
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences (2019) 76:3953–3967 
https://doi.org/10.1007/s00018-019-03193-3

REVIEW

Direct reprogramming into interneurons: potential for brain repair

Maria Pereira1 · Marcella Birtele1 · Daniella Rylander Ottosson1 

Received: 29 October 2018 / Revised: 11 June 2019 / Accepted: 13 June 2019 / Published online: 27 June 2019 
© The Author(s) 2019

Abstract
The brain tissue has only a limited capacity for generating new neurons. Therefore, to treat neurological diseases, there is 
a need of other cell sources for brain repair. Different sources of cells have been subject of intense research over the years, 
including cells from primary tissue, stem cell-derived cells and reprogrammed cells. As an alternative, direct reprogramming 
of resident brain cells into neurons is a recent approach that could provide an attractive method for treating brain injuries or 
diseases as it uses the patient’s own cells for generating novel neurons inside the brain. In vivo reprogramming is still in its 
early stages but holds great promise as an option for cell therapy. To date, both inhibitory and excitatory neurons have been 
obtained via in vivo reprogramming, but the precise phenotype or functionality of these cells has not been analysed in detail 
in most of the studies. Recent data shows that in vivo reprogrammed neurons are able to functionally mature and integrate 
into the existing brain circuitry, and compose interneuron phenotypes that seem to correlate to their endogenous counterparts. 
Interneurons are of particular importance as they are essential in physiological brain function and when disturbed lead to 
several neurological disorders. In this review, we describe a comprehensive overview of the existing studies involving brain 
repair, including in vivo reprogramming, with a focus on interneurons, along with an overview on current efforts to generate 
interneurons for cell therapy for a number of neurological diseases.
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Cell transplantation and brain repair

Efforts to replace damaged neurons in the brain through 
transplantation of various cell sources have been carried 
out over decades for a number of neurological diseases. 
First attempts date back to the 80’s, when Swedish sci-
entists’ research led to a clinical trial, in which midbrain-
derived fetal cells were transplanted into the brain of 
Parkinson’s disease (PD) patients. The cells survived 
transplantation and induced symptomatic relief in some 
patients, integrating in the host brain and re-innervating 
the striatum, where they released the neurotransmitter 
dopamine ([1, 2]; reviewed in [3]). Fetal neuronal trans-
plants from whole ganglionic eminences have also been 
attempted to treat patients with Huntington’s disease 

(HD), providing several years of improvement and sta-
bility, although not a cure to the disease [4]. Despite the 
potential for brain repair of fetal cells, a limited availabil-
ity of tissue and important ethical concerns, limited the 
use of therapies involving these cells as they cannot be 
available for a large number of patients. There was hence 
a need for developing other cell sources that could be used 
for this purpose. Beside the cell of origin, the host envi-
ronment needs to be considered for transplant integration 
[2, 5]. In this context, GABAergic interneurons (INs) that 
derive from medial ganglionic eminence (MGE) showed 
the capacity to disperse and integrate into neural circuits 
in the postnatal brain (reviewed in [6, 7]). Recent advances 
in cellular biology and improvement of culture methodolo-
gies have led to the development of protocols that allow 
the use of embryonic stem cells (ESCs), pluripotent cells 
that can be obtained from human blastocysts [8], expanded 
in vitro and differentiated into specific types of neurons 
or neural progenitors for cell replacement. hESCs have 
been successfully used as a source of neurons that show 
molecular, biochemical and functional traits of bonafide 
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dopaminergic neurons (DA), generated using extrinsic pat-
terning cues that mimic fetal brain development [9, 10]. 
Also layer-specific cortical neurons [11, 12], GABAergic 
and serotoninergic neurons [13], motor neurons [14, 15], 
peripheral neurons [16, 17] and neural progenitor cells 
have been generated in vitro from hESCs [18, 19]. Reports 
of human stem cell differentiation into MGE-derived INs, 
such as Parvalbumin (PV)- and Somatostatin (SST)-posi-
tive cells, haven’t always shown high efficacy, even when 
long-term co-culture was used [20, 21].  However, differ-
entiation into INs has seen significant progress, with more 
efficient differentiation into subtype-specific groups of INs 
or forebrain-specific GABAergic INs [22–24].

Limitations associated with the use of ESCs for neuron 
derivation are related with the pluripotency of the starting 
cell. While this does not preclude their use in the clinic, 
extensive (and expensive) preclinical testing is required prior 
to use. Additionally, there are ethical considerations as well 
as issues related to high cost, patentability and commerciali-
zation of products derived from human embryos that could 
hamper the development of such therapies [25, 26].

In 2006, Takahashi and Yamanaka identified four factors 
(Oct3/4, Klf4, Sox2 and Myc) that were sufficient to directly 
reprogram mouse adult somatic cells into an induced pluri-
potent stem cell state, generating the so-called induced pluri-
potent stem cells (iPSCs) [27]. This cell type could allow for 
patient-specific autologous grafts, lowering the risk of graft 
rejection and therefore circumventing the need for immu-
nosuppression. Their potential use in the clinic could also 
raise less ethical concerns due to the autologous origin of 
the cells. Human iPSCs can be differentiated using similar 
protocols as the ones used for ESC differentiation, and gen-
erate subtype-specific neurons that survive transplantation 
[21, 28–30]. In addition to the cell therapy potential, iPSCs 
offer an unlimited source of patient-derived cells, which in 
principle can be differentiated into disease-relevant somatic 
cell types to create in vitro models of the disorder of inter-
est [31].

Despite their potential for personalized treatments, 
iPSCs’ use also raises concerns regarding the feasibility as 
a therapy for a large population of patients, as there would 
be important technical, regulatory and financial drawbacks, 
mostly related to their autologous origin. If using iPSCs 
from autologous sources, a more difficult standardization 
of manufacturing processes and consequently higher costs, 
could arise from such therapy [32].

Alternatives to transplantation of these sources involve 
the use of somatic cells that can be directly reprogrammed 
into fully functional mature neurons of specific subtypes 
without passing through the stage of pluripotency. In Fig. 1, 
we present an overview of the different cell sources that are 
considered for cell replacement in the brain and the respec-
tive pros and cons.

Direct neuronal reprogramming

In vitro reprogramming

In recent years and following the finding that somatic cells 
can be reprogrammed into pluripotency, many labs have 
also succeeded in directly switching the identity of one cell 
type to another, without going through a pluripotent state. 
By expression of appropriate transcriptional factors, with 
or without the assistance of specific environmental signals, 
fibroblasts were used for cellular reprogramming into car-
diomyocytes, blood progenitor cells, hepatocytes, epiblast 
stem cells and neural progenitors [33–40], showing that 
adult somatic cells can be reprogrammed not only to pluri-
potency, but also into distantly related cell types.

In 2010, researchers showed that by overexpressing as 
few as three genes, Ascl1, Brn2, and Myt1L (ABM) in mouse 
embryonic and perinatal skin fibroblasts, these cells could 
be reprogrammed into neurons, termed induced neurons 
[41]. The same factors were also shown to convert human 
fibroblasts alone, or in combination with NeuroD1 [42, 43]. 
This so-called direct reprogramming into neurons has today 
developed into a likely approach to obtain functional and 
subtype-specific neuronal cells that in turn might be used 
to replace those lost by insults such as in PD, spinal cord 
injury or psychiatric disorders [44, 45]. Induced neurons 
have a reduced risk of tumorigenic potential due to their 
non-pluripotent origin and have appealing advantages such 
as the fact that neurons can be generated from relatively eas-
ily obtainable cells like fibroblasts, the significant reduction 
in ethical concerns due to the autologous origin of the cells, 
and the lower risk of graft rejection. Besides that, they offer 
a faster and less labour-intensive option than that of iPSC.

Cellular reprogramming brought new insights into the 
neuroregenerative medicine field and proposed an appealing 
strategy to generate neurons of different subtypes. Their use 
as alternatives for cell therapy has been largely explored in 
the last decade. With the use of pro-neural and cell-type-
specific transcription factors (TFs), as well as micro-RNAs 
and small molecules, several groups have shown that mouse 
and human fibroblasts and astrocytes can be reprogrammed 
into different types of neurons including glutamatergic, 
GABAergic, motor, sensory and DA neurons [44, 46–53], 
among others. Induced neurons have been generated in vitro 
and transplanted, showing survival and functional integra-
tion in the host brain [44, 47, 54–56].

In vitro reprogramming techniques have also been 
used to generate GABAergic telencephalic neurons and 
GABAergic INs. Colasante et al. have shown that both 
mouse and human fibroblasts and iPSCs can be converted 
into cortical GABAergic INs upon transduction with a 
viral cocktail containing important factors for induction 
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of a GABAergic IN fate, such as Ascl1, Dlx5 and Lhx6, as 
well as genes expressed during early forebrain develop-
ment such as FoxG1 and Sox2 [57]. These GABAergic 
INs were transplanted into the mouse brain and showed 
to functionally integrate in the host neuronal networks, 
release GABA and inhibit the surrounding excitatory neu-
rons in the hippocampus. A great part of the GABAergic 
neurons also showed PV protein and gene expression. 
Similarly, another group has used in vitro reprogramming 
to obtain subtype-specific INs only with the aid of one 
reprogramming factor Ascl1, and upon treatment of the 
cultures with Forskolin, which were able to induce 80% of 
PV-expressing INs from mouse fibroblasts [58].

Directly reprogrammed neurons can, similarly to iPSCs, 
offer a cell-based and patient-specific source of neurons for 
disease modelling, while also involving much less ethical 
concerns compared to hESCs.

For cell repair strategies, reprogramming techniques can 
be used both for generating neurons in vitro that can then 
be used for transplantation [42, 47, 50, 56] or to reprogram 

resident glial cells of the brain into specific types of neurons 
in situ [59–62]. Thereby resident parenchymal cells could 
be converted into cell types that are lost due to disease by a 
process called in vivo reprogramming. This technique has 
also been used to reprogram cells in tissues other than the 
brain [63–65]. A more detailed overview of the current sta-
tus of in vivo reprogramming in the central nervous system 
(CNS) will be done in the following sections.

In vivo reprogramming

In vivo reprogramming is still in its early stages but could 
develop into an option for cell therapy. To date, experi-
ments involving this technique have been performed either 
by injecting reprogramming factors into the brain, which 
will then drive reprogramming of resident glia into neurons, 
or by transplanting cells that were transduced in vitro with 
reprogramming factors that can then be activated in vivo, 
post-transplantation. The first approach is thus far performed 
in mice resident glia and the latter, can involve the use of 

PROS 

CONS

Fetal cells iPSCs
Directly 

reprogrammed cells

Transplantation into patients 
has been proved safe and 
efficient for different diseases.

Tissue availability;

Ethical concerns due to the 
use of surplus fetuses.

Limitless  source of neurons;

Existing differentiation 
protocols allow the generation 
of distinct neuronal subtypes.

Ethical issues due to the use 
of human embryos; 

Pluripotent origin - risk of 
tumor formation.

Limitless  source of neurons;

Existing differentiation 
protocols allow the generation 
of distinct neuronal subtypes;

Can be used as patient-spe-
cific therapy - lower risk of 
rejection;

Reduced ethical issues. 

Pluripotent origin - risk of 
tumor formation;

Additional risk profile due to 
the reprogramming process;

Difficult to standardize cell 
product in a patient-specific 
manner.

Reduced tumorigenic 
potential;

Patient-specific - lower risk of 
graft rejection;

Reduced ethical issues;

If reprogramming in vivo: 
much simpler process, where 
only virus are delivered into 
the brain. 

Survival, long-term stability, 
maturation and function after 
transplantation remains 
unexplored;

Finite number of neurons can 
be produced - protocols’ 
efficiency remains low;

Difficult to standardize cell 
product in a patient-specific 
manner;

A clinically suitable delivery 
method remains undevel-
opped for in vivo reprogram-
ming techniques.  

ESCs

Fig. 1   Pros and Cons of different cell sources considered for cell replacement therapies
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human cells transplanted to the rodent brain. A large number 
of reports indicating the feasibility of this technique have 
been published, and results indicate that different types of 
neurons can be generated in vivo. The large majority of 
obtained neurons are either GABAergic or Glutamatergic 

[45, 59, 60, 66, 67], but also other subtype-specific neurons 
have been generated such as DA neurons [67, 68] or INs [61, 
69] (see Table 1). Thus far, in vivo neuronal reprogramming 
has been established in different regions of the brain such as 
the cortex, spinal cord, striatum and the midbrain [45, 61, 

Table 1   A summary of published studies involving in vivo direct reprogramming of glial cells into neurons

ABM Ascl1, Brn2, Myt1L, ABM + 2F ABM + Lmx1a, Lmx1b, ABM + 4F ABM + Lmx1a, Lmx1b, FoxA2, Otx2, NeAL218 NeuroD1, Ascl1, 
Lmx1a, miRNA218, ALN Ascl1, Lmx1a, Nurr1, NgLN Neurogenin2, Lmx1a, Nurr1, ANgN Ascl1, Neurogenin2, Nurr1, NgND1 Neurogenin2, 
Nurr1, NeuroD1, AFLE Ascl1, FoxA2, Lmx1a, En1, LV lentivirus, RV retrovirus; AAV adeno-associated virus; SC spinal cord, SCI spinal cord 
injury, SW stab-wound, Str striatum, Hpc hippocampus, MSNs medium-spiny neurons

Species Starting cell Factor combination Vector system Animal model Resulting cell type Region

Buffo et al. [85] Mouse Proliferating glia Pax6/dominant 
negative

RV SW Transient neurons Cortex

Torper et al. [62] Rat Human astrocytes 
and fibroblasts

ABM and 
ABM+4F

Dox-inducible LVs 6-OHDA Dopaminergic 
neurons

Str and Hpc

Mouse Resident astrocytes ABM Cre-inducible LVs – – Str
Niu et al. [69] Mouse Astrocytes Sox2 LVs/cell type spe-

cific promoter
Young, adult and 

aged mice
Neuroblasts Str

Grande et al. [59] Rat Proliferating cells Ngn2 RVs SW and ischaemia GABAergic and 
Glutamatergic 
neurons

Str

Su et al. [45] Mouse Astrocytes Sox2 LVs/cell type spe-
cific promoter

SCI Neuroblasts 
(GABAergic 
interneurons and 
glutamatergic 
neurons, after 
VPA)

Spinal cord

Guo et al. [66] Mouse Astrocytes and NG2 
glia

NeuroD1 RVs/cell type spe-
cific promoter

SW and AD model Glutamatergic 
(Astrocyte-
derived) , 
Glutamatergic 
and GABAergic 
(NG2-derived)

Cortex

Magnusson et al. 
[77]

Mouse Astrocytes Block notch signal-
ling

Transgenic mice/
AAVs

Intact and stroke Neurons Str

Heinrich et al. [100] Mouse NG2 glia Sox2 RVs SW Neurons Cortex
Niu et al. [98] Mouse Astrocytes Sox2 LVs/cell type spe-

cific promoter
– Neural progeni-

tors (Calretinin+ 
interneurons, 
after VPA)

Str

Torper et al. [67] Mouse Astrocytes and NG2 
glia

ALN Cre-inducible 
AAVs

– GABAergic and 
Glutamatergic 
neurons

Str

Liu et al. [60] Mouse Astrocytes Ascl1 AAVs/cell type spe-
cific promoter

– GABAergic and 
Glutamatergic 
neurons

Dorsal midbrain, 
Str and cortex

Di Val Cervo et al. 
[71]

Mouse Astrocytes NeAL218 Tet-regulated LVs/
GFAP-tTA mice

6-OHDA TH+ neurons Str

Weinberg et al. [70] Rat Oligodendrocytes PTB inhibitor/ 
miRNA

Oligodendrocyte-
specific AAVs

– Striatal neurons Str

Brulet et al. [99] Mouse Non-reactive astro-
cytes

NeuroD1 Systemic injection/
AAV9

– – Str and cortex

Pereira et al. [61] Mouse NG2 glia ALN, NgLN, 
ANgN, NgND1 
AFLE

Cre-inducible 
AAVs

Intact vs 6-OHDA Parvalbumin+ 
interneurons

Midbrain and Str

Niu et al. [68] Mouse Striatal MSNs Sox2, Nurr1, 
Lmx1A, FoxA2, 
Valproic acid

LVs/cell type 
specific promoter 
or hPGK

– TH+ neurons Str

Matsuda et al. [83] Mouse Microglia NeuroD1 LVs/cell type spe-
cific promoter

– DARPP32+ 
striatal projection 
neurons

Str
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70]. Moreover, the reprogramming can take place both in 
the intact and in lesioned CNS [45, 59, 61, 71] showing its 
potential for application in a clinical context.

To fully understand the process and its limitations, 
aspects such as (1) the cell of origin, (2) genes used for 
reprogramming, (3) chosen delivery systems, and (4) the 
region where reprogramming occurs and what effect this 
might have on functionality, need to be explored. In the fol-
lowing sections, a discussion on these aspects as well as 
an overview on the existing in vivo studies where subtype-
specific neurons were generated will be made.

Cell of origin

The first important aspect to consider for in vivo repro-
gramming studies is the identification of the cell type that is 
most suited to undergo conversion into the desired cell type, 
and that is available at the right place. It has been hypoth-
esised that the selection of the source cell type will impose 
a specific molecular context, defined by its gene expression 
profile and epigenetic signature, in which reprogramming 
factors will have to operate [72]. Based on this, different res-
ident cell types of the brain have been considered for in vivo 
reprogramming, including glial cells such as astrocytes and 
oligodendrocyte precursor cells, also known as NG2 glia. 
These cells play multiple roles in helping to alleviate neu-
rological defects after brain injury, by promoting axonal 
and neuronal function and thereby fostering neuronal sur-
vival [73]. Astrocytes could be advantageous to use for cell 
reprogramming in vivo due to their ubiquitous distribution 
throughout the CNS in large amounts and the fact that they 
are associated with a high plasticity [74]. A recent paper 
points to a heterogenous susceptibility for reprogramming 
by astrocytes derived from different parts of the brain [75]. 
Furthermore it has been demonstrated that astrocytes can 
be triggered into a tripotent differentiating and self-renew-
ing state after an injury, which could potentially create the 
appropriate context for reprogramming into neurons [76]. 
Remarkably, recent data demonstrate that astrocytes seem to 
entail a latent neurogenic program that can be initiated upon 
injury [77]. The fact that striatal astrocytes are able to pro-
duce neuroblasts in models of Stroke or Huntington’s disease 
sheds new light on the neurogenic potential of the adult brain 
and raises questions on whether we can promote renewal of 
striatal neurons for therapeutic approaches. Further debate 
on adult neurogenesis has been supported by a recent paper 
that demonstrates persistence in neurogenesis during both 
physiological and pathological aging in humans [78] and this 
in turn points to a potentially relevant mechanism underlying 
Alzheimer’s disease symptoms.

The extensive self-renewal capability of NG2 glia [79] 
also makes them interesting candidates for in vivo repro-
gramming, as the potential risks in disturbing homeostasis 

can be avoided. In addition, NG2 glia receives direct input 
from neurons [80], so the necessary machinery to form post-
synaptic compartments is already in place, potentially facil-
itating the synaptic integration of reprogrammed, NG2-
derived neurons. Also, these glial cells may hold the key 
to overcome another major problem faced in attempts to 
replace degenerated neurons, namely, the long-term survival 
of the newly regenerated neurons [73].

Besides astrocytes and NG2-glia, other cells have been 
implicated for reprogramming such as specific sets of peri-
cytes, a cell type that lines the inside of capillaries in the 
CNS [81] or microglial cells that have the ability to migrate 
to the lesion site. The migration of monocyte-derived mac-
rophages to the lesion area from blood [82] has attracted 
attention due to the potential as therapeutic delivery strategy 
for reprogramming factors. For this, monocytes could be 
genetically modified to express inducible reprogramming 
factors and administered by systemic injection into the sub-
ject, being reprogrammed into neurons when reaching the 
CNS. In a recent publication, the feasibility of microglia-
to-neuron in vivo reprograming in the striatum of the adult 
mouse has been demonstrated through the overexpression of 
a single transcription factor [83].

Upon neurodegeneration or brain injury, glial cells 
undergo important morphological, functional and molecu-
lar changes, which initially promote tissue repair, but later 
can contribute to adverse effects for neuronal survival as 
well as neurite and synapse formation. A specific and timed 
reprogramming of these cells into neurons could provide 
a new therapeutic approach for brain repair. Ideally, one 
would want to selectively convert scar-forming glial cells 
into neurons, while avoiding an effect on the populations of 
glia that are crucial for effective wound healing processes 
[84]. Other cell sources involved in glial scar formation also 
possess some potential for in vivo reprogramming. By forc-
ing the reactive glial cells to express specific TFs such as 
Pax6 together with a dominant negative form of Olig2, Buffo 
et al. showed that transient immature neurons can be formed 
in the mouse brain after a stab-wound-induced cortical brain 
injury [85].

Taken together, new insights into glial cell diversity 
have opened new avenues towards best utilizing the CNS-
resident cells for repair purposes. Yet, much still remains 
to be understood about this diversity to be putting it at its 
best use.

In contrast to glial cells that can become reactive and 
proliferate under certain conditions, post-mitotic neurons 
do not normally change their identity for the lifespan of the 
organism, especially not during adulthood. Nevertheless, a 
recent paper identified striatal neurons as the cell source for 
neuronal reprogramming in the adult mouse brain [68]. In 
this paper, in vivo reprogramming was promoted in the stria-
tum by the transcription factors Sox2, Nurr1, Lmx1a, and 
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FoxA2 along with the chemical factor valproic acid. Immu-
nohistochemistry and genetic lineage tracing revealed that in 
the origin of induced DA neurons were the striatal neurons. 
This data indicates that neurons can be redirected to other 
phenotypes also in the adult brain.

Reprogramming process, genes, and delivery

It is still largely undefined how an individual cell transits 
from its original identity to a neuronal fate during cellular 
reprogramming. Even so, recently developed techniques are 
now unravelling this process bit-by-bit. By analysing tran-
scriptomes of cell populations and single cells at different 
time points after viral transduction, two studies have con-
tributed importantly to the field by showing that the process 
of direct reprogramming might involve an immature inter-
mediate state and is not purely a transition between fully 
differentiated stages [86, 87]. Overexpression of the proneu-
ronal pioneer factor Ascl1 in mouse embryonic fibroblasts 
led to two gene regulatory events during reprogramming 
starting with an initiation stage where the cells exit the cell 
cycle and cytoskeletal reorganization, followed by a matu-
ration stage, where genes involved in synaptic maturation 
are turned on [87]. Human brain pericytes have been shown 
to transiently express neural stem cell-like genes and then 
to enter a bifurcation in lineage differentiation into distinct 
excitatory or inhibitory pathways [86]. Interestingly the two 
groups of starting populations described in this publication, 
differed markedly in their response to the reprogramming 
genes Ascl1 and Sox2, demonstrating that the reprogram-
ming success critically depends on cellular context [86].

That might explain why several factors that have been 
shown to convert astrocytes into neurons in vitro [88, 89], 
yet fail to do so in vivo [59]. Some of the genes that have 
been effective at reprogramming somatic cells into DA neu-
rons in vitro, give rise to INs instead when used for in situ 
reprogramming of resident glia in the striatum [61]. The 
fact that in vivo reprogramming studies have not yet con-
vincingly and reproducibly shown the generation of a DA 
neuronal subtype in vivo, raises the question of whether 
the activation cascades necessary for the formation of DA 
cells in situ are somehow dependent of the ones involved 
in the formation of INs, or whether the IN subtype is the 
default subtype formed when these genes are introduced in 
the brain. These different outcomes could also reflect differ-
ences between cellular identity of resident glial populations 
and the starting population in the in vitro studies.

It has been accepted in the field of cellular reprogram-
ming that genes that are important during development in 
the formation and specification of a specific neuronal sub-
type, often are effective at reprogramming an adult somatic 
cell into that neuronal subtype as well [90]. Hence, under-
standing how these processes work is of great importance 

and provides valuable information for reprogramming stud-
ies. As an example and in support of this, many of the genes 
identified during midbrain DA neuron formation in vivo 
have already been used to reprogram somatic cells into 
induced DA neurons in vitro [42, 44, 60, 91–93].

GABAergic IN fates arise from an important interplay 
of genes, expressed in early progenitor stages. Genes like 
Ascl1, Dlx5 and Lhx6 are considered inducers of a GABAe-
rgic IN fate [94–97]. It has been shown that these genes, 
together with Sox2 and FoxG1, are able to induce an IN 
fate when fibroblasts are transduced in vitro, and that Ascl1, 
Dlx5, and Lhx6 have a more direct cooperation in activat-
ing the molecular machinery responsible for GABAergic 
specification [57]. In support of this hypothesis, the authors 
of this study have shown that silencing of either FoxG1 or 
Sox2 is sufficient to block, in a cell-autonomous manner, 
the ability of Ascl1 to induce a GABAergic neuronal fate in 
cortical progenitor cells. In two separate studies, Sox2 has 
been shown to be sufficient to reprogram astrocytes into INs 
in the mouse CNS [45, 98] (see Table 1).

When performing in vivo reprogramming in the brain, 
one needs to account for the correct targeting of specific 
cell populations. Viral vectors are commonly used to deliver 
genetic material into the brain cells. To target proliferating 
cells, retroviral vectors (RVs) can be used since these vec-
tors specifically target dividing cells [59, 66]. Alternatively, 
lentivirus (LVs) and adeno-associated (AAV) vectors can be 
used, and these have the advantage of infecting both divid-
ing and non-dividing cells of the brain [59, 66, 99]. To tar-
get specific cell populations in the brain, subtype-specific 
promoters are used for the reprogramming genes in viral 
constructs [66, 98].

Cre-inducible LV or AAV vectors have been used to 
reprogram resident glial cells into neurons in the mouse 
brain, and using a neuron-specific synapsin-driven FLEX 
reporter, overexpressed in these in  vivo reprogrammed 
neurons, the number of newly formed mature neurons 
with a glial origin could be easily determined, providing 
for an immediate method to identify and characterize those 
neurons [61, 67]. On the other hand, with these viruses it 
remains difficult to determine the exact number of targeted 
cells in vivo as only the converted cells are identified. Other 
viral systems, e.g. encoding a fluorescent reporter that is 
not expressed under neuron-specific promoter works bet-
ter for identification and quantification of transduced cells 
[100, 48].

Finding an appropriate and safe system for gene deliv-
ery in humans is also under consideration in the field. Cer-
tain serotypes of AAVs have been reported to successfully 
cross the blood–brain barrier, opening up the possibility 
to transduce cells in the brain through systemic injection 
(reviewed in [84]). This could avoid secondary damage 
due to invasive cerebral injections, and allow transductions 
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in larger areas, required in later stages of neurodegenera-
tive diseases.

Region/subtype and functionality

For in vivo reprogramming to become an attractive pos-
sibility for future brain repair, we need to control the 
subtype identity and functionality of the generated neu-
rons more effectively. Indeed for in vivo reprogramming, 
environmental regional differences have been observed in 
several parts of the brain. While the transcription factor 
Ngn2 alone can generate GABAergic neurons in the stria-
tum, the same factor induced glutamatergic cells in the 
neocortex [59] (see Table 1). Besides, brain insults seem 
to differentially modulate the generation of new neurons 
in vivo [59, 100].

It is important to assess the final outcome of direct 
reprogramming in terms of function and connectivity of 
reprogrammed cells in the adult brain. The formation of 
synapses and neuronal function, with ability to electri-
cally communicate, is necessary for a neuron to exert any 
behavioural effect including attenuating the disease symp-
toms [101]. The first evidence that reprogrammed neu-
rons functionally mature in the brain was provided by [66]. 
Patch-clamp electrophysiological recordings (see Fig. 2, 
[102–105]) of cortical tissue slices revealed a capability of 
both evoked and spontaneous action potentials for the new 
neurons obtained in NeuroD1-reprogrammed astrocytes 
around 4 weeks after transduction. Another group used 
Sox2 to reprogram NG2 glia into neuroblasts, which fur-
ther matured into neurons, capable of firing action poten-
tials and exhibiting post-synaptic currents in vivo [100].

NG2-glia-derived reprogrammed neurons in the intact 
striatum have been further studied using the same tech-
nique, to demonstrate a gradual maturation in function 
with capacity for evoked repetitive action potentials and 
post-synaptic currents from 5 to 12 weeks after virus 
injection [61]. It was here shown that the functional prop-
erties of the reprogrammed neurons correlated to matu-
ration over time, and by 12 weeks after viral injection, 
the reprogrammed cells show molecular and functional 
properties of endogenous striatal neurons. Moreover, the 
membrane-related intrinsic properties also indicated a 
gradual maturation, i.e., membrane capacitance increased, 
while the membrane resistance decreased, and the resting-
membrane potential became more hyperpolarized (see 
Fig. 2). Neurons reprogrammed from NG2-glia further 
received synaptic input from local host neurons as shown 
by monosynaptic tracing [67] (Fig. 2).

In vivo reprogramming into subtype‑specific 
neurons

After the first evidence that in vivo neuronal reprogram-
ming of resident glial cells could occur in situ [85], research 
groups further explored this approach with the aim of using 
it for CNS repair. Torper et al. introduced factors in resident 
striatal astrocytes that were shown to reprogram somatic 
cells into DA neurons in vitro (Ascl1, Brn2 and Myt1L [41]), 
and stably converted these into NeuN-expressing neurons in 
the adult mouse brain [62]. In the same year, another group 
reported that LV-mediated overexpression of Sox2, driven 
by a GFAP-specific promoter could reprogram adult stri-
atal astrocytes into neuroblasts that could later form neu-
rons upon exposure to noggin and BDNF, or upon treatment 
with a histone deacetylase inhibitor [69]. Further reports 
over the years have shown reprogramming of different cell 
types [59, 66, 98, 100] into neuroblasts or neurons in vivo, 
in different regions of the brain and spinal cord [45, 60], 
through the use of distinct factor combinations and delivery 
methods [67, 100] (see Table 1). Among these, two studies 
have shown the generation of DA neurons in the striatum of 
intact or lesioned brains targeting either glia [71] or striatal 
neurons [68].

Recently, even the epigenetic changes that occur dur-
ing reprogramming have been described as the underlying 
mechanism during transdifferentiation [106, 107]. Matsuda 
and co-authors have been pioneers exploring in detail the 
epigenetic regulation of the neuronal factor NeuroD1 on the 
in vivo reprogrammed neurons from microglia. The authors 
point to a global epigenetic remodelling done by NeuroD1, 
starting with an initial onset of a neuronal program and con-
secutive downregulation of microglial genes [83].

Thus far, functional assessment and protein or gene 
expression have been sparse and the different neuronal sub-
types generated in the animal brain have mainly been char-
acterised as either GABAergic or Glutamatergic [59, 67]. 
Our lab has been one of the few that further evaluated the 
subtype-specificity of in vivo reprogrammed neurons. Using 
genome analysis, protein-expression and electrophysiology, 
we could characterize the reprogrammed neurons in the stri-
atum and conclude that a big portion of the neurons (40%) 
showed properties similar to fast-spiking GABAergic INs 
expressing PV [61], a cell type that usually accounts only 
for 1% of all striatal neurons and that plays a highly inter-
esting role in striatal function. A minority of the neurons 
expressed markers and showed functionality traits similar 
to other types of striatal INs, whereas very few cells showed 
properties of neurons more abundantly found in the stria-
tum like medium-spiny neurons [61]. GABAergic INs have 
previously been generated in vivo both in the latent state 
and after a trauma such as excitotoxic lesion [108] or stroke 
(without addition of any reprogramming factors) or with 
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Fig. 2   Methods for functional assessment of reprogrammed neurons
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Notch signalling inhibition [77] or with Sox2 induction [45, 
98]. The studies from Su et al. and Niu et al. 2015 have fur-
ther showed neuronal reprogramming into GABAergic INs 
in the spinal cord and striatum; however, under different con-
ditions and with unreported proportion of cells (see Table 1). 
In Niu et al. 2015, the reprogrammed astrocytes in the stria-
tum showed properties of calretinin INs [98], whereas Su 
et al. 2014 reprogrammed astrocytes into GAD65-expressing 
INs in the spinal cord [45].

Interneurons: the re‑shapers of neural 
networks

INs have an essential role in balancing and coordinating dif-
ferent networks in the nervous system [109]. In fact, INs 
populate the spinal cord and the brain, both cortically and 
subcortically, with a great variability in cell types. The iden-
tification of different types of INs done so far is based on 
different aspects: firing properties, immunohistochemical 
profile and gene expression. For the striatal INs, the elec-
trophysiological profile allows distinguishing between the 
following groups: fast-spiking INs (FSI), characterised by 
low input resistance and a fast firing pattern; low thresh-
old INs (LTI), represented by a high input resistance and a 
sustained plateau potential present after current injections; 
and tonic active cholinergic INs (TANs), which have an 
hyperpolarization-activated current and long spike after-
hyperpolarizations [110]. Another criterion used to classify 
the IN populations is their immunohistochemical profile, 
as they can express PV, SST, neuropeptide Y (NPY), nitric 
oxide synthase (NOS), and calretinin [110, 111]. GABAe-
rgic INs besides GABA, express the Ca2+ -binding protein 
PV, the neuropeptide SST, and the ionotropic serotonin 
receptor (5HT3a), (reviewed in [112–114]) whereas excita-
tory INs express gastrin-releasing peptide or substance P 
[115]. Although different INs are found in distinct parts of 
the brain, the identification of the exact type of IN is not 
always easy to make. More knowledge about the existing 
subtypes would be important as it could bring and possibly 
influence future therapeutic approaches [116].

INs work as a buffer system of the excitatory signals 
avoiding runaway excitation [117]. This role is in line with 
their sparse localisation amongst other cells [118] and their 
lack of major distant projections [119] for the majority of 
INs [117]. INs function not merely as guards of excitatory 
networks with feed-back inhibition, but they also contrib-
ute to the general activity with motif-like feed-forward 
inhibition which allows activity signal synchronisation and 
long-term alteration of cellular excitability [120]. Another 
characteristic of INs is represented by their ability for elec-
trical coupling between different regions of the brain that 
allows the regulation of chemical synapse development and 

circuits’ formation in the neocortex [121–123]. In addition to 
principal cells, neocortical GABAergic INs are also known 
to target other INs, giving rise to disinhibitory effect that is 
found in different regions of the brain [124, 125]. At last, INs 
can drive cortical plasticity and contribute to the reshaping 
of neural networks [126, 127]. In this sense, they are para-
mount in balancing excitatory and inhibitory signalling, a 
balance that when disturbed is correlated to several neuro-
logical conditions and psychiatric disorders such as autism, 
schizophrenia, and intellectual disabilities [128].

Interneuron dysfunction in psychiatric 
disorders and cell reprogramming

Interneuropathies constitute a wide range of neurological 
disorders that directly result from IN dysfunctions [129]. 
Whether they are caused by a reduction in IN number or 
more specific deficits in the firing properties of individual 
neurons, these syndromes all share impaired GABAergic 
transmission [104]. As GABAergic INs are the main cel-
lular elements in controlling excitability in the brain, severe 
GABAergic deficits can cause a pathological hyperexcitabil-
ity. In line with this, many of the genes that are linked to epi-
lepsy are involved in the regulation of IN development and 
function. Recent data also point to that subtle perturbations 
in the excitatory–inhibitory balance existing in other psy-
chiatric conditions and neurological disorders [128] such as 
Alzheimer’s disease [130], chronic pain, dystonia [131], PD, 
schizophrenia and anxiety (reviewed in [5]). For example, 
several models of schizophrenia have shown an alteration in 
the population of PV-expressing INs, with changes in their 
number and positioning [132]. In autism, a reduced num-
ber of PV-expressing INs have been reported, along with a 
reduced mRNA level of GAD67 and the GABA membrane 
transporter 1 (GAT1) [133]. Reduced striatal PV expression 
has further been shown in a dystonia animal model where 
a delayed IN maturation was speculated to be involved in 
the pathophysiology [131]. There are also disturbances in 
biochemical markers in the PV INs such as voltage-gated 
potassium or sodium channels that have been associated to 
schizophrenia or AD [130, 134]. The selective reduction in 
neuronal activity of the PV INs is hypothesised to lead to 
an attenuation of gamma oscillations that underlie autism, 
schizophrenia and other diseases [135, 136]. A feature that is 
common to a broad spectrum of neuropsychiatric disorders is 
repetitive behaviours such as the ones featured in Tourette’s 
syndrome. Here, compelling evidence implicates a decrease 
in striatal PV INs in the emergence of repetitive behaviour 
both in animal models [137] and in patients [138, 139]. In 
a DAT-overexpressing rat model that displays behavioural 
abnormalities, the repetitive behaviour has been linked to 
decreased number of striatal PV INs and increased c-fos 
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levels in cortical areas [140]. Among other animal models, 
the mutant mouse Disrupted-in schizophrenia 1 (human full 
length DISC1 overexpression) gene has shown to lead to 
neurodevelopmental changes consistent with the proposed 
neurodevelopmental origin of schizophrenia, i.e., reduction 
of PV INs in cortex and striatum and impaired migration of 
INs from ganglionic eminence [141, 142].

Future prospects and conclusions

Given the involvement of INs in neuropsychiatric and other 
neurological diseases, the question that naturally occurs is 
whether we could attenuate any of the neurological or psy-
chiatric symptoms by replacing INs. Recent studies suggest 
the possibility of tackling several of the above-mentioned 
diseases with transplants of INs derived from fetal tissue or 
MGE to the spinal cord to treat SCI, to the striatum for PD, 
hippocampus for epilepsy and cerebral cortex for psychiatric 
diseases [5, 66, 104]. Yet, IN replacement for these diseases 
has largely been neglected in preclinical research. To move 
this research forward, it is imperative to develop tools and 
technologies that address the most urgent questions relating 
to the therapeutic potency of INs, such as their genetic pro-
file and electrophysiological maturation, and synaptic con-
nectivity in the brain (see Fig. 2). Moreover, it is imperative 
to generate subtype-specific neurons that are matching their 
endogenous counterparts and to transplant or in vivo repro-
gram these in the correct target brain region. The ability to 
generate subtype-specific INs via cell reprogramming opens 
up for new and safer sources of clinically relevant neurons in 
the future, as the novel cells are not formed via a prolifera-
tive cell intermediate. Notably, this direct reprogramming 
process is potentially much faster than generating iPSCs or 
differentiating ESCs into the target cell types, which could 
take months. Moreover, while iPSCs do not retain their age-
related signatures, the directly reprogrammed neurons still 
display their age-related transcriptional profiles and associ-
ated nuclear transport [143]. This allows us to model age-
associated processes in vitro, an aspect that is particularly 
valuable when studying neurodegenerative diseases. In line 
with this, reprogrammed cells could provide an in vitro 
platform for drug discovery, toxicology studies and gene 
therapy testing. Using this approach, it has been shown that 
overexpression of a gene linked to schizophrenia and bipo-
lar disorder in reprogrammed GABAergic neurons, led to 
reduced inhibitory synaptic transmission [144].

Expandable cell sources like embryonic stem cells, neu-
ral stem cells and more recently described iPSCs, are all 
under investigation for brain repair. Even though recent 
progress has been made in differentiating pluripotent stem 
cells into the appropriate neuronal subtype, fetal transplants 
are still the gold standard as these are the best specified to 

differentiate into the appropriate type of neurons. Never-
theless, attempts to use endogenous cell sources are very 
attractive as they would eliminate the dependence of an 
exogenous cell source, removing ethical concerns in terms 
of donor cell origin, difficulties in meeting GMP require-
ments and logistical issues that are associated with extrinsic 
cell sources. Therefore, it could be worth improving and 
developing in vivo reprogramming technique, e.g. by defin-
ing the most appropriate cells to target or to define what 
region-specific features are present in the environment where 
reprogramming occurs, and how they may affect the final 
cell identity, functionality and integration. Furthermore, to 
expect functional recovery, the reprogrammed neurons have 
to integrate and function as their endogenous counterparts. 
The most important task though, remains to generate an ade-
quate number of subtype-specific neurons into the brain that 
can restore network alterations in a specific disease. There 
are still challenges to achieve these goals but the ability to 
generate subtype-specific neurons via in vivo reprogram-
ming could open up for new and safer sources of clinically 
relevant neurons in the future.
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