory. Within each swept region, there are hundreds of genes with 

potential effects on fitness, and we can also only speculate about the selective forces that 

drove the sweeps. We know little about C. elegans ecology1, and it is possible that selection 

occurred for adaptation to a specific, as yet unknown microenvironment.

Positive selection has reduced C. elegans genetic variation on a scale not previously 

observed in multicellular organisms. The rapid global spread of the selected haplotypes 

during the past few centuries suggests the possibility that the selected alleles may be related 

to the association between C. elegans and human activity. Long-range human travel and 

transportation of agricultural products in this time interval likely contributed to the global 

spread of the selected haplotypes. Loci that aid human-assisted dispersal and/or confer 

fitness advantages in human-associated habitats may have driven the observed sweeps. 

Whether the sweeps resulted in global replacement of endemic populations or de novo 

colonization of new environments by C. elegans is unclear. The evolution of the parasitic 

protozoan Toxoplasma gondii provides a striking parallel. Like C. elegans, T. gondii is a 

small human-associated eukaryote with a selfing life stage. A chromosome-wide selective 

sweep of a single haplotype that originated around 10,000 years ago spread throughout the 

world30, suggesting that the dramatic changes in human civilization during this period (such 

as animal domestication) could have played a role in the rapid evolution of a new lineage. 

Recent dramatic alterations of global environments by humans, and the creation of human-

associated niches, may have made such selective sweeps a common feature of the genomes 

of many species.
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Methods

Strains

Animals were cultured with the bacterial strain OP50 on modified nematode growth medium 

(NGM)31, containing 1% agar and 0.7% agarose to prevent burrowing of wild C. elegans 

isolates. Strain information is listed in Supplementary Table 1. These strains represent at 

least one clone from every known isolation location. For locations with more than one 

strain, we chose strains isolated from different substrates.

Sequence analysis identified strains for which the true identity is suspect. The CGC versions 

of strains CB4855 and CB4858 were found to be identical by sequence comparison, even 

though the strains are reportedly from different isolation locations. Versions of CB4855 and 

CB4858 from J. Hodgkin are different from each other and from their respective CGC 

versions but were not used in our analyses. Instead, we treated the two samples as one strain 

from an unknown location. JU1615 and JU1616 from Melbourne, Australia are likely N2 

contaminants as determined by sequence and behavioral assays; they were excluded from 

our analyses. PX174 and RC301 were found to be identical, despite reported isolations from 

the United States and Germany, respectively. PX174 was likely mis-frozen from an RC301 

stock, and PX174 was excluded from our analyses. JU813 and ED3054 were found to be C. 

briggsae by sequence32 and mating tests, and were not included in any analyses.

We also sequenced the following strains, but the sequence or mapping qualities were not 

high enough to include them in downstream analyses: CB4855 (J. Hodgkin version), 

CX11254, and WN2001.

Restriction-site associated DNA (RAD) marker library construction and sequence 
determination

We isolated genomic DNA by washing off nearly starved animals from five 10 cm NGM 

plates to 15 mL conical tubes and settling by gravity for one hour. Genomic DNA was 

prepared using the DNeasy Blood and Tissue Kit (Qiagen). Seventeen RAD marker libraries 

were constructed by Floragenex, Inc. Nine additional libraries were constructed using a 

protocol adapted from previous work18. Illumina Genome Analyzer IIx protocols were used 

for sequencing at 101 cycles.

SNP determination

Each sequence read was entered into a custom mySQL database. Reads were grouped by 

strain, checked for the presence of a complete EcoRI cut sequence and mapped to the 

WS210 version of the N2 genome using bwa33. Loci with sequence from only a single strain 

or fewer than five reads per strain were excluded, as were locations less than 100 bp from 

another cut site. Reads that passed these filters were exported to SAMtools34 for SNP 

identification using the pileup command. Called SNPs not in repetitive regions (defined 

using RepeatMasker) were imported them into R, where all subsequent analyses were 

performed.
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We determined an optimal SNP calling strategy by comparison of libraries generated from 

different biological replicates of the same strain. Given a quality threshold, sites that differed 

between replicate libraries were considered errors, and sites that corresponded in both 

libraries but differed from the reference were counted as true SNPs. SNPs were called at 

phred score threshold of 60, requiring at least one of each allele to have a score ≥120. This 

approach provided the best balance between a low FDR (~0.6%) and power to identify true 

SNPs, yielding 41,188 SNPs. Any genotype call with a score below 60 was considered 

missing data, and sites missing in more than 25 strains were removed. We imputed missing 

genotype calls with NPUTE35. Both the imputed and unimputed datasets were condensed 

from the 200 strains into the 97 isotypes. This reduction eliminated a small number of 

segregating polymorphisms, resulting in 40,857 SNPs. This SNP set was used for all 

analyses, except for association analysis and detection of population structure.

For STRUCTURE and principal component analysis, we constructed a more stringent SNP 

set. As before, SNPs present in at least one isotype with a quality score of at least 120 then 

called at a quality score of at least 100 for all other isotypes. SNPs that were missing or low 

quality in more than six isotypes were removed. The more stringent cutoff resulted in a set 

of 6,089 high-quality SNPs. The remaining missing calls were imputed using the program 

NPUTE.

To construct a SNP set for association mapping, we used the 6,089 SNP set but raised the 

minor allele cutoff to 10 out of 97 isotypes, yielding 4,690 high-quality common SNPs. 

Missing calls were imputed with NPUTE.

Determination of population structure

For STRUCTURE and Principal Component Analysis (PCA), we pruned the 6,089 SNP set 

in sliding 25 marker windows at five marker steps, pruning pairs with r2 greater than 0.3 

using PLINK36. This reduced the data to 757 SNPs. The results of STRUCTURE and PCA 

were similar at different levels of pruning or missing data thresholds. We used 

EIGENSOFT37 for PCA and evaluated significance using Tracy-Widom statistics. Running 

EIGENSOFT with the “missingmode: YES” option confirmed that the observed patterns are 

not caused by structure in the missing data.

Association mapping

We used EMMA38 for all association analyses with the default kinship matrix. We ignored 

significant linkages of single markers, as these results are likely caused by allele frequency 

skews.

We genotyped the zeel-1 peel-1 and plg-1 loci using genomic PCR for each of the 200 

strains (Supplementary Table 2). These presence or absence genotypes might not reflect the 

phenotypes for these variants.

For abamectin sensitivity, L4 animals were grown for 20 hours on NGM plates freshly 

seeded with E. coli OP50. Young adults were then transferred onto an unseeded plate and 

allowed to roam for one minute, then transferred one per well into a 96-well flat-bottom 

tissue culture treated microtiter plate (Costar) containing 150 μl of M9 buffer with 5 μg/mL 
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abamectin. Animals were monitored at room temperature under a Leica SMZ650 dissecting 

scope to measure body bends in a 10 second period, either by direct observation or video 

recordings. A single body bend was defined as bending on either dorsal or ventral side 

relative to the midline.

For Pseudomonas aeruginosa avoidance, we scored the fraction of animals that crawled off 

the agar plate during a slow-killing assay. Slow-killing assays were performed as published 

previously39. Briefly, the standard slow-killing assay40 was performed in the presence of 50 

μg/ml 5-fluorodeoxyuridine, using the PA14 strain. A minimum of 80 worms per genotype 

were assayed in at least two independent trials.

Determination of segment sharing

We ran the program GERMLINE on the imputed 40,857 SNP set to define shared segments 

as intervals of at least 150 markers and two cM or Mb in length, with no more than two 

SNPs between isotypes. Shared segments were collapsed into a single haplotype, and we 

calculated the haplotype frequencies and homozygosity of each interval in the genome.

Calculation of population genetic statistics

To reduce the effects of sequencing errors on standard population genetic statistics (π, 

Watterson’s θ, Tajima’s D), we excluded all singletons, and calculated Achaz’s Y41 instead 

of Tajima’s D. Although our error rate is low on a genome-wide scale (less than one false 

SNP per 10 kb), errors may still account for a large fraction of observed variants in low 

diversity regions of the genome, substantially biasing Tajima’s D42.

We estimated the population recombination rate (ρ = 4Nr) for each chromosome using 

composite likelihood20 as implemented in LDhat (version 2.1), using values of ρ between 0 

and 250 in increments of five. The outcrossing rate C was estimated as C=ρ/4Nrc where rc = 

0.5 is the recombination rate per chromosome per outcross, with effective population size 

assumed to be between 10,000 and 50,000.

Simulation of population genetic parameters

We performed coalescent simulations of entire chromosomes using the program msms43. To 

match observed recombination patterns, we adjusted the arms of the simulated chromosomes 

by dividing the distance between each pair of SNPs by five (increasing the effective 

recombination rate five-fold) while randomly removing SNPs to maintain SNP density. 

SNPs in the center of the chromosome were randomly removed with probability 0.9 to 

match the observed patterns of polymorphism without affecting allele frequencies. The final 

chromosomes thus contained three regions: two high diversity, high recombination arms 

covering 20% of the physical chromosome each, and a central region with low 

recombination and low diversity. The total chromosome length was set at 17 Mb. For all 

simulations, the population mutation rate (θ) and recombination rate (ρ) were uniformly 

sampled across a broad range of values [θ = U(4000, 20000), before reductions described; ρ 

= U(50, 250)]. Simulated chromosomes with a calculated θW (singletons excluded) in the 

range of the observed data (700 – 1150) were accepted, and 106 such chromosomes were 

generated for every set of models.
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Simulations with selection consisted of a single population with a single selected site in the 

chromosome center with a final frequency in the population of 90%. We sampled from 

logarithmic distributions for both selective coefficients [log10(4Ns) = U(−2, 6)] and 

population sizes [log10(N) = U(2,6)]. Simulations where the calculated values of Achaz’s Y 

and average haplotype homozygosity differed from the observed value by less than 0.05 

were used to construct a distribution of possible values of 4Ns..

Neutral simulations included models of a single population with constant size or a recent 

period of exponential growth. Models with two ancestral populations were also considered, 

with individuals sampled from each population in proportion to their relative sizes. 

Parameters of this model (in addition to θ and ρ) included rates of migration between 

populations (migration could be asymmetric, and change over time) and the relative 

population sizes.

Coalescent Simulations to Determine the Age of the Chromosome V Haplotype

We modeled expansion of the largest highly shared segment, Chromosome V at 9.6–11.9 

Mb, using coalescent simulations of 84 individuals and no recombination. To model 

exponential growth, we sampled from uniform distributions of θ and the growth rate 

parameter, α (Nt = N0e−αt, where Nt is the population size 4Nt generations in the past and N0 

is the present size). Values for θ and α were retained from simulated samples with 66–68 

segregating sites (observed = 67) and a Tajima’s D between −2.66 and −2.68 (observed = 

−2.67) (data from the entire population suggest that Tajima’s D is minimally biased in this 

region). Using the laboratory-derived SNP mutation rate of 9 × 10−9 per bp per generation44 

to estimate population size, the median population expansion rate is 0.86% per generation 

(90% CI: 0.63 – 1.4%, Supplementary Fig. 8). For a 1000-fold population expansion, we 

then estimate a median of 807 generations (90% credible interval = 636 – 1081).

An alternative simulation approach forced all lineages to coalesce at a given time t 

(measured in 4N generations). For these “star-like” simulations, we randomly sampled from 

uniform distributions of θ and t, retaining successful samples as described above. Again 

using the laboratory-derived mutation rate to estimate population size, we estimate the time 

to the forced coalescence as 846 generations (90% CI: 630–1158) (Supplementary Fig. 8).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Global sampling locations of C. elegans strains
The isolation locations of wild strains sequenced in this study are shown as red circles on the 

world map. The right panel is a map of the more densely sampled Western Europe.
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Figure 2. Neighbor-joining tree of 97 C. elegans isotypes
The tree was constructed using 40,857 polymorphisms in the set of 97 isotypes and pseudo-

rooted to QX1211 for visualization reasons. Branch lengths are proportional to the number 

of polymorphisms that differentiate each pair. Scale bar is the

Andersen et al. Page 14

Nat Genet. Author manuscript; available in PMC 2012 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Chromosomal patterns of sequence polymorphism
a, Two estimates of population polymorphism rate, π (colored points and lines) and θW 

(grey lines), are shown for each chromosome. Each point represents a non-overlapping 

window of 110 RAD tags (approximately 10 kb of sequence). The lines show a locally 

weighted polynomial regression.

b, Achaz’s Y, a measure of deviation from the neutral allele frequency spectrum, calculated 

over the same windows with local polynomial regression. Negative values indicate an excess 

of rare alleles.
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Figure 4. Extensive sharing of large blocks of near-identical haplotypes
a, Proportion of the genetic map shared (as determined by GERMLINE) for every pairwise 

comparison of the 97 isotypes is shown as a histogram. Notably, every pairwise comparison 

with one the most diverged isotypes (CB4856, DL238, and QX1211) shows little to no 

sharing. By contrast, the average sharing between a pair is one third of the genetic map.

b, Two-dimensional density plot of the number of shared segments and the proportion of the 

genetic map shared shows that most isotype pairs share about one third of the genome in six 

to ten segments, indicating that the shared segments are large.
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Figure 5. High-frequency extended haplotypes on chromosomes I, IV, V, and X
The chromosomal region (in Mb) covered by each haplotype block is shown as a bar along 

the x-axis, with haplotype frequency indicated by height on the y-axis.

Andersen et al. Page 17

Nat Genet. Author manuscript; available in PMC 2012 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Modeled effects of selection
Results from 106 coalescent simulations of chromosomes with a single positively selected 

site in the center of the chromosome (Methods) are plotted. Regions with a high density of 

points are indicated in blue. Achaz’s Y (a) and haplotype homozygosity (b) for the entire 

chromosome are plotted against the simulated selection coefficient 4Ns. The values 

observed in our experimental data for each chromosome are indicated by the vertical 

positions of the colored diamonds. The location of each diamond on the x-axis is the median 

4Ns as estimated from the simulated data, with the extent of the bar showing the 90% 

credible interval.
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