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Abstract. As a type of contact dermatitis (CD), irritant CD 
(ICD) is an acute skin inflammation caused by external irri‑
tants, such as soap, water and chemicals. Humulus japonicus 
(HJ) is a herbal medicine widely distributed in Asian countries 
and has anti‑inflammatory, antimicrobial and antioxidant 
effects. The current study aimed to investigate the anti‑derma‑
titis effect of HJ on ICD and determine the molecular basis 
of this effect using 12‑O‑tetradecanoylphorbol‑13‑acetate 
(TPA)‑induced dermatitis mice models and lipopolysaccharide 
(LPS)‑stimulated RAW264.7 cells. Mice were orally adminis‑
tered HJ and luteolin, the major compound in HJ, and topically 
administered TPA on the right ear to induce dermatitis. Topical 
application of TPA induced ear redness, oedema and increased 
infiltration of neutrophils and macrophages, which ameliorated 
following HJ and luteolin administration. The gene expression 
levels of inflammatory cell migrating chemokines, chemokine 
ligand 3 (CCL3) and chemokine (C‑X‑C motif) ligand 2 
(CXCL2), and pro‑inflammatory cytokine, IL‑1β, were reduced 
in the ears of HJ‑ and luteolin‑treated mice. HJ and luteolin 
also inhibited the gene expression of chemokines, CCL3 and 

CXCL2, and pro‑inflammatory cytokines, IL‑1β, IL‑6 and 
TNF‑α, in LPS‑stimulated RAW264.7 cells. Moreover, HJ and 
luteolin decreased the expression levels of two key inflamma‑
tory enzymes, cyclooxygenase‑2 (COX2) and inducible nitric 
oxide synthase (iNOS), and total and active phosphorylation 
of NF‑κB p65. These results suggest that HJ could have a 
protective effect against ICD by suppressing inflammatory 
responses; therefore, HJ is a promising therapeutic strategy for 
ICD treatment.

Introduction

Contact dermatitis (CD) is one of the most prevalent inflam‑
matory dermatological disorders and is caused by exposure 
to immune response‑triggering exogenous substances and 
induces skin inflammation (1,2). It is classified as irritant CD 
(ICD) or allergic CD (ACD), with ICD accounting for 80% 
of all CD cases. ICD typically affects the hands, its occur‑
rence is irrespective of age or sex and is one of the most 
common occupational diseases worldwide. In Europe, ICD 
contributes to >30% of all reported occupational diseases 
and constitutes 70 and >80% of occupational skin diseases 
in Australia and Asia, respectively (3‑5). Individuals at high 
risk for ICD include workers in the healthcare, food industry 
and agricultural sectors, and hairdressers, who are exposed 
to various irritants (4). In addition to occupational exposure, 
ICD incidence has recently increased with the frequent use 
of soap and alcohol‑based hand sanitisers and increased hand 
washing owing to the coronavirus disease 2019 (COVID‑19) 
pandemic (3).

ICD is an inflammatory response of the skin to a variety of 
irritant products, including soap, water, cosmetics, dust, foods 
and solvents (6). In the case of water, if the skin is repeat‑
edly exposed to water, it can easily become dry and humid, 
weakening the skin barrier and causing ICD (7). The clinical 
manifestation of ICD varies from mild dryness and redness 
to severe reactions with oedema, inflammation and vesicula‑
tion (8). It occurs as a result of acute and direct skin injury that 
activates innate immunity without preceding sensitization (9). 
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Exposure to irritants that are toxic to epidermal keratinocytes 
disrupts the skin barrier and triggers an innate immune response 
with the release of various pro‑inflammatory cytokines, such 
as IL‑1β, IL‑6 and TNF‑α (10,11). Subsequently, these cyto‑
kines activate neighbouring cells, which release chemokines 
that induce the migration of neutrophils and macrophages to 
the damage site (12). Among recruited immune cells, macro‑
phages are key regulators and inducers of immune responses 
in ICD lesions (13). Uncontrolled inflammation in acute ICD 
leads to psoriasis, a chronic inflammatory skin disease (14,15). 
Although steroidal and non‑steroidal anti‑inflammatory 
drugs are used to treat ICDs, their long‑term use has adverse 
effects (14,16). Therefore, developing a novel therapeutic agent 
with safe and efficient anti‑inflammatory effects is necessary.

Humulus japonicus (HJ), also known as Japanese hop, 
is a perennial herb in the Cannabaceae family widely 
distributed in Asian countries, including Korea, Japan and 
China. The anti‑inflammatory, anti‑atherogenic, antioxida‑
tive and anti‑ageing effects of HJ extract were previously 
reported (17‑19). Moreover, a clinical study demonstrated the 
protective effect of HJ extract in patients with mild atopic 
dermatitis  (20). HJ contains various active compounds, of 
which luteolin was identified as the major component (21). 
Luteolin inhibits pro‑inflammatory mediators and regu‑
lates inflammation‑related signalling pathways, such as 
NF‑κB p65. In addition, luteolin was shown to modulate 
several inflammatory responses in the skin (22). Although 
the anti‑inflammatory effects of HJ were already demon‑
strated in several inflammatory diseases, its effects on ICD 
remain unclear. Therefore, the present study investigated the 
anti‑dermatitis effects of HJ and its possible mechanisms 
using 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced 
dermatitis mice models and murine macrophage cell lines.

Materials and methods

Preparation of HJ extract. HJ was purchased from Gangwon 
Yakcho in July 2014. Professor Won Keun Oh identified the 
voucher specimen (deposit no. SNU‑2014‑0004), which was 
then deposited at the College of Pharmacy of Seoul National 
University (Seoul, Korea). The HJ extract was prepared and 
supplied by the Korea Bioactive Natural Material Bank (Seoul, 
Korea). Briefly, the dried aerial parts of HJ were soaked in 
70% ethanol in an extraction container for 2 days at room 
temperature. The ethanol‑soluble extract was filtered through 
cheesecloth, exhaustively concentrated and dried to produce 
an ethanolic extract under reduced pressure. The extract of HJ 
was stored at room temperature (25±2˚C) until further use.

Animal studies. C57BL/6J mice (11‑week‑old; Korea Research 
of Bioscience and Biotechnology, Ochang, Korea) were 
acclimatized to a 12 h light/dark cycle at 22±2˚C for 1 week 
with unlimited food and water in a specific pathogen‑free 
facility. A total of 58 mice were used for experiments. Mice 
were randomly divided into four groups: i) Vehicle group 
treated with 1% DMSO in PBS; ii) HJ300 group treated with 
300 mg/kg of HJ; iii) HJ500 group treated with 500 mg/kg of 
HJ; and iv) Luteolin group treated with 30 mg/kg of luteolin 
(cat. no. L9283; Sigma‑Aldrich; Merck KGaA). A total of two 
experimental sets were used. In the first set, the experiment 

was conducted in four groups (Vehicle, HJ300, HJ500 and 
luteolin), with 7 animals in each group. In the second set, the 
experiment was conducted in three groups (Vehicle, HJ500 
and luteolin), with 10 animals in each group. HJ and luteolin 
were orally administered daily for 3 days before topical appli‑
cation of TPA. Subsequently, on the day of TPA application, 
HJ and luteolin administration was performed 30 min before 
and 3 h after TPA treatment (Fig. 1). TPA (3 µg in 30 µl in 1% 
DSMO/99% acetone; cat. no. P8139; Sigma‑Aldrich; Merck 
KGaA) was applied topically on both internal and external 
side of each mouse right ear. Similarly, the left ear was treated 
with 30 µl 1% DMSO/99% acetone. DMSO 1% was used 
to improve the solubility of HJ and luteolin, which are not 
completely soluble in PBS, and acetone was used as a solvent 
to dissolve the TPA powder. The ear thickness was assessed 
as the index of ear skin inflammation at 0, 8 and 26 h after 
TPA application using a Digital Thickness Gauge (Mitutoyo 
Corporation). As another indicator of inflammation, the ears 
of each mouse were cut to the same size and weighed 26 h 
after TPA application. All mice were humanely euthanized 
via CO2 inhalation with a CO2 displacement rate of 30‑70% 
of the chamber volume per minute. Death was confirmed 
by the absence of heart rate, breathing and reflexes. During 
the experiment, the temperature, humidity, feed, etc., of the 
breeding room were properly managed, and no animals died 
or were euthanized before the end of the experiment.

Cell culture. Murine macrophage cell line RAW 264.7 cells 
were purchased from the American Type Cell Culture. The 
cells were cultured in DMEM (Welgene, Inc.) supplemented 
with 10% FBS, 100 unit/ml penicillin and 100 µg/ml strep‑
tomycin in a humidified environment (5% CO2 and 95% air) 
at 37 C. The cells were pretreated with 800 µg/ml HJ and 25 µM 
luteolin for 1 h and were subsequently stimulated with 1 µg/ml 
lipopolysaccharide (LPS; cat.  no.  916974; Sigma‑Aldrich; 
Merck KGaA) or PBS as a vehicle for 3 and 24 h, at 37 C.

Histopathology and immunohistochemistry. Ear samples were 
fixed in 10% neutral buffered formalin for at least 2 days at 
room temperature (RT), embedded in paraffin, cut into 4‑µm 
thick sections and H&E stained (hematoxylin; 1 min, eosin; 
1 min) at RT. To detect neutrophils and macrophages infiltra‑
tion, ear sections were incubated with blocking reagent (1% 
normal serum in PBS; VECTASTAIN Elite ABC Kits, Vector 
Laboratories, Inc.) for 30 min at RT, and then stained with 
NIMP‑R14 anti‑neutrophil antibody (1:200; cat. no. ab2557; 

Figure 1. Experimental schedule. Schematic representation of the 
experimental protocol for 12‑O‑tetradecanoylphorbol‑13‑acetate‑induced 
dermatitis mice models. TPA, 12‑O‑tetradecanoylphorbol‑13‑acetate; HJ, 
Humulus japonicus.
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Abcam) and anti‑F4/80 antibody (1:500; cat. no. 70076S; Cell 
Signaling Technology, Inc.) overnight at 4 C. After repeating 
the washing steps with PBS, the sections were incubated with 
biotinylated antibody (VECTASTAIN Elite ABC Kits) for 1 h 
at RT. After further washing, the sections were incubated with 
ABC reagent (VECTASTAIN Elite ABC Kits) for 30 min 
and visualized with 3,3'‑diaminobenzidine (cat. no. SK4100; 
Vector Laboratories, Inc.). Hydrogen peroxide (0.3%) was 
used to block endogenous peroxidase/phosphatase activity. 
Epidermal and dermal thickness was measured as the index 
of ear oedema and epidermal hypoplasia by using an image 
analysis software program (ImageInside version 2.32; Ehwa 
Optical Co.). Epidermis and dermis thickness was analyzed 
using fifty different parts of each mouse ear tissue section. 
The number of neutrophils and F4/80 positive macrophages 
were counted in 10 randomly‑selected fields of view for each 
ear section using ImageJ software version 1.43u (National 
Institutes of Health).

Reverse transcription‑quantitative (RT‑q)PCR. Total RNA 
was isolated from mouse ears and RAW 264.7 cells using 
TRIzol™ reagent (Thermo Fisher Scientific, Inc.) and 
reverse‑transcribed into cDNA using the UltraScript 2.0 
cDNA Synthesis kit (cat. no. PB30.31‑10; PCR Biosystems, 
Ltd.). The reaction conditions for cDNA synthesis were as 
follows: Incubation at 50˚C for 30 min, followed by dena‑
turing reverse transcriptase at 95˚C for 10 min. Subsequently, 
qPCR was performed using AccuPower® 2X Greenstar™ 
qPCR MasterMix (Bioneer Corporation) and the StepOne™ 
Real‑time PCR system (Applied Biosystems; Thermo Fisher 
Scientific, Inc.). Thermocycling conditions were as follows: 
Preheating at 95˚C for 10 min, followed by 40 cycles at 95˚C 
for 10 sec and 60˚C for 30 sec. RNA pooling was conducted 
by mixing the same volume of each cDNA sample at a fixed 
concentration in a single tube followed by a 5‑fold dilution. 
Relative gene expression levels were analyzed using the 2‑∆∆Cq 
method (23) and normalized to 18S rRNA expression level. 
The sequences of the primer pairs used for qPCR are listed 
in Table I.

Western blot analysis. RAW264.7 cells (2.5x105 cells) were 
homogenized in ice‑cold RIPA buffer (pH 7.4, 0.1 mmol/l 

sodium vanadate, 1  mmol/l phenylmethanesulfonyl fluo‑
ride, 25  mmol/l NaF, 50  mmol/l Tris‑HCl, 40  mmol/l β 
glycol phosphate, 120  mmol/l NaCl, 1% NP40 and 0.5% 
Triton X‑100) containing complete protease inhibitor 
(cat. no. 11836170001; Roche Diagnostics), and phosphatase 
inhibitor (cat. no. p3200‑010; GenDEPOT, LLC). The cell 
lysate was centrifuged at 16,000 x g for 15 min at 4 C and the 
protein concentration was measured using a Bradford assay 
(Bio‑Rad Laboratories, Inc.). Protein samples were separated 
by sodium dodecyl sulfate polyacrylamide gel electrophoresis 
on 10% gels and transferred onto a polyvinylidene difluo‑
ride membrane (Millipore). Membranes were stained with 
anti‑COX2 (1:1,000; cat. no. ab15191; Abcam), anti‑inducible 
nitric oxide synthase (iNOS; 1:1,000; cat.  no.  ab49999; 
Abcam), anti‑phospho NF‑κB p65 (Ser536; 1:1,000, 
cat. no. 3033S; Cell Signaling Technology, Inc.), anti‑NF‑κB 
p65 (1:1,000, cat. no. 8242S; Cell Signaling Technology, Inc.) 
and anti‑GAPDH (1:1,000; cat.  no.  2118S; Cell Signaling 
Technology, Inc.) overnight at 4 C. HRP‑conjugated secondary 
antibodies (1:1,000; cat. no. 115‑035‑003; cat. no. 111‑035‑003; 
Jackson ImmunoResearch Laboratories) were then incubated 
for 1 h at RT. Protein bands were quantified via densitometric 
analysis using ImageJ software version  1.43u (National 
Institutes of Health).

Statistical Analyses. Numerical data are presented as the 
mean ± standard error of the mean. Comparisons of multiple 
groups were performed using one‑way ANOVA followed by 
Tukey's test. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Oral administration of HJ alleviates TPA‑induced ICD. 
TPA‑induced acute skin inflammation mice models were 
used to examine the anti‑inflammatory effects of HJ on ICD. 
Mice were treated with HJ and luteolin orally for 3 days 
before TPA application on the right ear on day 4. HJ300‑, 
HJ500‑ and luteolin‑treated mice had less ear redness than 
the vehicle‑treated mice. Particularly, in the HJ500 group, 
blood vessels were more apparent than in the other groups, 
owing to a significant reduction in ear oedema (Fig. 2A). Ear 

Table I. PCR primer sequences in the present study.

	 Primer sequence
	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gene	 Gene bank accession no.	 Forward	 Reverse

Ccl3	 NM_011337.2	 5'‑TCTTCTCAGCGCCATATGGA‑3'	 5'‑GCAAAGGCTGCTGGTTTCAA‑3'
Cxcl2	 NM_009140.2	 5'‑GGCTGTTGTGGCCAGTGAA‑3'	 5'‑CGCCCTTGAGAGTGGCTATG‑3'
Il‑1β	 NM_008361.4	 5'‑CTACAGGCTCCGAGATGAACAAC‑3'	 5'‑TCCATTGAGGTGGAGAGCTTTC‑3'
Il‑6	 NM_031168.2	 5'‑TTCCATCCAGTTGCCTTCTTG‑3'	 5'‑GGGAGTGGTATCCTCTGTGAAGTC‑3'
Tnf‑α	 NM_001278601.1	 5'‑CCCTCACACTCAGATCATCTTCT‑3'	 5'‑GCTACGACGTGGGCTACAG‑3'
Cox2	 NM_011198.4	 5'‑GGGTGTCCCTTCACTTCTTTCA‑3'	 5'‑GAGTGGGAGGCACTTGCATT‑3'
iNos	 NM_001313921.1	 5'‑GTTCTCAGCCCAACAATACAAGA‑3'	 5'‑GTGGACGGGTCGATGTCAC‑3'
18S	 NR_003278.3	 5'‑GACACGGACAGGATTGACAGATT	 5'‑GTTAGCATGCCAGAGTCTCGTTCGTT‑3'
rRNA 		  GATAG‑3'	
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oedema was evaluated by measuring ear thickness and weight 
after TPA treatment. Compared with that in the vehicle group, 

the average ear thickness at 8 h after TPA application was 
reduced in the HJ and luteolin groups (0.802±0.011 mm for 

Figure 2. HJ ameliorates TPA‑induced ICD. (A) Representative images of mouse ears 8 and 26 h after TPA application (magnified images of the right ear 
with TPA application are shown in the red dotted boxes). (B) Changes in TPA‑treated ear thickness over time. (C) Ear weight at 26 h. Data are expressed as 
mean ± standard error of the mean and analyzed using one‑way ANOVA followed by Tukey's test. *P<0.05 and ***P<0.001, vehicle vs. HJ300. +P<0.05 and 
+++P<0.00, vehicle vs. luteolin. ###P<0.001 vehicle vs. HJ500. TPA, 12‑O‑tetradecanoylphorbol‑13‑acetate; HJ, Humulus japonicus.
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vehicle vs. 0.731±0.014, 0.727±0.013 and 0.713±0.015 mm 
for HJ300, HJ500 and luteolin, respectively). After 26 h of 
TPA administration, HJ significantly reduced the mean ear 
thickness in a concentration‑dependent manner and luteolin 
exerted the same effect (0.824±0.028  mm for vehicle vs. 
0.695±0.036, 0.617±0.029 and 0.636±0.015 mm for HJ300, 
HJ500 and luteolin, respectively) (Fig. 2B). The average ear 
weight at 26 h after TPA application was considerably lower 
in the HJ500 and luteolin‑treated groups (0.100±0.004 g for 
vehicle vs. 0.086±0.003 and 0.080±0.004 g for HJ500 and 
luteolin, respectively). However, a significant difference was 
not observed in the HJ300 group (Fig. 2C). These results 
indicate that HJ ameliorated ICD by reducing ear redness and 
oedema.

HJ attenuates epidermis and dermis thickening in 
TPA-induced ear oedema. The effect of HJ on epidermis 
and dermis thickening in mouse ears after TPA applica‑
tion was investigated. Given that the HJ300 group did 

not exhibit obvious effects compared with the other 
groups, only the HJ500 and luteolin groups were used for 
further analysis. In H&E‑stained histological sections 
of TPA‑treated mouse ears, HJ and luteolin administra‑
tion decreased epidermal (32.13±1.87  µm for vehicle vs. 
22.10±1.53  and  15.96±0.33  µm for HJ500 and luteolin, 
respectively) and dermal thickness (493.13±10.96 µm for 
vehicle vs. 377.07±7.32 and 373.65±10.47 µm for HJ500 and 
luteolin, respectively) (Fig. 3A‑C). Additionally, HJ and lute‑
olin inhibited the infiltration of immune cells into the dermis 
in the TPA‑treated right ears (Fig. 3A). These results suggest 
that HJ may prevent TPA‑induced ear oedema by downregu‑
lating epidermal and dermal thickening and inflammatory 
cell migration.

HJ reduces neutrophil and macrophage recruitment in 
TPA‑induced mouse ear inflammation. HJ and luteolin 
suppressed inflammatory cell infiltration in TPA‑treated 
mouse ears (Fig.  3A). According to a previous study on 

Figure 3. HJ alleviates epidermal and dermal thickening in TPA‑induced ear oedema. (A) Representative images of H&E‑stained mouse ear tissue sections 
26 h after TPA treatment. Scale bar, 50.0 µm (upper panel) and 200 µm (lower panel). (B) Epidermis and (C) Dermis mean thickness was measured using 50 
different parts of each mouse ear tissue section. Data are expressed as mean ± standard error of the mean and analyzed using one‑way ANOVA followed by 
Tukey's test. ***P<0.001 vs. vehicle group. TPA, 12‑O‑tetradecanoylphorbol‑13‑acetate; HJ, Humulus japonicus.
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ICD, exposure to an irritant activates innate immunity and 
cellular recruitment to the damage site, and infiltrating cells, 
including neutrophils and macrophages, further promote an 
inflammatory cascade  (24). Thus, the possible inhibitory 
effect of HJ on neutrophil and macrophage recruitment 
in mouse ears after TPA application was investigated. To 
measure the degree of neutrophil and macrophage infiltra‑
tion, TPA‑treated mouse ear tissue sections were stained 
with anti‑neutrophil and anti‑F4/80 antibodies (Fig. 4A). The 
number of neutrophils was significantly decreased in the HJ 
and luteolin groups compared with that in the vehicle group 
(1,174.34±76.03 cells for vehicle vs. 673.40±50.77 and 468.1
9±36.02 cells for HJ500 and luteolin, respectively) (Fig. 4B). 
HJ and luteolin also reduced macrophages (977.53±75.33 
cells for vehicle vs. 578.10±38.51 and 398.41±25.27 cells for 
HJ500 and luteolin, respectively) (Fig. 4C). These findings 
suggest that HJ mitigated TPA‑induced dermatitis by inhib‑
iting the neutrophil and macrophage infiltration in inflamed 
mouse ears.

HJ decreases gene expression of pro‑inflammatory cytokine 
and chemokines associated with neutrophil and macrophage 
migration in TPA‑induced acute skin inflammation. Based 
on the observation that HJ and luteolin affect neutrophil 
and macrophage recruitment, the gene expression levels of 
chemokines related to the migration of these cells (25,26) were 
analysed. The gene expression of chemokine ligand 3 (CCL3) 
and chemokine (C‑X‑C motif) ligand 2 (CXCL2), which 
recruit neutrophils and macrophages in several inflammatory 
diseases and conditions (27) was measured using RT‑qPCR 
analysis. In the TPA‑induced dermatitis mice models, HJ and 
luteolin significantly reduced CCL3 and CXCL2 gene expres‑
sion levels (Fig. 5A and B). Additionally, the gene expression 
of IL‑1β, a pro‑inflammatory cytokine that mediates the acute 
phase of inflammation (28), was examined; HJ and luteolin 
also reduced IL‑1β gene expression (Fig. 5C). Collectively, 
HJ suppressed inflammation in TPA‑induced dermatitis by 
reducing the expression of chemokines that promote neutrophil 
and macrophage migration and pro‑inflammatory cytokine.

Figure 4. Humulus japonicus reduces the infiltration of immune cells in inflamed mouse ears. (A) Neutrophils and macrophages in mouse ears 26 h after 
12‑O‑tetradecanoylphorbol‑13‑acetate application were stained using IHC. Quantification of (B) Neutrophils and (C) Macrophages in IHC‑stained mouse ear 
sections. Scale bar, 100 µm. Data are expressed as mean ± standard error of the mean and analyzed using one‑way ANOVA followed by Tukey's test. ***P<0.001 
vs. vehicle group. IHC, immunohistochemistry; MPF, medium power field; HJ, Humulus japonicus.
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HJ inhibits the expression of inflammatory mediators by 
modulating NF‑κB p65 pathway signalling in LPS‑stimulated 
RAW264.7 cells. Various inflammatory cells, including 
macrophages, are present in inflamed tissue lesions in contact 
dermatitis  (24). Particularly, macrophages accumulate in 
acutely irritated skin and release inflammatory media‑
tors, such as chemokines, pro‑inflammatory cytokines and 
pro‑inflammatory enzymes (29). It is well known that macro‑
phages are key immune cells which regulate ICD progression. 
RAW264.7 cells are a mouse cell line extensively used to 
study macrophage functions, mechanisms and signalling 
pathways. Furthermore, in several previous studies on the 
TPA‑induced ICD mice model, the anti‑inflammatory mecha‑
nisms of candidate drugs were identified using LPS‑stimulated 
RAW264.7 cells  (30‑32). Therefore, LPS‑stimulated 
RAW264.7 cells could be a relevant cell model for ICD. 
The present study investigated the inhibitory effect of HJ 
on the gene expression of several inflammatory mediators 
in LPS‑stimulated RAW264.7 cells. Chemokines, CCL3 and 
CXCL2, whose gene expression levels were decreased by HJ 
and luteolin in TPA‑treated mouse ears, were also reduced 
in LPS‑stimulated RAW264.7 cells after HJ and luteolin 
treatment (Fig. 6A and B). Furthermore, the gene expression 
levels of pro‑inflammatory cytokines, such as IL‑1β, IL‑6 
and TNF‑α were reduced in HJ‑ and luteolin‑treated cells 
compared with those in LPS‑treated cells (Fig. 6C‑E). In 
addition, the decreased gene and protein expression levels of 
pro‑inflammatory enzymes, such as COX2 and iNOS, after 
HJ and luteolin treatment (Fig. 6F‑H) were confirmed. These 
inflammatory mediators are commonly regulated by the 
transcription factor NF‑κB p65; phosphorylation of a specific 
residue of NF‑κB p65 regulates its transcriptional activity and 
is involved in the severity of inflammation (33‑35). Thus, the 
protein expression of NF‑κB p65 and phosphorylated NF‑κB 
p65 (p‑NF‑κB p65) in LPS‑stimulated RAW264.7 cells was 
evaluated. HJ and luteolin downregulated the protein expres‑
sion of NF‑κB p65 and p‑NF‑κB p65 (Fig. 6I). Collectively, 
these results indicate that HJ inhibited the expression 
of inflammatory mediators by regulating NF‑κB p65 in 
LPS‑stimulated RAW264.7 cells.

Discussion

The present study examined the anti‑dermatitis actions 
of HJ ethanol extract using TPA‑induced ICD mice 
models and LPS‑stimulated macrophages. Although the 
anti‑inflammatory role of HJ was already reported  (17), 
its effect and action mechanism in ICD remains unclear. 
Furthermore, luteolin, the main compound in HJ, was 
reported to exert anti‑inflammatory effects by inhibiting 
various inflammatory mediators and regulating NF‑κB p65 
in skin inflammation (22,36). Thus, we hypothesized that 
HJ could alleviate inflammation in ICD with luteolin as the 
main active compound.

The present authors previously reported that HJ could 
suppress inflammation by regulating Th1 and Th2 cell‑medi‑
ated immune responses in chronic inflammatory conditions 
such as arthritis  (17). In the current study, HJ regulated 
inflammation by inhibiting neutrophil and macrophage 
migration to the damage site in the TPA‑induced acute ICD 
mice models. In acute inflammatory diseases, including 
ICD, the inflammatory response is controlled by the innate 
immune system, which is initiated and triggered in the 
presence of foreign particles, known as damage‑associated 
molecular patterns (DAMPs) or pathogen‑associated molec‑
ular patterns (PAMPs)  (37). DAMPs are generated upon 
cellular stress or tissue injury resulting from skin exposure 
to irritants and induce potent inflammatory responses by 
activating the innate immune system during non‑infectious 
inflammation  (38). A crucial role of the innate immune 
system is the rapid recruitment of inflammatory cells to the 
damaged tissues and the regulation of immune responses 
by producing cytokines and chemokines (39). When innate 
immune responses fail to eliminate DAMPs or PAMPs, the 
adaptive immune system, mediated by antigen‑specific T and 
B cells, is activated, inducing the development of chronic 
inflammatory disease (40). Therefore, although HJ regulates 
the T cell‑mediated immune responses in chronic inflam‑
matory states of arthritis, it is also suggested to mitigate 
inflammation by modulating innate immune cells, such as 
neutrophils and macrophages, in TPA‑induced acute ICD.

Figure 5. Humulus japonicus decreases the gene expression of chemokines and proinflammatory cytokines in 12‑O‑tetradecanoylphorbol‑13‑acetate‑stimulated 
mouse ears. Gene expression levels of (A) CCL3, (B) CXCL2, and (C) IL‑1β in ears after 8 h of TPA application were analyzed using reverse transcrip‑
tion‑quantitative. The gene expression levels were normalized using 18S rRNA and shown as the fold change relative to the vehicle group. Data are expressed 
as mean ± standard error of the mean and analyzed using one‑way ANOVA followed by Tukey's test. **P<0.01 and ***P<0.001 vs. vehicle group. HJ, Humulus 
japonicus.
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TPA is an irritant commonly used to establish ICD mice 
models, causing redness, oedema, epidermal hyperplasia, 
skin barrier disruption and skin inflammation by triggering 
innate immunity (41,42). In response to TPA‑induced skin 
irritation, epidermal keratinocytes release pro‑inflammatory 
cytokines and stimulate neighbouring cells to promote 
the release of chemokine, which promote the recruitment 
of immune cells, such as neutrophils and macrophages, 
to the injury site, and these cells accelerate inflammatory 
responses (43,44). Among the chemokine‑recruited immune 
cells, neutrophils are one of the first circulating inflammatory 
cells to infiltrate and are essential for inflammatory responses 
in the skin (45). Macrophages also migrate during the initia‑
tion phase of inflammation and contribute to the development 
of skin diseases, including psoriasis (46). In the current study, 
TPA‑stimulated mouse ears showed an increased distribution 
of neutrophils and macrophages; however, HJ and luteolin 

inhibited the recruitment of these cells. Subsequently, to 
determine which factors reduce immune cell migration in 
inflamed mouse ears, the mRNA levels of chemokines associ‑
ated with neutrophils and macrophages were assessed. CCL3 
and CXCL2 mediate the attraction of neutrophils and macro‑
phages during the initiation stage of ICD  (26,47). CCL3, 
which belongs to the CC chemokine family, and CXCL2, 
which belongs to the CXC chemokine family, are secreted by 
epidermal cells exposed to irritants during the acute phase of 
ICD. These chemokines stimulate the infiltration and activa‑
tion of neutrophils and macrophages in inflamed lesions (48). 
Furthermore, CCL3 and CXCL2 are released from recruited 
neutrophils and macrophages and affect each other or migrate 
to other immune cells (49,50). HJ downregulated the gene 
expression levels of both chemokines and luteolin exerted a 
similar effect. According to the inhibitory action of HJ on 
inflammatory cell infiltration, the mRNA expression level of 

Figure 6. HJ suppresses the expression of inflammatory mediators by regulating the NF‑κB p65 signalling pathway in LPS‑stimulated RAW264.7 cells. 
(A‑H) RAW 264.7 cells were stimulated using LPS (1 µg/ml) for 24 h after pretreatment with HJ (800 µg/ml) and luteolin (25 µM) for 1 h. Gene expression 
levels of (A) Chemokine ligand 3, (B) Chemokine (C‑X‑C motif) ligand 2, (C) IL‑1β, (D) IL‑6, (E) TNF‑α, (F) COX2 and (G) iNOS were analyzed using 
RT‑qPCR. Gene expression levels were normalized to 18S rRNA and shown as the fold change relative to the normal control. (H) Protein levels of COX2 and 
iNOS were detected using western blot analysis. Protein bands were quantified and normalized using GAPDH as loading control and expressed as fold change 
relative to the normal control. (I) RAW 264.7 cells were stimulated using LPS (1 µg/ml) for 3 h after pretreatment with HJ (800 µg/ml) and luteolin (25 µM) 
for 1 h. Protein levels of NF‑κB p65 and phosphorylated NF‑κB p65 were detected using western blot analysis. The protein level of NF‑κB p65 was quantified 
and normalized using GAPDH as the loading control. p‑NF‑κB p65 was quantified and normalized using the total NF‑κB p65 level. Data are expressed as 
mean ± standard error of the mean and analyzed using one‑way ANOVA followed by Tukey's test. *P<0.05 and ***P<0.001 vs. LPS‑treated group. HJ, Humulus 
japonicus; CCL3, chemokine ligand 3; CXCL2, chemokine (C‑X‑C motif) ligand 2; COX2, cyclooxygenase‑2; iNOS, inducible nitric oxide synthase; p‑, 
phsopho‑; LPS, lipopolysaccharide.
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IL‑1β secreted from various immune cells, including neutro‑
phils and macrophages (51), was also decreased. These results 
suggest that HJ has a protective effect against acute skin 
inflammation, which reduces the migration of neutrophils and 
macrophages into the damage site by inhibiting chemokine 
expression.

Macrophages play a pivotal role in the skin's immune 
system (13). Infiltrated macrophages are major producers of 
inflammatory mediators such as CCL3, CXCL2 (chemokines), 
IL‑1β, IL‑6, TNF‑α (pro‑inflammatory cytokines), COX2, 
and iNOS (pro‑inflammatory enzymes) (52). Therefore, the 
anti‑inflammatory effect of HJ in RAW264.7 cells, a murine 
macrophage cell line, was investigated. The present in vitro 
study revealed that HJ and luteolin significantly reduced the 
gene expression of CCL3 and CXCL2 in LPS‑stimulated 
RAW264.7 cells. Moreover, IL‑1β, IL‑6, TNF‑α, COX2 and 
iNOS expression was considerably downregulated by HJ 
and luteolin. These inflammatory mediators are generally 
regulated by the NF‑κB p65 signalling pathway in macro‑
phages (53). NF‑κB p65 is an inducible transcription factor that 
controls various genes involved in diverse immunological and 
inflammatory responses (54). In macrophages, LPS stimula‑
tion enhances NF‑κB p65 transactivation via phosphorylation 
of the serine residue (Ser536) (55). Subsequently, NF‑κB p65 
phosphorylated at Ser536 is translocated to the nucleus where 
it regulates the transcription of various inflammation‑related 
genes in macrophages (56). In the present study, HJ suppressed 
the total NF‑κB p65 and p‑NF‑κB p65 levels, and luteolin 
exerted a similar effect. Collectively, these results indicate that 
HJ inhibits NF‑κB in activated macrophages, consequently 
reducing immune cell migration and the expression of inflam‑
matory mediators.

If acute ICD does not improve, it can develop into psori‑
asis, a chronic skin disease. Thus, ICD unavoidably shares 
mechanical, clinical and histopathological similarities with 
psoriasis (57). Accordingly, various indicators identified in the 
present study, such as ear thickness, ear weight, innate immune 
cells, CCL3, CXCL2 and IL‑1β, could also be relevant in 
psoriasis. Furthermore, these markers were generally adopted 
and confirmed in several previous studies on ICD (58‑60). 
Therefore, the current findings would be relevant to support 
the protective effects of HJ on ICD.

In summary, the present findings demonstrate that HJ 
ameliorates ICD by inhibiting immune cell infiltration and 
the activation of macrophages, which are important inflamma‑
tory modulators in dermatitis. To the best of our knowledge, 
this study is the first to identify the effect of HJ in ICD. 
Furthermore, this study provides evidence to support the use 
of HJ extract as a safe therapeutic strategy for preventing ICD. 
However, since it is still in the preclinical stage of efficacy 
verification, additional investigation is needed before a direct 
application to patients with ICD.
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