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A B S T R A C T   

Background: Mitophagy is the selective degradation of mitochondria by autophagy. It becomes 
increasingly clear that mitophagy pathways are important for cancer cells to adapt to their high- 
energy needs. However, which genes associated with mitophagy could be used to prognosis 
cancer is unknown. 
Methods: We created a clinical prognostic model using mitophagy-related genes (MRGs) in lung 
adenocarcinoma (LUAD) patients for the first time, and we employed bioinformatics methods to 
search for biomarkers that affect the progression and prognosis of LUAD. Transcriptome data for 
LUAD were obtained from The Cancer Genome Atlas (TCGA) database, and additional expression 
data from LUAD patients were sourced from the Gene Expression Omnibus (GEO) database. 
Furthermore, 25 complete MRGs were identified based on annotations from the MSigDB database. 
Results: A comparison of the mitophagy scores between the groups with high and low scores was 
done using receiver operating characteristic (ROC) curves, which also revealed the differential 
gene expression patterns between the two groups. Using Kaplan-Meier analysis, two prognostic 
MRGs from the groups with high and low mitophagy scores were identified: TOMM40 and 
VDAC1. Using univariate and multivariate Cox regression, the relationship between the expres
sion levels of these two genes and prognostic clinical features of LUAD was examined further.The 
prognosis of LUAD patients was shown to be significantly correlated (P < 0.05) with the 
expression levels of these two genes. 
Conclusions: Our prognostic model would improve the prognosis of LUAD and guide clinical 
treatments.   

1. Introduction 

Lung cancer has been identified as the most common cause mortality from cancer globally. Although its incidence rate has declined 
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overall in recent years, its incidence rate among young people is on the rise [1]. Non-small cell lung cancers (NSCLC) comprise 
approximately 85 % of lung cancers histologically. Lung adenocarcinomas (LUAD) are the most prevalent type of NSCLC, accounting 
for over 50 % of all lung cancer cases [2]. Although immunotherapy and targeted therapies have made significant progress in the 
treatment of LUAD, the disease’s insidiosity and lack of specificity result in the majority of patients being diagnosed in an advanced 
stage, and the overall 5-year survival rate remains below 20 % [3,4]. To enhance LUAD patient survival outcomes, it is imperative to 
investigate novel biomarkers and efficient prognostic prediction models. 

Mitophagy (MP) is the selective autophagy of mitochondria, a process that selectively targets damaged mitochondria for degra
dation [5–7]. Autophagy is a lysosomal-dependent protein degradation system that maintains the balance and equilibrium of the 
internal environment by degrading and recycling proteins and damaged organelles. A number of disorders, such as cardiovascular 
diseases, neurological diseases, and cancers, have been linked to aberrant autophagy, in accordance to evidence [8,9]. Mitophagy is 
closely related to LUAD. Impaired mitophagy can result from the cytoplasm’s tumorigenic processes, such as PI3K/Akt, Akt/mTOR, or 
p53 protein aggregation. These activities can cause genomic instability, interfere with cell differentiation, influence the activation of 
cell aging programs, and interfere with cell metabolism [10,11]. 

Consequently, studies on the regulatory genes linked to MP can be used to determine the prognosis of lung cancer and comprehend 
the role of MP in both the onset and development of LUAD. By using multiple databases, this study explored the differentially expressed 
MRGs (MP-related genes) in LUAD, in combination with clinicopathological features and immunohistochemical protein levels, to 
construct a model for LUAD prognostic evaluation that will be valuable in guiding the evaluation and treatment of cancer. 

2. Materials and methods 

2.1. Data availability 

The “TCGAbioLinks” package of R was used to retrieve the LUAD dataset (TCGA-LUAD) from the TCGA database (https://portal. 
gdc.cancer.gov/) [12], and the sequencing data of 594 clinical samples were obtained after expelling those without clinical data. From 
the UCSC Xena database (http://genome.ucsc.edu), clinical data pertaining to the samples was retrieved [13]. Data from the cBio
Portal database (https://www.cbioportal.org/) were retrieved for tumor mutation burden (TMB) and microsatellite instability (MSI) 
[14]. In addition, we retrieved the expression datasets GSE40791 and GSE27262 [15,16] of LUAD patients from the GEO database 
through the “GEOquery” package [17], which included 50 and 194 samples, respectively. Details of the specific datasets are provided 
in Table 1. In addition, we searched and collected 29 MRGs as annotated by the MSigDB database [18] by using “mitophagy” as the key 
word. We found that 4 of the 29 MRGs did not have available transcriptomic data in the TCGA dataset and only retained the remaining 
25 MRGs (TOMM22, ATG12, UBB, MFN2, RPS27A, MAP1LC3A, VDAC1, PINK1, TOMM20, CSNK2A2, UBA52, FUNDC1, TOMM40, 
SQSTM1, MTERF3, ATG5, ULK1, CSNK2B, MAP1LC3B, SRC, UBC, PGAM5, TOMM5, CSNK2A1, and MFN1), for further research. 

2.2. Gene mutations and the calculation of mitophagy score 

Using the LUAD dataset, we first examined the variations in the expression of the 25 MRGs and compared them across different 
groups. Subsequently, we preprocessed the somatic mutation data of LUAD patients in the TCGA-LUAD dataset using VarScan soft
ware, and visualized the somatic mutation status of 25 MRGs using the “maftools” package [19]. 

We employed the R package “GSVA” [20] to compute a gene-set enrichment mitophagy score for each LUAD/G
SE27262/GSE40791 dataset sample. Using the expression profiles of 25 MRGs as a basis, the single-sample gene-set enrichment 
analysis (ssGSEA) algorithm was used to quantify the relative abundance of each gene in the dataset samples [21]. 

2.3. Differential analysis, function, and pathway enrichment analysis 

Using the TCGA-LUAD dataset and the “limma” package [22], we conducted differential analysis to find the DEGs related with high 
and low MPs score grouping by obtaining DEGs between high and low MPs score groups. DEGs were defined as genes having an 
adjusted p-value (P.adj) < 0.05 and |logFC| > 1.0. 

We conducted GO and KEGG analyses [23] of DEGs in the high and low score groups using the R “clusterProfiler” package to better 
understand their biological activities and roles in molecular pathways. 

Table 1 
Lung Adenocarcinoma Dataset Information list.   

TCGA-LUAD GSE27262 GSE40791 

Platform / GPL570 GPL570 
Species Homo sapiens Homo sapiens Homo sapiens 
Tissue Lungs Lungs Lungs 
Samples in the Normal group 59 25 100 
Samples in LUAD group 535 25 94 
Reference / PMID: 22726390 PMID: 23187126 

TCGA: The cancer genome atlas; LUAD: Lung adenocarcinoma. 
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2.4. Differential analysis and correlation analysis of immune infiltration between patients in high and low-risk groups 

The ssGSEA method was employed to distinguish between multiple human immune cell phenotypes within the tumor microen
vironment (TME) in order to approximate the immune cell count in LUAD samples [24]. Using the ssGSEA analysis enrichment score in 
R’s GSVA package, the infiltration levels of 28 immune cell types were represented for each sample. Next, a boxplot plot was employed 
to illustrate the differences in immune infiltration among the different groups. The TCGA-LUAD dataset’s gene expression matrix was 
then combined to determine the association between immune cells and MRGs in various risk groups. The R package “pheatmap” was 
then used to plot the association between them, creating a correlation heatmap. 

We also quantitatively analyzed the level of immune infiltration between the groups and used the R package “ESTIMATE” [25] to 
assess the immune activity of tumors based on expression profile data. Next, we examined the variations in immune infiltration 
characteristics between MPs in high- and low-scoring groups of LUAD patients. 

Additionally, we analyzed the differences in tumor mutation burden (TMB) and microsatellite instability (MSI) between high- and 
low-scoring groups of MPs in LUAD patients from the TCGA-LUAD dataset. 

2.5. A prognostic risk model was constructed based on MRGs 

For the MRGs in the TCGA-LUAD dataset, we used the least absolute shrinkage and selection operator (LASSO) regression using the 
‘glmnet’ R package [26]. We created a predictive model based on these MRGs using ten-fold cross-validation and a random seed of 
“2021".This approach enabled us to create a model capable of predicting study outcomes. Regularization and dimensionality reduction 
analyses were also performed to further screen for prognostic MRGs. 

riskScore=
∑

i
Coefficient(hub genei) ∗ mRNA Expression(hub genei)

2.6. Clinical assessment of prognostic MRGs 

The R package “rms” was utilized to generate a nomogram and conduct univariate and multivariate Cox regression analyses on the 
TCGA-LUAD dataset’s predicted MRG expressions against clinical parameters. This allowed us to investigate the clinical prognostic 
value of MRGs on LUAD [27]. The calibration curve was used to evaluate the nomogram’s accuracy and resolution, and the R package 
“ggDCA” was utilized to create a decision curve analysis (DCA) diagram in order to evaluate the prognostic value of the Cox regression 
model [28]. 

2.7. Construction of mRNA-mRNA, mRNA-miRNA, mRNA-RBP, mRNA-TF interaction network 

The STRING database was used in this study to create a protein-protein interaction network (PPI network, minimum necessary 
interaction score: highest confidence (0.900)) from 25 MRGs. Cytoscape was then used to display the PPI network model [29]. The PPI 
network’s strongly connected local regions may serve as molecular complexes with specific biological functions. The maximum 
neighbor coefficient (MNC), degree, edge preserved component (EPC), differential metabolic network construction (DMNC), and 
Matthews Correlation Coefficient (MCC) are the five algorithms that make up the PPI network and are used to determine the 
connection scores of MRGs associated with other PPI network nodes. The top 15 MRGs with the highest score of the five algorithms 
were intersected to obtain the hub genes in LUAD. 

We used the ENCORI and miRDB datasets to predict miRNAs that interact with hub genes.We next intersected the Target Score>80 
data segment of the miRDB database with the mRNA miRNA data in the ENCORI database to generate an mRNA-miRNA interaction 
network. 

Predicting RNA binding proteins (RBPs) that interact with key hub genes was another application of the ENCORI database. mRNA- 
RBP interaction pairings were screened using clipExpNum ≥ 5 and clipIDnum>10 as screening criteria, and the mRNA-RBP interaction 
network was shown. 

Finding transcription factors (TF) that bind to key genes (mRNA) was done using the hTFtarget and CHIPBase databases (version 
3.0). 

2.8. QPCR validation of the expression of hub genes 

cDNA was used as a template for PCR amplification, and the generation process of PCR products was monitored in real time using 
fluorescently labeled probes or fluorescent dyes such as SYBR Green. This makes it possible to measure the target genes’ RNA 
expression levels in various cell types and to calculate and compare the target genes’ relative expression levels in each cell type ac
cording to the qPCR assay’s fluorescence signal strength. 

Human non-small cell lung cancer cells (A549), human non-small cell lung cancer cells (H1299), and normal human bronchial 
epithelial cells (BEAS-2B) were prepared, grown, and then exposed to fluorescence quantitative PCR detection to ascertain the relative 
expression of RNA using the following primers: 

MFN1 - F: TGGCTAAGAAGGCGATTACTGC. 
MFN1 - R: TCTCCGAGATAGCACCTCACC. 
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MFN2-F: TCCTGTACGTGTCTTCAAGGAA. 
MFN2-R: CTGGAAGATGGACGTACTTTGTC. 
RPS27A –F: CGACGAAGGCGACTAATTTTGC. 
RPS27A –R: GCACCCCAATGTGATCTGC. 
SQSTM1-F: GCACCCCAATGTGATCTGC. 
SQSTM1-R: CGCTACACAAGTCGTAGTCTGG. 
UBA52-F: AAGACAAGGAGGGTATCCCAC. 

Fig. 1. Differences in the expression of mitophagy genes (MRGs) in lung adenocarcinoma (LUAD) data set. 
A-C. In the TCGA-LUAD dataset, PCA plots of mitophagy genes (MRGs) (A), GSE27262 dataset (B), and GSE40791 dataset (C) in FPKM format. D-F. 
Mitochondrial autophagy genes (MRGs) in the TCGA-LUAD dataset (D), GSE27262 dataset (E), and GSE40791 dataset (F) in FPKM format were 
shown in group comparison diagrams. PCA: Principal Component Analysis; LUAD: Lung adenocarcinoma; TCGA: The Cancer Genome Atlas; MRGs: 
Mitophagy-related genes. * denotes p < 0.05, ** denotes p < 0.01, and *** denotes p < 0.001. 
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UBA52-R: TGTTGTAGTCTGAGAGAGTGCG. 
UBB-F: GGTCCTGCGTCTGAGAGGT. 
UBB-R: GGCCTTCACATTTTCGATGGT. 
UBC-F: CTGGAAGATGGTCGTACCCTG. 
UBC-R: GGTCTTGCCAGTGAGTGTCT. 
ULK1-F: GGCAAGTTCGAGTTCTCCCG. 
ULK1-R: CGACCTCCAAATCGTGCTTCT. 
VDAC1-F: ACGTATGCCGATCTTGGCAAA. 
VDAC1-R: TCAGGCCGTACTCAGTCCATC. 

2.9. Statistical analysis 

This study used version 4.1.2 of the R software for all data processing and analysis. Two sets of continuous data were compared, and 
independent student t-tests were used to assess the statistical significance of regularly distributed variables. In contrast, the Mann- 
Whitney U test was employed to analyze the differences among non-normally distributed variables. When comparing three or more 
groups, we utilized the Kruskal-Wallis test. We compared two sets of category variables and used Fisher’s exact test or the chi-square 
test to determine their statistical significance. Using Spearman correlation analysis, correlation coefficients were all calculated. For 
survival analysis, the R package “survival” was utilized. The log-rank test was used to compare the survival rates of the two patient 

Fig. 2. Mutation analysis of MRGs in lung adenocarcinoma (LUAD). 
A. The mutational status of MRGs in lung adenocarcinoma (LUAD). B. The mutational details of MRGs in lung adenocarcinoma (LUAD) were shown. 
C. Chromosomal map of MRGs. MRGs: mitophagy-related genes; LUAD: Lung adenocarcinoma. 
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groups, and Kaplan-Meier survival curves were employed to illustrate the differences in survival. Statistics always use two-sided P 
values; a value of P < 0.05 denotes statistical significance. 

3. Results 

3.1. Significant results of mitochondrial autophagy gene (MRGs) expression in the LUAD dataset 

Three datasets were used, and principal component analysis (PCA) was used to evaluate the variation between LUAD samples: 
TCGA-LUAD, GSE27262, and GSE40791 (Fig. 1A–C). The PCA plots demonstrated marked differences between LUAD and normal 
samples in all three datasets. 

Next, the expression of the 25 MRGs in the TCGA-LUAD dataset was compared between tumor and normal samples. It was shown 

Fig. 3. Construction of mitophagy score. 
A-B. Mitophagy score group comparison (A) and ROC curve display (B) in the TCGA-LUAD dataset. C-D. Mitophagy scores in GSE27262 data set 
group comparison (C) and ROC curve display (D). E-F. ROC curve display and group comparison(E) of mitophagy scores in the GSE40791 dataset 
(F). G-H. The prognostic KM curve (G) of the mitophagy score between high and low mitophagy score in the TCGA-LUAD data set (Time = Day) and 
the group comparison (H) are shown. TCGA: The cancer genome atlas; LUAD: Lung adenocarcinoma; ROC: receiver operating characteristic curve; 
MRGs: mitophagy-related genes; KM: Kaplan–Meier. 
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that the expression levels of 17 MRGs (CSNK2A1, FUNDC1, MFN1, MTERF3, RPS27A, SQSTM1, SRC, TOMM22, TOMM40, TOMM5, 
UBA52, VDAC1, ATG12, CSNK2B, PGAM5, TOMM20, ULK1) were significantly higher in the LUAD tumor tissues than in the normal 
tissues (p < 0.05). However, there was a significant difference (p < 0.05) in the expression levels of 5 MRGs (MAP1LC3A, MAP1LC3B, 
MFN2, PINK1, and UBB) between the tumor and normal tissues. ATG5, CSNK2A2, and UBC expression showed no difference between 
the normal tissues and the LUAD tumor tissues (Fig. 1D). 

In the GSE27262 dataset, 10 MRGs (CSNK2A1, MFN1, MTERF3, TOMM40, FUNDC1, SQSTM1, SRC, VDAC1, TOMM22, TOMM5) 
were significantly up-regulated (p < 0.05), while 5 genes (CSNK2A2, MAP1LC3A, MAP1LC3B, UBB, UBC) were significantly down- 
regulated (p < 0.05) (Fig. 1E). 

The differential analysis of the GSE40791 dataset revealed that out of the 25 MRGs, 15 genes (CSNK2A1, FUNDC1, MFN1, MTERF3, 
TOMM20, TOMM22, VDAC1, PGAM5, ULK1, RPS27A, TOMM40, CSNK2B, SQSTM1, SRC, TOMM5) were significantly up-regulated (p 
< 0.05). In contrast, 7 genes (CSNK2A2, MAP1LC3A, MAP1LC3B, MFN2, PINK1, UBB, UBC) were significantly down-regulated (p <
0.05) (Fig. 1F). These 25 MRGs may be crucial in LUAD, according to the differential expression analysis of these 25 MRGs between the 
LUAD group and the Normal group in three LUAD datasets. 

3.2. Multiple types of MRGs gene mutations in LUAD patients 

We analyzed the types of mutations in the 25 MRGs in LUAD patient samples. We found they mainly included missense (64 %), 
nonsense (11 %), and splicing mutations (3 %), in addition to a small number of frameshift insertions (1 %) and inframe insertions (1 
%). At the nucleotide level, most of these mutations result from single nucleotide polymorphisms (SNPs), and a small percentage are 
insertion-deletions (indels). The C > A mutation (35 %) was the most common, followed by C > T (24 %) and C > G (14 %) (Fig. 2A). 

As shown in Fig. 2B, the TCGA-LUAD dataset contains 18 somatic mutations in 25 MRGs. 84 LUAD patient tumor samples show 
somatic mutations, and 18 MRG mutations were present in 67 samples, accounting for 79.76 % of the total number of tumor samples 
with mutations. Among the 18 MRGs with mutations, most contained missense mutations, with the UBC gene having the highest 
mutation burden, accounting for 15 % of the total number of mutations in LUAD samples. 

Fig. 2C shows that these 25 MRGs were mainly distributed on chromosomes 1, 5, 6, 19, 20, and X, among which chromosomes 1, 5, 
and 20 had the highest number of mutated MRGs with 3 MRGs on each chromosome. 

The many MRG mutation types imply that MRGs could be a major factor in developing LUAD disease. 

3.3. The TCGA-LUAD samples were grouped according to mitochondrial autophagy score 

We used the ssGSEA method in the GSVA package to compute the MP score for each sample in the TCGA-LUAD dataset based on the 
expression levels of the 25 MRGs. LUAD tumor tissue scores were compared to normal tissue scores in the TCGA-LUAD dataset. There 
was a statistically very significant difference (p0.001)(Fig. 3A). The expression levels of these MRGs demonstrated a high degree of 
accuracy in predicting the diagnosis, as shown by the plotting of the ROC curves of 25 MRGs from the TCGA-LUAD dataset (AUC =
0.852, Fig. 3B). We also performed the same analyses for the GSE27262 and GSE40791 datasets (Fig. 3C–F). 

Next, using clinical data from dataset samples and a prognostic analysis of the MP score, we divided TCGA-LUAD patients into two 
groups: high MPs and low MPs. Results of the survival study indicated that patients with low MPs had a comparatively better prognosis 
than those with high MPs (P < 0.0001; Fig. 3G), and there was a statistically significant difference in MP scores between the two groups 
(P < 0.001; Fig. 3H). 

3.4. DEGs were enriched in various biological functions and pathways 

In the TCGA-LUAD dataset, we conducted GO analysis (Table 2, Fig. 4A–D) and KEGG analysis (Table 3, Fig. 4A–E) on the 100 
differentially expressed genes (Table S1) that divide the high MP score groups from the low MP score groups. The result showed the 
DEGs were involved in biological processes including phagocytosis, endocytosis, and T-cell mediated cytotoxicity, maintaining cellular 

Table 2 
GO enrichment analysis results of WGCNA module Differentially expressed genes.  

Ontology ID Description GeneRatio BgRatio pvalue p.adjust qvalue 

BP GO:0050764 regulation of phagocytosis 5/91 98/18670 1.17e-04 0.026 0.024 
BP GO:0050766 positive regulation of phagocytosis 4/91 70/18670 3.79e-04 0.048 0.045 
BP GO:0001914 regulation of T cell mediated cytotoxicity 3/91 33/18670 5.50e-04 0.060 0.056 
BP GO:0045807 positive regulation of endocytosis 5/91 153/18670 9.14e-04 0.093 0.087 
CC GO:0005771 multivesicular body 6/99 51/19717 2.06e-07 1.05e-05 9.63e-06 
CC GO:0009897 external side of the plasma membrane 11/99 393/19717 4.50e-06 1.72e-04 1.57e-04 
CC GO:0030139 endocytic vesicle 7/99 303/19717 8.42e-04 0.016 0.015 
CC GO:0030135 coated vesicle 6/99 289/19717 0.003 0.057 0.053 
MF GO:0038024 cargo receptor activity 5/87 85/17697 6.16e-05 0.005 0.005 
MF GO:0005044 scavenger receptor activity 4/87 51/17697 1.14e-04 0.007 0.006 
MF GO:0048029 monosaccharide binding 4/87 75/17697 5.08e-04 0.025 0.023 
MF GO:0030246 carbohydrate binding 6/87 271/17697 0.002 0.061 0.055 

WGCNA: Weighted gene co-expression network analysis; GO: Gene Ontology; BP: biological process; CC: cellular component; MF: molecular function. 

W.-S. Liu et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e35305

8

components including the external plasma membrane, endocytic vesicles, multivesicular bodies, and coated vesicles, and molecular 
functions including carbohydrate binding, cargo receptor activity, scavenger receptor activity, and monosaccharide binding. Ac
cording to KEGG analysis, The DEGs were involved in five pathways, including complement and coagulation cascades, amoebiasis, 
pertussis, and ECM-receptor interaction. 

We also performed joint KEGG and GO analysis to determine each DEG’s z-score. The bubble diagram (Fig. 4F) demonstrated that 
most DEGs are implicated in biological processes and the maintenance of cellular components. 

Fig. 4. Functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis of DEGs. 
A. The histogram of DEGs shows the results of functional enrichment analysis (GO) and pathway enrichment analysis (KEGG) (A). B-D. Network 
diagrams illustrate the biological processes (BP) (B), molecular functions (MF) (C), and cellular components (CC) (D) from the GO functional 
enrichment analysis of DEGs. E. The KEGG pathway enrichment analysis results for DEGs are presented in a ring network diagram. F. Results of the 
GO/KEGG enrichment analysis of DEGs combined with logFC are displayed in a bubble chart. GO terms were shown in the abscissa in the histogram 
(A), and the height of the bar indicates the P value of GO terms. Specific genes are represented by the brown dots in the network diagram, and the 
dark blue circles represent pathways. The bubble diagram (F) shows the BP route as brown dots, the CC pathway as red circles, the MF pathway as 
dark cyan circles, and the KEGG pathway as light green circles. DEGs: Differentially expressed genes; GO: Gene Ontology; BP: Biological Process; CC: 
Cellular Component; MF: Molecular Function; KEGG: Kyoto Encyclopedia of Genes and Genomes. The criteria for screening GO and KEGG 
enrichment items were a P.value of less than 0.05 and an FDR value (q.value) of less than 0.10. 
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3.5. Significant immune characteristics differences were found between high and low mitophagy score groups 

The single-sample GSEA (ssGSEA) method was utilized in the TCGA-LUAD dataset in order to evaluate the differences in the 
infiltration of 28 distinct types of immune cells between the groups with high and low MP scores within the dataset (Fig. 5A). The 
findings showed that there was a major difference in the infiltration of 20 different types of immune cells, including activated B cells, 
activated CD4 T cells, and activated dendritic cells, between the groups with high mitophagy scores and those with low score of 
mitophagy. 

Furthermore, we evaluated the relationship between 19 immune cell type infiltration and the 25 MRGs in the high mitophagy group 
and 20 immune cell types in the low mitophagy group. In the group with a low mitophagy score, a positive correlation was found 
between MAP1LC3B and the infiltration of 18 distinct types of immune cells, whereas a negative correlation was found between 
TOMM20, ULK1, and CSNK2A1 and the infiltration of 16, 17, and 18 different types of immune cells, respectively (Fig. 5B). Fig. 5C 
shows that in the group with a high mitophagy score, there was a positive correlation between TOMM5 and a negative correlation 
between ULK1 and 5 distinct types of immune cells, and 5 distinct types of immune cells with a negative correlation, and a positive 

Table 3 
KEGG enrichment analysis results of WGCNA module Differentially expressed genes.  

Ontology ID Description GeneRatio BgRatio pvalue p.adjust qvalue 

KEGG hsa05146 Amoebiasis 6/56 102/8076 6.82e-05 0.007 0.006 
KEGG hsa04974 Protein digestion and absorption 5/56 103/8076 6.98e-04 0.034 0.031 
KEGG hsa05133 Pertussis 4/56 76/8076 0.002 0.059 0.054 
KEGG hsa04610 Complement and coagulation cascades 4/56 85/8076 0.003 0.061 0.056 
KEGG hsa04512 ECM-receptor interaction 4/56 88/8076 0.003 0.061 0.056 

WGCNA: Weighted gene co-expression network analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes. 

Fig. 5. ssGSEA immune infiltration analysis between high and low mitophagy score groups in TCGA-LUAD dataset. 
A. The ssGSEA immune infiltration analysis results are shown in a group comparison chart comparing the TCGA-LUAD dataset’s high and low 
mitophagy score groups. B–C. The correlation analysis results of immune cell infiltration abundance were compared between the low mitophagy 
score group (B) and the high mitophagy score group (C) in the TCGA-LUAD dataset. TCGA: The cancer genome atlas; LUAD: Lung adenocarcinoma; 
ssGSEA: single-sample gene-set enrichment analysis. 
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correlation between MAP1LC3B and 10 distinct kinds of immune cells and ATG12. 
We obtained the StromalScore, ImmuneScore, ESTIMATEScore, and Tumor Purity scores and analyzed their correlations with our 

mitophagy scores in the TCGA-LUAD dataset. Results indicated that our mitophagy score had significant correlations (p < 0.001) with 

Fig. 6. ESTIMATE immune evaluation analysis between high and low mitophagy score groups in the TCGA-LUAD dataset. 
A. The StromalScore score results group comparison chart of the TCGA-LUAD dataset’s high and low mitophagy score groupings. B. Scatter plot 
shows the correlation between the StromalScore scoring results and the mitophagy score in the TCGA-LUAD dataset. C. The ImmuneScore score 
group comparison chart of the TCGA-LUAD dataset shows the differences in mitophagy scores between the high and low groups. D. Scatter plot 
showing the correlation between the ImmuneScore scoring results and the mitophagy score in the TCGA-LUAD dataset. E. The TCGA-LUAD dataset’s 
comparison chart of ESTIMATEScore score results between groups with high and low mitophagy scores. F. Scatter plot showing the relationship 
between the TCGA-LUAD dataset’s mitophagy score and the ESTIMATEScore score results. G. The TCGA-LUAD dataset’s group comparison chart for 
Tumor Purity score results shows which groups had higher and lower mitophagy scores. H. A scatter plot showing the relationship between the 
Tumor Purity scoring results and the mitophagy score in the TCGA-LUAD dataset. I–K. Microsatellite instability (MSI) (I), tumor mutation burden 
(TMB) (J), and TIDE immunotherapy score (K) between high and low mitophagy score groups in the TCGA-LUAD dataset are shown in the group 
comparison chart. When the absolute value is over 0.8, the correlation coefficient (r) in the correlation scatter plot is high; when the absolute value 
is between 0.5 and 0.8, it is moderately correlated; when the absolute value is between 0.3 and 0.5, it is weakly correlated; and when the absolute 
value is below 0.3, it is inconsequential. TCGA: The cancer genome atlas; LUAD: Lung adenocarcinoma; MSI: Microsatellite Instability; TMB: tumor 
mutation burden. 
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StromalScore, ImmuneScore, ESTIMATEScore, and Tumor Purity score (Fig. 6A–H). Tumor Purity has a positive correlation, and the 
other three have a negative correlation. Furthermore, in terms of microsatellite instability (MSI), there was not a statistically signif
icant difference detected between the groups that had high mitophagy scores and those that had low mitophagy scores(P > 0.05, 
Fig. 6I). However, it is worth noting that there was a strong and statistically significant difference in the tumor mutation burden (TMB) 
between the groups with high mitophagy scores and those with low mitophagy scores (P < 0.001, Fig. 6J). 

In addition, given the important role of immunotherapy in treating LUAD patients, we analyzed the responses to immunotherapy 
between the high and low mitophagy score groups. Fig. 6K demonstrates that immunotherapy response score was lower for LUAD 
patients in the high mitophagy score group compared to the low mitophagy score group (p < 0.001), suggesting that the immuno
therapy response in the high mitophagy score group might be better than that in the low mitophagy score group. 

The abundance of multiple immune cell infiltrations varies significantly between samples from the groupings of high-risk and low- 
risk, and there is a significant correlation with 25 MRGs, indicating that these genes have great potential in tumor immune differ
entiation and immunotherapy. 

3.6. Two characteristic genes were obtained and associated with clinical features 

We created a prognosis model using LASSO regression analysis and the 25 MRGs, and we also plotted a risk factor map and 
visualization map (Fig. 7A–C). Two characteristic genes were obtained through the analysis TOMM40 and VDAC1, for which we drew 
prognostic survival Kaplan-Meier curves (Fig. 7D and E). We then compared the differences in expression of TOMM40 and VDAC1 in 

Fig. 7. Construction of MRGs prognostic model and clinical correlation analysis. 
A. Diagram of the LASSO regression prognostic model for MRGs. B–C. Variable trajectory plot (B) and risk factor plot (C) of the MRGs prognostic 
model. D-E. Prognostic survival KM curves of MRGs TOMM40, VDAC1. F. Correlation analysis between MRGs TOMM40 and clinical T stage. MRGs: 
mitophagy-related genes; LASSO: Least absolute shrinkage and selection operator. *** indicates p < 0.001. 
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the setting of different clinical features, such as OS, DSS, PFI, pathologic stage, gender, T stage, and N stage (Figs. 7F and 8A–F). Both 
TOMM40 and VDAC1 expression differences were statistically significant (P < 0.05) across all settings, with the exception of the PFI 
group (P > 0.05) (Fig. 8G–L). 

Fig. 8. Clinical correlation analysis of MRGs. 
Correlation analysis of MRGs TOMM40 with clinical N stage (A), Gender (B), clinical pathologic stage (C), OS (D), DSS (E), and PFI (F). G-L. 
Correlation analysis of MRGs VDAC1 with clinical T stage (G), clinical N stage (H), Gender (I), clinical pathologic stage (J), OS (K), and DSS (L). 
MRGs: mitophagy-related genes. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. 
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3.7. The prognostic model has a good performance 

In this study, we employed the MRGs that we generated to further validate the prognostic model by doing statistical analysis on the 
clinical data of LUAD patients found in the TCGA-LUAD dataset (Table 4). Age, gender, pathologic stage, N stage, M stage, T stage, 
expression levels of the two MRGs, TOMM40 and VDAC1, and clinical factors were found to be directly linked (P < 0.05) with the 
prognosis of LUAD patients (Table 5). A forest plot presents the results (Fig. 9A). A nomogram was plotted. Nomogram analysis 
assessed the model’s prognostic potential (Fig. 9B). We plotted the calibration curves. We conducted a prognostic calibration analysis 
on the nomogram derived from the univariate and multivariate Cox regression models(Fig. 9C–E). Following that, we examined the 
capability of the created Cox regression prognostic model to predict the prognosis for a period of 1 year (Fig. 9F), 3 years (Fig. 9G), and 
5years (Fig. 9H) by employing the DCA technique. Predicting power was highest for 5 years, then 3 years, then 1 year. 

3.8. The hub genes interact with multiple proteins, miRNAs, TFs 

We designed a PPI network that includes 25 MRDEGs (Fig. 10A). The top 15 MRGs with the highest scores for each algorithm were 
chosen after we utilized the Cytoscape software’s cytoHubba plugin to calculate the PPI network using the following five algorithms: 
MCC, DMNC, MNC, Degree, and EPC (Fig. 10B–F). The elliptical blocks in the illustration gradually get redder in color as their scores 
increase from yellow to red. We then created a Venn plot to show the results by intersecting the top 15 MRGs identified by five different 
algorithms to identify the hub genes for LUAD disease (Fig. 10G). A total of 9 hub genes were obtained, which were MFN1, MFN2, 
RPS27A, SQSTM1, UBA52, UBB, UBC, ULK1, and VDAC1. Subsequently, we conducted PPI analysis on 9 hub genes and constructed a 
PPI network (Fig. 10H). 

Using Cytoscape, we were able to visualize the network of mRNA-miRNA interactions (Fig. 11A). Whereas the purple triangular 
dots indicate miRNAs, the sky-blue oval block represents mRNA. The network’s 52 miRNA molecules and 7 hub genes (MFN1, MFN2, 
SQSTM1, UBA52, UBB, ULK1, VDAC1) form 72 pairs of mRNA-miRNA interactions. 

We also constructed the network of interactions between RBP and mRNA (Fig. 11B), where RBP is represented by the pink diamond 
dots and mRNA by the sky-blue oval block. We identified 23 RBPs corresponding to the 9 hub genes and found 21 types of RBPs 
targeted by the SQSTM1 gene in the network. 

The mRNA-TF interaction network, which consists of 8 hub genes (MFN1, MFN2, RPS27A, SQSTM1, UBA52, UBB, UBC, VDAC1), 
was eventually found by searching two databases for TFs that bind to the hub genes and 46 TFs (Fig. 11C), where the light green 
circular dots in the network represent TF, and the sky-blue oval blocks in the network are mRNA. We found 30 pairs of UBC-TF in
teractions, making UBC the most frequent gene interacting with TFs. In summary, there are interactions between hub genes and 
various small molecules, which drive the progression of diseases. 

Table 4 
Patient Characteristics of LUAD patients in the TCGA Datasets.  

Characteristic levels Overall 

n  535 
T stage, n (%) T1 175 (32.9 %) 

T2 289 (54.3 %) 
T3 49 (9.2 %) 
T4 19 (3.6 %) 

N stage, n (%) N0 348 (67.1 %) 
N1 95 (18.3 %) 
N2 74 (14.3 %) 
N3 2 (0.4 %) 

M stage, n (%) M0 361 (93.5 %) 
M1 25 (6.5 %) 

Pathologic stage, n (%) Stage I 294 (55.8 %) 
Stage II 123 (23.3 %) 
Stage III 84 (15.9 %) 
Stage IV 26 (4.9 %) 

Gender, n (%) Female 286 (53.5 %) 
Male 249 (46.5 %) 

Age, n (%) ≤65 255 (49.4 %) 
>65 261 (50.6 %) 

OS event, n (%) Alive 343 (64.1 %) 
Dead 192 (35.9 %) 

DSS event, n (%) Alive 379 (76 %) 
Dead 120 (24 %) 

PFI event, n (%) Alive 309 (57.8 %) 
Dead 226 (42.2 %) 

TCGA: The cancer genome atlas; LUAD: Lung adenocarcinoma. 
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3.9. The expression of the hub genes was validated by laboratory experiment 

We used the qPCR method to measure the relative expression levels of hub genes in LUAD cells and normal human bronchial 
epithelium cells. At least one of the two LUAD cells (A549, H1299) had significantly lower relative expression levels of MFN1, MFN2, 
RPS27A, SQSTM1, UBA52, UBB, UBC, and VDAC1 than the normal cells (BEAS-2B), while all of the LUAD cells had significantly higher 
relative expression levels of ULK1. Among the three cell types, there was no significant difference in SQSTM1 expression (Fig. 12A–I). 

4. Discussion 

Accumulating evidence shows that mitophagy supports the metabolic plasticity of cancer cells [30]. Mitophagy has long been 
recognized as a protective mechanism cancer cells use to resist mitochondria-induced apoptosis, the main pathway of cell death in 
cancer cells driven by metabolic stress [31]. According to a report, the ability of lung cancer cells to undergo mitophagy significantly 
reduced their ability to invade and migrate. For example, mitophagy-related Drp-1 protein was reduced in advanced lung cancer, 
suggesting an association with cancer progression. The expression of Drp-1 has a direct effect on mitophagy and is related to the 
invasion, proliferation, and metastasis of LUAD [32]. Therefore, exploring mitophagy-related genes and evaluating their functions and 
clinical significance in LUAD is necessary. 

Using mitophagy related genes (MRGs) in LUAD patients, we screened MRGs and constructed a clinical prognostic model that affect 
the progression and prognosis of LUAD using bioinformatics tools. The TCGA-LUAD dataset (594 samples), GSE27262 dataset (50 
samples), and GSE40791 dataset (194 samples) were used for this analysis. It was discovered that there is a substantial correlation 
between MRG expression levels and a diagnosis of LUAD, particularly in the TCGA-LUAD and GSE4079 datasets, and that the majority 
of the 25 MRGs had significantly different expressions in LUAD tumor tissue compared to normal tissue. Patients with lower scores for 
mitophagy had a better prognosis, based on Kaplan-Meier analysis (P < 0.0001). These findings indicate that MRGs are crucial for the 
development and prognosis of LUAD. 

Using MRGs, we created a LUAD clinical prognosis model using LASSO regression analysis. We found that the expression levels of 
two MRGs, TOMM40 and VDAC1, were significantly correlated with the prognosis of LUAD in patients. The prognosis model performed 
the best when predicting the prognosis in 5 years. These results highlight the significance of VDAC1 and TOMM40 in predicting pa
tients’ prognoses for LUAD. 

The process of importing proteins into the mitochondria depends on TOMM40, which is a channel-forming subunit of the mito
chondrial outer membrane translocase [33]. Reports on TOMM40’s involvement in cancers, such as LUAD, are few, but it has been 

Table 5 
COX regression to identify clinical features of dataset TCGA-LUAD.  

Characteristics Total(N) Univariate analysis Multivariate analysis 

Hazard ratio (95 % CI) P value Hazard ratio (95 % CI) P value 

T stage 523     
T1 175 Reference    
T2 282 1.521 (1.068–2.166) 0.020 1.340 (0.841–2.136) 0.218 
T3 47 2.937 (1.746–4.941) <0.001 3.186 (1.554–6.529) 0.002 
T4 19 3.326 (1.751–6.316) <0.001 1.820 (0.822–4.031) 0.140 
N stage 510     
N0 343 Reference    
N1 94 2.381 (1.695–3.346) <0.001 2.006 (1.041–3.865) 0.038 
N2 71 3.108 (2.136–4.521) <0.001 2.266 (0.924–5.561) 0.074 
N3 2 0.000 (0.000-Inf) 0.994 0.000 (0.000-Inf) 0.993 
M stage 377     
M0 352 Reference    
M1 25 2.136 (1.248–3.653) 0.006 1.994 (0.904–4.397) 0.087 
Age 516     
≤65 255 Reference    
>65 261 1.223 (0.916–1.635) 0.172   
Gender 526     
Female 280 Reference    
Male 246 1.070 (0.803–1.426) 0.642   
Pathologic stage 518     
Stage I 290 Reference    
Stage II 121 2.418 (1.691–3.457) <0.001 0.966 (0.482–1.937) 0.922 
Stage III 81 3.544 (2.437–5.154) <0.001 1.356 (0.502–3.663) 0.548 
Stage IV 26 3.790 (2.193–6.548) <0.001   
TOMM40 526     
Low 264 Reference    
High 262 1.501 (1.121–2.008) 0.006 1.041 (0.710–1.527) 0.837 
VDAC1 526     
Low 265 Reference    
High 261 1.808 (1.347–2.427) <0.001 1.754 (1.189–2.587) 0.005 

TCGA: The cancer genome atlas; LUAD: Lung adenocarcinoma. 
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shown to play a significant role in Alzheimer’s disease [34–36]. Shoshan-Barmatz et al. [37] demonstrated that VDAC1 is an important 
regulator of mitochondrial function. It mediates the release of apoptotic proteins in mitochondria to regulate epigenomic elements and 
apoptosis. It also participates in endoplasmic reticulum (ER)-mitochondrial crosstalk, autophagy, and inflammation regulation. 

The biological processes and pathways influenced by MRGs were explored. GO analysis of the DEGs between the groups with high 
and low mitophagy scores showed that most DEGs are involved in T-cell-mediated cytotoxicity, endocytosis, and phagocytosis. KEGG 
analysis revealed most of the 100 DEGs are involved in the five pathways, including amoebiasis, pertussis, coagulation cascades, 
complement, and ECM-receptor interaction. These results suggest that the patients’ immune system is affected by MRGs. Further 
investigation revealed a significant difference in the infiltration of 20 different types of immune cells between the high and low 
mitophagy score groups. Additionally, the groups with high and low mitophagy scores responded to immunotherapy in very different 
ways, and it’s possible that the high mitophagy score group’s immunotherapy response was better to that of the low mitophagy score 
group. The important roles of MRGs in the immune response may underly their predicting power for the prognosis of LUAD in patients. 

In our current study, we attempted to establish an interaction network between 25 MRGs using the STRING database. We found 

Fig. 9. Prognostic performance of MRGs prognostic model. 
Forest plot (A), nomogram (B) of univariate and multivariate Cox regression analysis of prognostic MRGs combined with clinical variables. C-E. The 
1-year (C), 3-year (D), and 5-year (E) calibration curves of the nomogram analysis of the Cox regression prognostic model. F–H. 1-year (F), 3-year 
(G), and 5-year (H) DCA plots of the Cox regression prognostic model. MRGs: mitophagy-related genes; DCA: decision curve analysis. 
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extensive interactions between these MRGs, reflecting the collaboration and interaction between genes to jointly complete a specific 
function. We attempted to use 5 algorithms to calculate the genes that interact most closely with other genes and took the intersection 
of 5 sets to obtain 9 hub genes, namely MFN1, MFN2, RPS27A, SQSTM1, UBA52, UBB, UBC, ULK1, VDAC1. In the comparative analysis 
of the three datasets, MFN1/SQSTM1/ULK1/VDAC1 was highly expressed in the LUAD samples of all three datasets. In comparison, 

Fig. 10. Construction of PPI network 
A. The PPI network of MRGs. B–F The top 15 MRGs interactive network was obtained using MCC (B), DMNC (C), MNC (D), Degree (D), and EPC (F) 
algorithms in the PPI network. The color of the elliptical block in the graph gradually increases from yellow to red, indicating a gradual increase in 
score. G. The top 15 MRGs Venn diagram results of the five algorithms in the PPI network, MCC, DMNC, MNC, Degree, and EPC, are displayed. H. 
The protein interaction network (PPI network) of key genes. MRGs: mitophagy-related genes; PPI network: Protein-protein interaction network; 
MCC: Matthews Correlation Coefficient metric; DMNC: differential metabolic network construction; MNC: the maximum neighborhood benefit; EPC: 
edge perched component. 
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UBB/UBC was lowly expressed in the LUAD samples of the three datasets. The expression of other genes in the three datasets is 
inconsistent, which may be related to the heterogeneity of the datasets. In the lab, we used qt-PCR technology to confirm the 
expression of these 9 genes. We found that the expression of MFN1/ULK1/VDAC1/UBB/UBC genes remained consistent with the 
expression in the three datasets. SQSTM1 expression did not differ between tumor and normal cells, however this could be due to 
sample heterogeneity. 

One of the mitochondrial membrane proteins encoded by MFN1/MFN2 is involved in mitochondrial fusion and plays a role in the 
maintenance and operation of mitochondrial networks [38]. The main component of the mitochondrial outer membrane, VDAC1, 
encodes a voltage-dependent anion channel protein that promotes the exchange of ions and metabolites on the membrane [39]. These 
three genes are all related to the function of mitochondria. These genes have not been found to be exclusively responsible for the onset 
and development of cancer. According to Wang Y et al.’s study [40], MFN1 is likewise strongly expressed in LUAD tissue and is linked 
to a poor prognosis for patients.The study also noted that mitochondrial damage activates the apoptotic pathway and induces cell cycle 
arrest. In Wang G et al.’s study [41], a neoptosis related (signature) was found, which includes VDAC1, an accurate gene group 
prognosticator for patients with LUAD. This is consistent with the role of VDAC1 in constructing predictive models for LUAD prognosis 
in this study. 

RPS27A encodes a ubiquitin-protein, a highly conserved protein [42]. Li H et al.’s study [43] pointed out that the low expression of 

Fig. 11. Construction of mRNA-miRNA, mRNA-RBP, and mRNA-TF interaction network 
A-C. The mRNA miRNA (A), mRNA RBP (B), and mRNA TF (C) interaction network of key genes. The sky-blue oval block in the mRNA-miRNA 
interaction network represents mRNA; The purple triangular dots are miRNAs. The sky-blue oval block in the mRNA-RBP interaction network 
represents mRNA; The pink diamond-shaped dots represent RBP. The sky-blue oval block in the mRNA-TF interaction network represents mRNA; 
Light green circular dots represent specific TF. RBP: RNA binding protein; TF: Translation factors. 
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RPS27A can regulate LUAD proliferation, apoptosis, and cell cycle by activating the RPL11-MDM2-p53 pathway. SQSTM1 encodes a 
protein that can bind to ubiquitin to activate and regulate the nuclear factors κB (NF-kB) signaling pathway, which has been discovered 
for the first time in the development of LUAD in this study [44]. P62/SQSTM1 is also a selective autophagic receptor that initiates the 
core autophagy mechanism in binding to ubiquitin [45]. In this study’s analysis of the PPI network, SQSTM1 interacted with various 
RBPs, indicating that SQSTM1 plays an important role in regulating mitochondrial autophagy and is expected to become a targeted 
gene for mitochondrial autophagy. 

ULK1 is an autophagy-activated kinase. During autophagy initiation, it participates in regulating complexes and can convert 
various signals into the formation of autophagosomes. It is a key gene for autophagy initiation in all cancers [46]. 

Fig. 12. Laboratory validation of hub genes in LUAD 
A-I. The relative expression of MFN1 (A), MFN2 (B), RPS27A (C), SQSTM1 (D), UBA52 (E), UBB (F), UBC (G), ULK1 (H), VDAC1 (I). * indicates p <
0.05, ** indicates p < 0.01, and *** indicates p < 0.001. 
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This study has several limitations. The sample sizes are small, particularly for the GSE27262 and GSE40791 datasets, which limited 
the statistical power of the analysis. The samples in each dataset are heterogeneous, and many other factors, including age, sex, and 
race, may also affect the statistical analysis. Moreover, the molecular mechanisms of MRGs’ functions remain largely unsolved. 
Therefore, further exploration of MRGs in the progression and prognosis of LUAD is needed. 

5. Conclusions 

We used bioinformatics tools to analyze the expressions of MRGs in LUAD patients and explored their roles in their prognosis. In 
accordance with the expression levels of 20 MRGs, the patients were divided into two distinct groups: those with high mitophagy 
scores and those with low mitophagy scores. We observed significant differences between these patient groups regarding survival 
prognosis, immune cell infiltration, and molecular interactions. Further investigation revealed an important correlation between the 
expression levels of two MRGs, TOMM40 and VDAC1, and patients’ LUAD prognoses. Measuring the expression levels of MRGs, 
especially that of TOMM40 and VDAC1, could help make clinical decisions in treating LUAD. 
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