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ABSTRACT

Continuous efforts have been made to improve
next-generation sequencing methods for increased
robustness and for applications on low amounts of
starting material. We applied double-stranded
library protocols for the Roche 454 platform to
avoid the yield-reducing steps associated with
single-stranded library preparation, and applied a
highly sensitive Tagman MGB-probe-based quanti-
tative polymerase chain reaction (QPCR) method.
The MGB-probe qPCR, which can detect as low as
100 copies, was used to quantify the amount of ef-
fective library, i.e. molecules that form functional
clones in emulsion PCR. We also demonstrate that
the distribution of library molecules on capture
beads follows a Poisson distribution. Combining
the gPCR and Poisson statistics, the labour-
intensive and costly titration can be eliminated and
trace amounts of starting material such as precious
clinical samples, transcriptomes of small tissue
samples and metagenomics on low biomass
environments is applicable.

INTRODUCTION

Recent developments in DNA sequencing techniques
allow millions of DNA molecules to be sequenced in
parallel in a short time (1-5). However, the requirement
of large quantities of starting material (e.g. 500 ng DNA in
the latest Roche 454 Rapid library protocol) limits the
possibilities to sequence trace amounts of DNA, such as
ancient DNA, precious clinical samples, EST sequencing
of small tissue samples or metagenomic samples from low
biomass environments. Even in applications not limited by
input DNA amounts, library quantification is a

substantial source for wuncertainty in sequencing
outcome: a too high DNA-to-bead ratio leads to a signifi-
cant fraction of non-readable beads with multiple DNA
templates (mixed beads), while a too low ratio will result
in an inadequate amount of beads and cannot take advan-
tage of the full sequencing capacity.

Standard methods for quantification of libraries such as
UV spectrophotometry and fluorometry require DNA
amounts hundreds to thousands times the amount
needed for the actual sequencing and cannot distinguish
amplifiable from non-amplifiable molecules, the latter
stemming from, for example, inefficient ligation of
adapters or DNA damage. Alternative approaches were
recently suggested; including SYBR Green quantitative
polymerase chain reaction (qPCR) (6), 5 universal
template Tagman qPCR or digital PCR (7). However,
SYBR Green qPCR requires an accurate and difficult es-
timation of the DNA library size distribution, and 5" uni-
versal template Tagman qPCR gives a relatively large
variation in quantification values (7), while digital PCR
is not accessible in many laboratories (8). The Roche 454
protocol recommends an optimal amount of library to be
determined empirically using the sequencing-titration
assay for FLX Standard libraries and, later, the
emulsion-titration assay for Titanium libraries. Both
methods require labour-intensive and costly emulsion-
PCR and enrichment procedures, as well as additional
sample material.

In this study, we have developed a qPCR method based
on a highly sensitive and precise Tagman MGB-probe.
The MGB probe was designed to be complementary to
the adapters used to construct two different types of
libraries for the Roche 454 Titanium sequencing
platform. One library consisted of the traditional A and
B adapters on either end of the DNA template (9), and the
other consisted of the same ‘Y’ adapter on both ends
(similar to the Illumina GA library (8); http://www.
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seqanswers.com). This qPCR setup quantifies only effect-
ive library, i.e. DNA that will be amplified to form a func-
tional clone in the emulsion PCR. We also demonstrate
that Poisson statistics, with its parameter A equalling the
gqPCR-measured input library DNA-to-bead ratio, can be
used to predict enrichment percentage, a key index for
sequencing performance.

MATERIALS AND METHODS

Using Poisson distribution to predict enrichment
percentage

Nine previously sequenced FLX Standard libraries in our
sequencing core facility were re-quantified by a Tagman
MGB-probe-based qPCR. These libraries had previously
been sequenced using the sequencing-titration assay, as
part of the FLX Standard protocol, in four concentrations
(0.5, 2, 4 and 16 DNA-to-bead ratios) as measured by
RNAG6000 BioAnalyzer chip (Agilent). Because the
sequencing was performed without enrichment, and gen-
erally almost all DNA-carrying beads passed the key filter,
enrichment percentage (percentage of DNA-carrying
beads) can be calculated using the sequencing result
metrics  (enrichment % = key passed  wells/raw
wells x100%). Apart from these nine libraries, there
were 23 additional libraries subjected to the sequencing
titration assay in our core facility, but these samples
were no longer available at the time of the current
study. However, their sequencing titration assay results
were useful for exploring how the sequencing outcome
metrics (proportions of Single, Mix or Dots reads)
change over different enrichment percentages. To plot
the enrichment percentages on the Y-axis and input
DNA-to-bead ratio on the X-axis, which however could
not be re-quantified by qPCR, we derived the input
DNA-to-bead ratio from Poisson-transformed enrichment
percentage [-log (1 — enrichment fraction)]. This was ap-
propriate since the purpose here was not to explore the
effect of input DNA-to-bead ratio on enrichment percent-
age. We also carried out a prospective evaluation of
Poisson prediction by an emulsion-titration using newly
prepared AB and Y libraries.

By Poisson distribution, the probability that there are
exactly & DNA molecules on one library capture bead
(k=0,1,2,...)1s equal to:

‘ Ae=*
Sk )) = B

where X is the input DNA-to-bead ratio. Therefore, the
probability of having zero and one DNA molecule on one
bead is ¢ * and ree *, respectively, and the enrichment
fraction is 1 — ¢~ *.

Deviation from Poisson distribution was tested using
paired t-test comparing the difference, with 95% confi-
dence intervals (CIs), between enrichment percentage
observed from the titration sequencing and the enrichment
percentage predicted by measured library concentration
and Poisson distribution, after linearity transformation,
In(1 — enrichment percentage). Pearson’s correlation coef-
ficient between the observed and predicted enrichment
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percentage was calculated. When enrichment percentage
is close to 100%, subtle enrichment differences will lead
to large differences in DNA-to-bead ratio, we therefore
excluded data when enrichment was>95% (which is
also far from the optimal DNA-to-bead ratio, see
‘Discussion’ section). This resulted in exclusion of 3 out
of 36 data points. All data were analysed and plotted using
the R software (10) (http://www.R-project.org.).

Construction of qPCR standards

We constructed a specific PCR product to be used as
gPCR standards (available from the authors on request).
One 1:1000 diluted stock FLX Standard library (1 ul) from
our sequencing core facility was used as template for amp-
lification with 5pmol of each emPCR primer, 1 x PCR
buffer, 1.5mM MgCl,, 1U Taq DNA polymerase
(Invitrogen) and 200 uM dNTP each. The PCR product
was cloned with the TOPO TA kit (Invitrogen). Several
colonies were selected, transferred to 50 ul of water, and
boiled at 95°C for 10min. The lysate (1 ul) was used as
template for colony PCR amplification using primers
(Supplementary Table S1, pCR4-TOPO vector) targeting
the flanking region of the pCR4-TOPO vector ligation
site. PCR products were visualized on 1% agarose gel
and the cell lysate that generated an amplicon of about
360 bp (corresponding to an about 200bp insert) was
selected for Sanger sequencing using MI13 forward
primer. The result showed that the sequence was 202 bp
long and contained one copy of adapter B and, therefore,
one copy of qPCR probe complementary sequence. This
cell lysate (1 ul) was then amplified using emPCR primers
and purified with MinElute kit (Qiagen). The purified
product was quantified using Qubit fluorescence quantifi-
cation system (Invitrogen) and the number of molecules
was calculated (=ng x 9.17 x 10''/202). This DNA was
10-fold serially diluted and the concentrations from 10’
to 10% copies were used as qPCR standards. The qPCR
reaction mixture (20pl) contained 1 x Tagman Fast
Universal PCR Master Mix (Applied Biosystems),
900nM of each emPCR primer (Invitrogen), 200 nM
Tagman MGB-probe (Applied Biosystems) and 2pul of
standards or test samples. The qPCR was performed on
the ABI 7900HT Fast System with the following condi-
tions: fast cycling mode; 95°C for 20s; 40 cycles including
95°C for 1s and 60°C for 60s. Fluorescence was detected
during the extension step. Both standard and test samples
were run in triplicates. It should be noted that, if quan-
tifying a single-stranded library with this method, the
readout must be multiplied by two to account for the
double-stranded qPCR standards.

Library construction for FLX Titanium sequencing

We implemented a simplified library preparation protocol
(8) that generates double-stranded DNA library using
FLX Standard A and B adapters, but without biotin
labelling on the B adapter. We designed a Tagman
MGB-probe targeting the B adapter. We also imple-
mented the concept of Illumina GA library and designed
a Y adapter such that it is compatible with the Roche 454
Titanium platform and contains a complementary
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sequence at its ‘B’ branch (Figure 1 and Supplementary
Table S1). Genomic DNA was extracted from
Helicobacter pylori strain HPAG1 (11) using DNeasy kit
(Qiagen) according to the manufacturer’s instructions.
DNA was nebulized and selected for sizes between 300
and 800bp by Solid Phase Reversible Immobilization
(Agencourt) according to the Roche 454 protocol. One
nanogram of DNA measured by Qubit Fluorometers
(Invitrogen) was used for the downstream procedure.
Polyallomer centrifuge tubes (Beckman Coulter) were
used in all the experiments to minimize tube wall adsorp-
tion and denaturation of DNA (http://frstrauss.free.fr).

AB library. End polishing was conducted in 50 pl reaction
volume with 1 ng of DNA, 1x End repair buffer, 5 ul end
repair mix containing T4 DNA Polymerase and T4 PNK,
Lyl of 1puM dNTPs (Enzymatics, MA, USA), and was
incubated at 22°C for 30min. After purification by
AMPure beads (88 ul, 175% volume), DNA was eluted
in 20 ul TE. Adapter ligation was conducted in a 25l
reaction with 1x slow ligation buffer, 0.4 pmol of each
of the A4 and B adapter (Invitrogen, USA) and T4
DNA Ligase 180U (Enzymatics, MA, USA). We used

Titanium library
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Figure 1. Schematic description of three types of library construction.
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the FLX Titanium adapter A4 (GS multiplex identifier
number 4) because this adapter had performed well in
previous experiments in our lab. The ligation reaction
was incubated at 22°C over night, purified by AMPure
beads (17.5ul, 70% volume) and eluted in 25l TE. The
eluted DNA was treated with 8 U Bst DNA polymerase
Large Fragment (New England Biolabs), to fill in the 3'-
junction nick between the adapter and sample DNA in a
30 ul reaction with 1x fill-in buffer, 30 uM dNTP and
incubated at 37°C for 20min. The double-stranded
DNA library was purified with AMPure beads (21 pl,
70% volume) and eluted in 30 ul TE.

Y library. End polishing and 3’ dA extension was con-
ducted in 22 ul reaction volume with 1ng of DNA, 1x
slow ligation buffer, 2.5 ul end repair mix containing T4
DNA polymerase and T4 PNK, 1ul of ImM dNTPs
(Enzymatics), 0.5ul Klenow Fragment exo~ (New
England Biolabs), 1x Taq polymerase buffer (Mg”" free)
and 0.5 ul Taq polymerase (Invitrogen). It was incubated
at 12°C for 10 min, 37°C for 10 min, 72°C for 20 min and
held at 4°C. Adapter ligation was conducted directly by
adding 1l of 1 uM Y adapter (Supplementary Table SI,

“¥Y” library
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ligationin one
reaction without
clean-upin
between

adaptor A
=@ FLX Titanium
adaptorB
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Integrated DNA Technologies), T4 DNA Ligase 180 U
(Enzymatic) and was incubated at 12°C over night. The
product was purified by AMPure XP beads (18 pl, 72%
volume), and eluted in 30 ul TE. Immediately, not long,
before library capture, the library was denatured into
single-stranded, at 94°C for 2min and held at 4°C, to
avoid sequencing from both directions of a
double-stranded template, which will result in mix reads.

It should be noted that this MGB probe is compatible
with Roche FLX Standard library, not the FLX Titanium
library nor the RL library, and that our AB and Y
libraries are compatible with the FLX Titanium emPCR
and sequencing Kkits.

RESULTS
Poisson behaviour of emulsion PCR

Optimizing the DNA-to-bead ratio in the emulsion PCR is
a trade-off between minimizing the proportion of beads
with multiple DNA templates and getting a sufficient
amount of beads with template. The probability of
getting zero, single or multiple DNA molecules per bead
using different input DNA-to-bead ratios (A) can be
modelled using Poisson distribution. Since only
DNA-carrying beads will be captured in the enrichment
procedure, enrichment percentage corresponds to 1—
probability of zero molecule per bead. Figure 2 shows
theoretical enrichment percentage and probabilities of
single and multiple templates per bead as functions of A.
When the DNA-to-bead ratio is small and covers the
optimal range (0.08; see ‘Discussion’ section) it
approaches a linear relationship with enrichment percent-
age (Figure 2B). In this range a 2-fold over- or underesti-
mation of library concentration will all give satisfactory
fractions of single-copy beads among enriched (98, 96 and
92% for ratios of 0.04, 0.08 and 0.16, respectively;
Figure 2B). In contrast, if one would aim for a
DNA-to-bead ratio of 1 (which should be avoided in
practice) the same level of inaccuracy would result in 77,
58 and 31% single-copy beads for DNA-to-bead ratios of
0.50, 1.0 and 2.0, respectively.

We plotted the sequencing outcome metrics (single
template and mixed template) as functions of enrichment
percentage using the data from sequencing-titration assays
of 32 FLX Standard libraries (four different DNA-to-bead
ratios each) previously sequenced at our core facility. In
accordance with the Poisson model, single template beads
peaked at the range when the enrichment percentage was
about 40-60; thereafter undesired beads quickly started
dominating (Figure 2C).

Tagqman MGB-probe-based qPCR for library
quantification

In order to facilitate quantification of minute amounts of
sequencing library, and to quantify only those library mol-
ecules that are effective, we designed a Tagman-MGB
probe targeting the B adapter and the ‘B’ branch of the
Y adapter (Figure 1 and Supplementary Table S1). To
estimate the precision and reproducibility of this
Tagman-MGB probe setup, we re-quantified nine of the
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previously sequenced FLX Standard libraries (the remain-
ing 23 libraries were not available). The libraries were
1:100 diluted and quantified with eight replicates cach.
The estimated concentrations of the diluted libraries
were within the range of 10°~10% molecules per microlitre.
The mean (standard error) of the coefficient variation was
9.5% (1.6%). In a repeated run, these libraries were
further diluted 1:10, spanning the range of working con-
centrations of 10°-107, and quantified with triplicates; the
mean (standard error) of the coefficient variation was
5.3% (1.5%).

Evaluating qPCR quantification and Poisson prediction
retrospectively

We compared the qPCR quantification with previous
quantifications done with BioAnalyzer. Large variations
in enrichment percentages were observed for the same
input DNA-to-bead ratios as measured by BioAnalyzer
(Figure 3A), and the enrichment percentages were not pre-
dictable using Poisson (P value for the paired z-test
comparing the observed and the predicted enrichment per-
centage was 0.0005, mean difference —42.2% (linearity
transformation 3.77, 95% ClIs 1.77-5.76). In contrast,
when the libraries were measured with the qPCR
method (Figure 3B), enrichment percentages were predict-
able using Poisson statistics: there was no significant
difference between observed and predicted enrichment
percentage (paired z-test P = 0.9157, mean difference
2.0% (linearity transformation —0.020, 95% CIs 0.365
to —0.500). Likewise, there was an improvement in
the correlation between observed and predicted
enrichment percentages using qPCR (Pearson’s correl-
ation coefficient = 0.68) as compared with BioAnalyzer
(0.46).

Evaluating qPCR quantification and Poisson prediction
prospectively

To further evaluate how well MGB-probe qPCR and
Poisson distribution can predict enrichment percentage,
and also to demonstrate its applicability on the
double-stranded libraries (AB library and Y library;
Figure 1 and ‘Materials and Methods’ section), we per-
formed emulsion-titration assays using newly prepared
AB and Y libraries.

From 1 ng of fragmented DNA (mean size 500 bp), 1.15
million emPCR amplifiable AB library molecules and 53.6
million single-stranded Y library molecules were
generated, respectively, as measured by qPCR
(Figure 4A and C).

The qPCR amplification products were subsequently
analysed by gel electrophoresis to make sure that the
libraries had expected size distributions and to ensure
that no adapter dimers had been carried over (Figure 4B
and D). The putative dimers (84 bp for AB adapters and
79bp for Y adapter) could not be observed among the
amplified products. In addition, to test whether or not
A-A and B-B tagged library molecules can be amplified,
gPCR reactions containing the AB library templates and
only one of the emPCR primers (either A or B) were per-
formed. No detectable fluorescence (Figure 4A) and no
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Figure 2. (A) Enrichment percentage, single copy and mixed copy DNAs in an emulsion drop/bead according to Poisson theory. In a subset (B),
enriched percentage as a function of input DNA-to-bead ratio approaches linearity when DNA-to-bead ratio decreases. The 8% enrichment per-
centage recommended by the Roche 454 protocol corresponds to a 0.083 DNA-to-bead ratio. (C) Sequencing outcome metrics as functions of the
percentage of DNA-bearing beads (called enrichment percentage if enrichment were performed). The 40-60% enrichment percentage zone harbored a
critical turning point, after which undesired beads becoming dominant quickly. As indicated by asterisks the Roche 454 Dot filter filters away those
reads having too many negative flows due to poor incorporations or interruptions, the ShortQuality filter filters those reads failed the length test
because of quality trimming and the ShortPrimer filter filters those failed the length test because of primer sequence trimming. As indicated by dagger
the Roche 454 pipeline uses a positive flow percentage of 70% as a cut-off to distinguish Single- from Mixed-copy of templates.

PCR products visible on the gel were obtained
(Figure 4B), indicating that the gPCR measurement cor-
responds to the amount of A-B tagged library, not B-B
tagged library. The latter contains the probe complemen-
tary site and, if amplified, would interfere with the
quantification.

For the emulsion-titration assay, we used input
DNA-to-bead ratios of 0.0796 for the AB library (see

‘Sequencing outcome’ below) and 0.1, 0.2, 0.6 and 2.0
for the Y library. According to Poisson prediction, the
enrichment percentages should be 7.7, 9.51, 18.1, 45.1
and 86.5%. The actual enrichment percentages observed
from the emulsion-titration assay for the five ratios (with
duplicates) were 8.1 and 6.5%, 13.3 and 9.79%, 19.8 and
18.4%, 39.2 and 40.7%, and 81.3 and 81.0% (Figure 5).
Hence, for these newly prepared libraries, observed
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Figure 3. Nine stock libraries were previously quantified by BioAnalyzer as described in the Roche 454 Manual (A) and re-quantified by qPCR (B).
Each colour indicates one library with four titration points. The blue curve indicates Poisson prediction of enrichment percentage. There was a
deviation from Poisson prediction in (A) (P = 0.0005) and no deviation in (B) (P = 0.9157).

enrichment fits Poisson prediction well (Pearson’s correl-
ation coefficient = 0.998 between predicted and observed
enrichment).

Sequencing outcome

We set out to sequence the AB library using two M/S lanes
(2 x 1/8 plate). The Roche 454 emPCR Kit supplies 4.8
million library capture beads for one M/S lane. We there-
fore used 10 ul of the AB library, corresponding to 0.382
million DNA molecules and hence a DNA-to-bead ratio
of 0.0796. This was expected to generate 367195 (=
0.0765 x 4.8 x 10°, where 0.0765 is the Poisson prediction
of enrichment fraction 1 — ¢ %) enriched beads.
Assuming a 10% bead loss during the laboratory proced-
ure, the remaining 90%, i.e. 330475 enriched beads, would
be nearly the amount needed according to the Roche 454
standard protocol (340 000). We processed two identical
10 pl of the library samples in parallel and thus generated
two M/S lanes on a sequencing plate.

Following the enrichment process, the bead counter
showed 389000 and 310000 beads for the two emPCR
replicates. We loaded the enriched beads onto the
sequencing plate and ran the sequencing according to
the standard protocol. There were 104091 and 96151
filter-passed reads for the two lanes, falling well into the
range of 80000 to 120000 reads per M/S lane of a suc-
cessful sequencing run according to the Roche 454
protocol. Percentage of the filter-passed was 59.3% and
63.0%, median reads length 358 and 419 bp, and total
bases 33.4 millions and 35.0 millions, respectively.
Nearly all (99.3%) of the reads could be aligned to the
H. pylori (strain HPAG1) genome and its plasmid using
BLASTN with at least 30 bases matched and a significance

value of 1E-6 (12), indicating that the contamination
during library preparation, if any, was negligible.
De novo assembly using Roche gsAssembler software
resulted in a 1584 532bp genome, which was 99.3% the
size of the reference genome HPAGI (11).

DISCUSSION

With the Tagman-MGB probe-based qPCR and Poisson
distribution, we were able to avoid the costly and
labour-intensive titration assay. Using only one
nanogram of fragmented DNA, we prepared enough
library (1.15 million amplifiable AB library molecules
and 53.6 millions Y library molecules, which is sufficient
for 10 Titanium runs (~4 million enrichment beads to
yield ~1 million high quality reads per run) for Roche
454 Titanium sequencing without the need for template
pre-amplification by various means of whole genome amp-
lification (13,14). However, it should be acknowledged
that some factors causing sample loss remained, such as
fragmentation of genomic DNA, low efficiency of ligation
and a limited recovery in the enzymatic reaction clean-up
(15). This was clearly shown by the much higher yield of Y
library (sticky-end ligation) than AB library (blunt-end
ligation and two additional reaction clean-up steps).
Library quantification by qPCR has earlier been
proposed to overcome the lower detection limits of con-
ventional methods (6,7). We used a Tagman MGB-probe
to take advantage of its significantly higher sensitivity,
specificity and reproducibility than conventional
Tagman probes, at the same time only a shorter priming
site is needed (16). This MGB probe rendered a precision
(coefficient variation of 9.5%) comparable with digital
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Figure 4. Library quantification by qPCR. All samples were run in triplicate and only the ones with median Ct values were plotted. (A) The six
standards ranged from 107 to 10? copies. The tested AB library was 38 200 molecules/ul. The reactions containing the AB library template and one of
the emPCR primers (A only or B only) generated no detectable fluoresces. (B) Gel electrophoresis of qPCR products. Lane 1: standard 10* copies;
lane 2: no template control; lane 3: tested AB library; lane 4: the reaction containing the library template and primer A only; lane 5: the reaction
containing the library template and primer B only. (C) The standards ranged from 107 to 10* copies. The tested Y library was 894 000 molecules/pl.
(D) Gel electrophoresis of qPCR products. Lane 1: no template control; lane 2: Y library.

PCR (11.8%), but better than a 5 universal template
Tagman probe (21.2%) (7).

We demonstrated that the distribution of DNA on
beads after emulsification follows a Poisson distribution,
which enabled us to predict enrichment percentage, a key
index for successful sequencing. In general, the lower
DNA-to-bead input, the lower percentage of beads with
mixed templates and hence the more desirable results,
provided that there are enough beads for sequencing
loading. As a trade-off, a DNA-to-bead ratio close to

0.08 should be aimed at for optimal results (Figure 2).
This is consistent with the Roche 454 protocol recommen-
dation of 8% enrichment percentage (corresponds to a
0.083 DNA-to-bead ratio, Figure 2B). The study using
digital PCR by White et al. (7) used ratios in the range
of 0.08 to 0.30, providing independent support for this
DNA-to-bead ratio. Furthermore, the Poisson distribu-
tion demonstrates that imprecise library quantifications
within 2-fold over- or under-estimations will all give sat-
isfactory results when DNA-to-bead ratio is low, while
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Prospective evaluation of Poisson prediction
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Figure 5. Enrichment percentage observed from emulsion-titration
assay and predicted by Poisson distribution.

this level of inaccuracy will lead to undesired results when
DNA-to-bead ratio is high. In a previous study, a linear
regression model was used to correlate input
DNA-to-bead ratio with enrichment percentage (17).
The linear regression method may suffer from limitations
of a positive intercept (meaning that there will be enriched
beads even with no input library) and unlimited enrich-
ment percentage (can be higher than 100% when DNA
amount increases). However, when the input
DNA-to-bead ratio is low, prediction from a linear regres-
sion will approach that from a Poisson distribution and is
then acceptable.

It should be noted that the physical capture of libraries
on beads is performed before emulsification for FLX
Standard libraries, and during emPCR for FLX
Titanium libraries. The emulsification of the Roche 454
FLX Titanium platform is performed under tightly
controlled conditions, such that aqueous ‘microreactors’
containing no more than a single bead are generated (18).
Moreover, the total volume of the aqueous phase (DNA
library) added for emulsification is strictly controlled so
that almost all of the aqueous droplets contain one bead,
i.e., few droplets contain no bead. Only when both of
these two conditions are held, the distribution of DNA
molecules on the beads can be expected to follow
Poisson distribution. This explains why a limited volume
of library (1-10ul for small-scale and <100pl for
large-scale emPCR, as described in the Roche 454
protocol) should be used for good results.

Our results confirmed a previous study that the AB
library (a mixture of A-B, A-A and B-B tagged tem-
plates, without the need to clean out the latter two) are
suitable for Roche 454 sequencing (9). The A—A and B-B
tagged library templates could not be amplified in PCR.
This is because hairpin structures, formed in the annealing
process by the complementary sequences on either end of
the single-stranded DNA, can prevent annealing of
primers because: (i) the much higher local annealing
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temperature of the hairpin structures (>80°C for both
the 40 bp ‘A hairpin” and 44 bp ‘B hairpin’) than that of
the PCR primers (60°C) and (ii) the complementary se-
quences in the ends of the same single-stranded DNA
molecule are closer and more accessible for binding than
surrounding primers at normal concentrations. This was
confirmed by the observation that there was no detectable
fluorescence and no visible PCR products generated in the
gPCR or in a normal no-probe PCR reactions containing
primer A only or primer B only. Interestingly, a recent
study using transposons to generate shotgun libraries
showed that A-A or B-B tagged templates generated
~1:1000 the signal of A-B tagged templates (19). The
fact that their A—A or B-B templates were actually
amplified (although weakly) could be due to a weaker
amplification inhibitory effect associated with their
shorter hairpins than with ours.

The qPCR amplification slopes of the libraries were
lower than those of the standards, indicating that
portions of the libraries, despite being A—B tagged, were
not well amplified. Similarly in the emPCR of the FLX
platform, not every DNA in the emulsion droplet will be
well amplified (18). Because short amplicons are generally
amplified better than long ones, we used small sizes
(202 bp) as gPCR standards to quantify effective library.
In contrast, a standard of size similar to the library
median (e.g. 500bp) would lead to quantification of
total library rather than effective library and, consequent-
ly, an overestimated DNA-to-bead ratio. Thus, if one aims
for a 0.08 DNA-to-bead ratio, a quantification based on
500-bp standards would result in too few beads being
enriched. In addition, to mimic the long extension time
in the emPCR, the qPCR extension time was prolonged
from the normal 20 seconds to 60 seconds. If the
amplicons are not in the expected size range, as seen
from the gel electrophoresis, a longer extension such as
an addition of 68°C for 60s in the qPCR cycling pro-
gramme may be needed.

During the revision of this manuscript, Roche released a
simplified library protocol, ‘Rapid’, in which a starting
amount of DNA of at least 500 ng is recommended. This
is an improvement compared to previous protocols, but
for applications where limited amounts of material are
available this may still be too much. The qPCR quantifi-
cation and Poisson prediction methods presented here for
the Roche 454 sequencer are expected to be useful also for
the SOLiD, Solexa and Ion Torrent sequencing platforms.
However, our methods have been validated on one bac-
terial species. For sequencing of more complex samples
such as metazoan or plant genomes, further validation
studies might be needed.
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