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A 3D analytical ion transport model 
for ionic polymer metal composite 
actuators in large bending 
deformations
Mohsen Annabestani, Nadia Naghavi* & Mohammad Maymandi‑Nejad 

Ionic polymer metal composites (IPMCs) are a kind of soft electroactive polymer composites. An 
IPMC strip commonly has a thin polymer membrane coated with a noble metal as electrodes on both 
sides. Whenever an electric voltage is applied to the IPMC, it bends and whenever it is deformed, 
a low voltage is measurable between its electrodes, hence IPMC is an actuator as well as a sensor. 
They are well known for their promising features like low density, lightness, high toughness and 
remarkable stimulus strain, also, they have the potential for low‑voltage operation while exhibiting 
acceptable large bending deformation. In this paper, a three‑dimensional (3D), dynamic and physics‑
based model is presented analytically and experimentally for IPMC actuators. The model combines 
the ion transport dynamics within the IPMC and the bending dynamics of it as a beam under an 
electrical stimulation. In particular, we present an analytical model to create a relation between the 
input voltage and the output tip displacement of an IPMC actuator for large bending deformations. 
Experimental results show that the proposed model captures well the tip displacement.

Abbreviations
h  Half of the thickness of the Nafion membrane
W  Width of the IPMC beam
L  Length of the IPMC beam
th  Thickness of the Pt electrode
D(x,y,z,t)  Electric displacement
E(x,y,z,t)  Electric field
φ
(

x, y, z, t
)

  Electric potential
ρ
(

x, y, z, t
)

  Electric charge density
κe  Dielectric permittivity of Nafion
F  Faraday constant
C+(x,y,z,t)  Cation concentration
C−  Anion concentration
J(x,y,z,t)  Cation flux vector
d  Ionic diffusivity
R  Gas constant
T  Absolute temperature
p  Fluid pressure
v  Free solvent velocity field
�V   Volumetric change
k′  Hydraulic permeability coefficient
VI(t)  Input voltage applied to the IPMC
σ

(

x,y,z,t
)

  Mechanical stress
σ0  Charge-stress coupling constant
M(x,y,z,t)  Global bending moment
r  Position vector
Mzy(z,t)  Effective bending moment of the IPMC
Y  Young’s modulus of Nafion
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I  Moment of inertia
ω(z, t)  Shape function of the IPMC
κMath(z, t)  Mathematical definition for the curvature of the shape function
κMech(z, t)  Mechanical definition for the curvature of the shape function
δTip(t)  Tip displacement of the IPMC

Ionic polymer metal composites (IPMCs) are one of the main ionic electro-active polymers that have poten-
tial applications especially in the field of  medicine1–6. As depicted in Fig. 1, an IPMC strip has a thin polymer 
membrane (e.g. Nafion) coated with a noble metal as electrodes (e.g. Pt) on both sides (anode and cathode). A 
relatively low voltage applied through the thickness of an IPMC causes the internal hydrated cations to trans-
port toward the cathode. This transportation leads to the Nafion inflation in the cathode side and consequently 
produces a bending response toward the anode  side7–11. Reversely, we can measure a low voltage signal between 
its electrodes in response to an input mechanical deformation, hence IPMC is an actuator and a sensor as well. 
IPMCs have received great interest in recent years for their potential applications both as sensor and actuator in 
a large variety of engineering areas. They are bio-compatible5 and require low voltages (less than 5 V), produce 
large bending deformations, can work properly in air and in aqueous environments using appropriate encapsula-
tion  layers6, and have very large stimulus strain and low  density1. As mentioned in the advantages of an IPMC 
actuator, it can produce large bending deformations, however, in this situation, its behavior is  nonlinear12–15. 
IPMC’s behavior is time-dependent and except its steady state analysis, it should be modeled dynamically which 
means that static models cannot be used for tracking the time-dependent performance of an IPMC. Addition-
ally, IPMC shows nonlinear behavior in large deformation situations. Hence, it is required to use dynamic 
nonlinear models to reach a time-dependent model in large deformation situations of IPMC. In recent years, 
there have been extensive efforts in the dynamic modeling and understanding of IPMC actuators, however, they 
have studied small bending deformations (tip displacement of less than 1 mm) in their experiments and have 
not discussed large bending deformations. Although, due to the widespread use of IPMC actuators, an accurate 
and practical dynamic model is desirable. In general, approaches for the modeling of IPMC actuators can be 
divided into two main groups. The first group includes analytical modeling and the second one consists of pre-
dictive identification methods. Various analytical models have been studied for IPMC actuators. For example, 
distributed resistor–capacitor (RC) equivalent  circuits15–18, physical and multi-physical approaches using partial 
differential equations (PDEs), finite element methods, COMSOL  modeling19–21 and also several miscellaneous 
uncategorized  models22,23 are some of the presented analytical models. Moreover, there are two approaches in the 
predictive identification group,  classical24,25 and intelligent  methods9,10,26. Nevertheless, the important point is 
that all mentioned methods in the two main groups have not addressed the issue of large bending deformations 
of an IPMC actuator  except12. On the other hand,  reference12 has proposed a different predictive identification 
method but this method is completely a black-box model and cannot describe the dynamic chemo-electric 
response of an IPMC actuator. 

The contribution of the current paper is an analytical, three-dimensional (3D), dynamic and physics-based 
model which can describe the true electromechanical behavior of IPMC actuators even in large bending defor-
mations. Various physics-based models have also been studied for IPMCs which can be classified into three 
categories, thermodynamics of irreversible process (TIP)  models25–27, frictional models (FR)20,21 and Nernst-
Planck based (NP)  models28–33. Among these three categories, NP models propose the most straightforward way 
to explain ion transport in IPMC sensors and actuators.

In the current paper, the starting point of the model development is the same governing PDE as in NP-based 
models presented until now. However, this work improves previous studies significantly in three aspects. First, it 
considers that the ionic content of an IPMC strip migrates through all directions and needs to solve the problem 
in a three-dimensional space. All the above mentioned NP-based methods are one dimensional  except28 which is 
a two dimensional, non-analytical and semi-numerical method. Second, the proposed model is the first dynamic 
and full analytical 3D physics-based ion transport model that covers the nonlinear behavior of IPMC actuators 
even in large bending deformations. Third, it is a promising result that for the first time we get a mathematical 
well-defined relationship between the input voltages applied to the IPMC and the curvature of the IPMC in 
large bending deformations.

Experiments were conducted to validate the proposed dynamic model for an IPMC actuator in a cantilever 
configuration. A good match was achieved between the measured bending response and the model prediction.

The rest of this paper consists of three main sections. In Section II we describe our proposed 3D physics-based 
ion transport model and its details. The estimation of the model’s unknown parameters and assessment of the 
model accuracy are presented in Section III. The discussion along with a conclusion is provided in Section IV.

A 3D physics‑based ion transport model for IPMC
Preliminary equations and obtaining the governing partial differential equations. A geomet-
ric definition of an IPMC beam is illustrated in Fig.  2. The beam is clamped at one end (z = 0) and is sub-
ject to an electrical voltage. In the following equations, the electric displacement, the electric field, the electric 
potential and the electric charge density are denoted, respectively, by D

(

x, y, z, t
)

, E(x, y, z, t), φ(x, y, z, t) and 
ρ
(

x, y, z, t
)

 . The following equations hold:

(1)E
(

x, y, z, t
)

=
D
(

x, y, z, t
)

κe
,
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where 
(

x, y, z
)

∈ [−h,+h] × [0,W] × [0, L] , κe is the effective dielectric constant of the membrane and 
ρ
(

x, y, z, t
)

 is also defined as follows 29–31:

In (4), F is the Faraday constant and C+
(

x, y, z, t
)

 and C− are cation and anion concentrations in the mem-
brane, respectively.

The continuity equation for cations is given by:

that J
(

x, y, z, t
)

 is the cation flux vector. The ion flux consists of diffusion, migration and convection terms in the 
Nernst-Planck PDE as follows:

where d is the ionic diffusivity, R is the gas constant, T is the absolute temperature, p is the fluid pressure, v is the 
free solvent velocity field and �V  represents the volumetric change of the  membrane31,32.

Note As considered until now, in this model all variables are assumed three-dimensional time-variant. How-
ever, for ease of notation, (x, y, z, t) is omitted in the following equations, except in equations that may lead to 
confusion.

Equation (7) is a time-variant 3D PDE that describes the electric potential of IPMC,φ
(

x, y, z, t
)

 . For more 
details, we refer the reader to Appendix A.

(2)E
(

x, y, z, t
)

= −∇φ
(

x, y, z, t
)

,

(3)∇ .D
(

x, y, z, t
)

= ρ
(

x, y, z, t
)

,

(4)ρ
(

x, y, z, t
)

= F
(

C+
(

x, y, z, t
)

− C−
)

.

(5)∇ · J
(

x, y, z, t
)

= −
∂C+

(

x, y, z, t
)

∂t
,

(6)J = −d

(

∇C+ +
C+F

RT
∇φ +

C+�V

RT
∇p

)

+ C+v ,

-
-
-
-
-
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Figure 1.  Working principle of an IPMC actuator: (Left) before applying an electrical field; (Right) after 
applying an electrical field.

Figure 2.  The geometric definition of an IPMC beam.
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The objective of the next part is to solve Eq. (7).

Lemma 1 Equation (7) is a generalized expression of the PDE that Nemat-Nasser obtained for φ(x, t), for the first 
time in 200031. Extending Eq. (7) just for x variable, results in Eq. (8) which is exactly the same as the PDE that 
Nemat-Nasser got for φ(x, t)(we refer the reader to Eq. 37 in31).

Finding a solution for φ(x, y, z, t). The solution of Eq. (7),φ
(

x, y, z, t
)

 , represents the electric potential 
for the IPMC. It is obvious that the electric potential difference between the surface electrodes at the clamped 
end of the IPMC is similar to the applied input voltage, VI (t) . Thus, the governing boundary conditions for this 
boundary problem are expressed as follows.

where the function aL(VI (t)) is called distributed surface attenuation. Ideally, if IPMC electrodes are assumed 
perfectly conducting surface and the fractal penetration of the electrodes into the membrane is ignored, the 
voltage of the clamped region will be constant along the length of the electrodes without any attenuation in 
its longitudinal direction 23. Since IPMC electrodes are not perfectly conducting surfaces due to the electrode 
deposition process and also fractal penetration of the electrodes into the membrane, the applied voltage is 
attenuated along the z-axis (Fig. 2) proportional to the amplitude, frequency and other components of the input 
voltage.aL(VI (t)) is a continuous function that produces a real number in the (0, 1] interval and aL(VI (t)) = 1 
means electrodes are perfectly conducting surfaces.

To obtain an analytical solution for Eq. (7), we start from an assumption that the answer is a separable func-
tion which leads to Eq. (11). For more details that support the achievements presented in Eqs. (11–19), we refer 
the reader to Appendices B and C.

That U1

(

x, y, z, t
)

 and U2

(

x, y, z
)

 are defined as Eq. (12) and Eq. (13), respectively.

k1 and � are constant coefficients and α̂1(t),α̂2 and α̂3(t) are defined as follows:

(7)
∂

∂t

(

∇2φ
)

= d∇2
(

∇2φ
)

− K
(

∇2φ
)

(8)
∂3φ

∂x2∂t
= d

(

∂4φ

∂x4
− a2

∂2φ

∂x2

)

(9)a =

√

F2C−
(

1− C−�V
)

RTκe
.

(10)















































φ(+h, 0, 0, t) =
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2

φ(−h, 0, 0, t) = −
VI (t)

2

φ(+h, 0, L, t) = aL(VI (t))
VI (t)
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φ(+h,W , 0, t) =
VI (t)

2

φ(−h,W , 0, t) = −
VI (t)

2

φ(+h,W , L, t) = aL(VI (t))
VI (t)

2

φ(−h,W , L, t) = −aL(VI (t))
VI (t)

2

(11)φ
(

x, y, z, t
)

= k1e
−�t

[

U1

(

x, y, z, t
)

+ U2

(

x, y, z
)]

(12)

U1

(

x, y, z, t
)

=

{

VI (t)

2

(

Sinh
(

α̂1(t)x
)

Sinh
(

α̂1(t)h
)

)

×

((

1− cosh
(

α̂2W
)

Sinh
(

α̂2W
)

)

Sinh
(

α̂2y
)

+ cosh
(

α̂2y
)

)

×

(

aL(VI (t))− cosh
(

α̂3(t)L
)

sinh
(

α̂3(t)L
)

)

×
(

sinh
(

α̂3(t)z
)

+ cosh
(

α̂3(t)z
)) }

(13)

U2

(

x, y, z
)

=

∞
∑

m=0

∞
∑

n=0

∞
∑

p=0

amnp �
(

x, y, z
)

� �
(

x, y, z
)

= sin
(m+ 1)π

2h
x sin

(n+ 1)π

W
y sin

(

p+ 1
)

π

L
z
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In the above equations, θ is 1W  and µ is a constant coefficient that should be bigger than 1. Also α̂1(t),α̂2 and 
α̂3(t) have to always satisfy the following condition.

In Eq. (13), amnp is defined by Eq. (18).

where

and

ϒ1 to ϒ8 and γ1 to γ3 are constant coefficients.

Lemma 2 By extending Eq. (11) just for a small amount of x (represents a small bending deformation for the IPMC) 
and by ignoring y and z, it changes to the following equation which is the exact equation that Farinholt30,33 found 
for the electric potential.

ρ0 is the boundary value of ρ(x, t) in x = h. Indeed, Eq. (20) that supports large bending deformations is a generalized 
form of the equation presented by Farinholt (Eq. 21) for small bending deformations.

The electro‑mechano‑chemical coupling. As mentioned in Section I, when a voltage is applied to the 
IPMC, hydrated sodium cations move to the cathode side in response to the applied input voltage across the 
membrane. This migration leads to increasing concentration of water molecules in the cathode side and gradu-
ally decreases them in the anode side. When the cathode negative charge equals the positive charge of sodium 
ions, this motion is stopped. Increasing water molecules in the cathode side leads to the Nafion inflation around 
the cathode and consequently, actuation toward the anode is  observed23,33. Hence, to create an electro-mechano-
chemical coupling, the first step is to calculate the concentration of cations (electrochemical component) and 
then the next step is to find a charge–stress coupling (electromechanical component). Nemat-Naser and  Li31 
assumed that the charge density at the surface of the polymer (ρ) is proportional to the induced stress (σ) in the 
form of σ(x,t) = αρ(x,t), where α is the charge–stress coupling constant. This assumption was utilized in the most 
 papers16,29,30,32,33 in the field of IPMC modeling. Therefore, one obtains the following equation at the surface of 
the polymer (x =  ± h):

However, we consider a three-dimensional time-variant form of this assumption, which will be shown to 
produce more accurate predictions in experiments, especially for large bending deformations.

As shown in Fig. 3, based on the governing principles in mechanics for a cantilever beam (i.e. an IPMC), 
bending in the direction of the x-axis (the main direction of the IPMC bending) needs a component of an induced 

(14)α̂1(t) =

√

√

√

√K̂ −

{

µ2

W2

(

Ln

(

1−
1

µ2

))2

+
2θ

L
Ln

(

4

aL(VI (t))Lθ

)

}

,

(15)α̂2 =
µ

W
Ln

(

1−
1

µ2

)

,

(16)α̂3(t) =

√

2θ

L
Ln

(

4

aL(VI (t))Lθ

)

,

(17)α̂1(t)
2 + α̂2

2 + α̂3(t)
2 = K̂

(18)amnp =

8K̂
2hWL

∫ +h
−h

∫W
0

∫ L
0 �̃

(

x, y, z
)

dx dy dz
(

(

(m+1)π
2h

)2
+

(

(n+1)π
W

)2
+

(

(p+1)π
L

)2
+ K̂

)

(19)

�̃
(

x, y, z
)

= �
(

x, y, z
)

×

(

sin
(m+ 1)π

2h
x sin

(n+ 1)π

W
y sin

(

p+ 1
)

π

L
z

)

,

(20)
�
(

x, y, z
)

= ϒ1 x +ϒ2 y +ϒ3 z +ϒ4 xy +ϒ5 xz

+ϒ6 yz +ϒ7 xyz +ϒ8 +
γ1

2
x2 +

γ2

2
y2 +

γ3

2
xz2 .

(21)φ(x, t) =
ρ0

κeα̂
2
1 sinh

(

α̂1h
)

(

sinh
(

α̂1x
)

−
x

h
sinh

(

α̂1h
)

)

e−�t

(22)
ρ(x, t) = FC+(x, t)− FC− σ(x,t)=αρ(x,t)

−→

→ σ(x, t) = (αF)C+(x, t)−
(

αFC−
)

.
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stress in the direction of the z-axis. On the other hand, the most of papers which presented a physical model 
for IPMC actuators assumed that cations move in the direction of the x-axis between the anode and cathode. It 
means they assumed that the concentration of cations is a one-dimensional  variable16,19,35–41. Nevertheless, in this 
paper, we modified this assumption and extended it to a three-dimensional time-variant problem. Hence, it is 
assumed that ions move in the direction of vector A. Components of vector A depend on the electric resistance 
of the IPMC, which is defined as follows:

In (23), �x(rM , t) , �y(rew , t) and �z(rel , t) are functions of the membrane resistance (rM), the transverse 
resistance (rew) and the longitudinal resistance (rel) of electrodes, respectively.

Indeed, migration and concentration changes of cations, which lead to mechanical stress and bending of the 
IPMC, are done in the direction of vector A. Mathematically, to calculate the changes of a multivariable func-
tion in the direction of a vector, the directional derivative of the function should be calculated in the direction 
of the desired vector. For example, to find the changes of ion’s concentration in the direction of the movement’s 
vector, the directional derivative of C+

(

x, y, z, t
)

 in the direction of vector A should be calculated. It is shown by 
∇AC

+
(

x, y, z, t
)

 and defines as follows:

a is the unit vector of A and defined by a = A
|A| . Also,∇C+ is a gradient of C+

(

x, y, z, t
)

.
Now, if it is considered that the bending displacement of a stimulated IPMC is attenuated over the time due 

to the resistance, hence it is sensible to choose time-ascending functions for modeling effects of the resistance 
(functions like a ramp, sigmoid, tangent hyperbolic, etc.). In the following, for Eqs. (25–27), we choose a ramp 
function for �x(rM , t) , �y(rew , t) and �z(rel , t) and we define the mentioned resistances as functions of dimen-
sions (h, W, and L).

where u(t) is the Heaviside step function. Consequently, ∇AC
+ is obtained as follows:

and r̂(h,W , L) is:

∇AC
+ determines changes in the cations concentration in the direction of the optimum movement’s vector. These 

changes induce the mechanical stress. Hence, there is a linear relationship between ∇AC
+ and the mechanical 

stress:

That σ0 is a constant coupling coefficient that should be estimated in the model estimation stage.

(23)A = �x(rM , t)i +�y(rew , t)j+�z(rel , t)k .

(24)∇AC
+ =

∂C+

∂A
= a.∇C+ ,

(25)�x(rM(h), t) = rM(h) t u(t)

(26)�y(rew(W), t) = rew(W) t u(t)

(27)�z(rel(L), t) = rel(L) t u(t)

(28)∇AC
+ =

1

r̂(h,W , L)

(

rM(h)
∂C+

∂x
+ rew(W)

∂C+

∂y
+ rel(L)

∂C+

∂z

)

,

(29)r̂(h,W , L) =

√

rM(h)2 + rew(W)2 + rel(L)
2 .

(30)σ
(

x, y, z, t
)

= σ0 ∇AC
+
(

x, y, z, t
)

.

Figure 3.  To cause bending in the direction of the x-axis (the main direction of the IPMC’s bending), 
mechanical stress should be induced in the direction of the z-axis.
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The mechanical stress. To find the induced stress using Eq. (30) we should calculate ∇AC
+ and for cal-

culation of ∇AC
+ we need to know C+ . It is straightforward to drive Eq. (31) for C+ by combining Eqs. (1–4).

Then, from Eq. (28), ∇AC
+ can be determined and finally σ is obtained as:

where

U1 and U2 already were introduced in Eqs. (12) and (13).

The bending moment. The global bending moment of a cantilevered IPMC beam, where the stimulus is 
applied at the clamped end of the beam (z = 0), is described by a vector like M as follows:

ans r is the position vector and is defined by r = x i + y j . Equation (37) can be expressed in terms of:

Figure 4 shows our geometric definitions of an IPMC beam in the cantilevered configuration. As illustrated 
in Fig. 4, Mzx is exactly zero, Mzz is almost zero and only Mzy dominates the IPMC bending in the direction of 
the x-axis. Indeed, the only effective bending moment, Mzy, can be expressed as:

σzz
(

x, y, z, t
)

 is the renamed version of σ
(

x, y, z, t
)

 defined in Eq. (32). Then, by substituting Eqs. (32–36) into 
Eq. (42) and solving integration terms, Mzy is determined as Eq. (43).

M1 zy(z, t) and M2 zy(z) are defined as Eqs. (44) and (45) respectively.

(31)C+ = C− −
κe

F
∇2φ

(32)σ
(

x, y, z, t
)

= −
κeσ0

F r̂(h,W , L)

(

A1

(

x, y, z, t
)

+

4
∑

i=2

Ai

(

x, y, z
)

)

,

(33)A1 = K̂

(

rM(h)
∂U1

∂x
+ rew(W)

∂U1

∂y
+ rel(L)

∂U1

∂z

)

,

(34)A2 = rM(h)

(

∂3U2

∂x3
+

∂3U2

∂x∂y2
+

∂3U2

∂x∂z2

)

,

(35)A3 = rew(W)

(

∂3U2

∂y∂x2
+

∂3U2

∂y3
+

∂3U2

∂y∂z2

)

,

(36)A4 = rel(L)

(

∂3U2

∂z∂x2
+

∂3U2

∂z∂y2
+

∂3U2

∂z3

)

.

(37)M =

∫

cy

∫

cx

r ×
(

σzx i + σzy j+ σzz k
)

dx dy,

(38)M = Mzxi +Mzyj+Mzzk,

(39)Mzx =

∫

cy

∫

cx

y σzz dx dy,

(40)Mzy =

∫

cy

∫

cx

x σzz dx dy,

(41)Mzz =

∫

cy

∫

cx

(

x σzy − y σzx
)

dx dy.

(42)Mzy(z, t) =

∫ W

0

∫ +h

−h
x σzz

(

x, y, z, t
)

dxdy,

(43)Mzy(z, t) = −
κeσ0

F r̂(h,W , L)

(

M1 zy(z, t)+M2zy(z)
)
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Here, "csch(.)" is the hyperbolic cosecant operation and bmnp is a constant coefficient that is related to the numbers 
of harmonics in calculating U2 and ϒ̂2 , also,ϒ̂5 and ϒ̂6 are constant coefficients that are produced through the 
combination of ϒ1 to ϒ8 and γ1 to γ3 and we should predict them in the model prediction stage. Consequently, 
Mzy can be rewrite as Eq. (46).

ϒ̃1(t) to ϒ̃3(t) are defined by Eqs. (47–49) respectively.

(44)

M1 zy(z, t) = −

(

2 K̂ α̂3(t) rel(L)

α̂1(t)
2α̂2

)

×
(

1− α̂1(t) coth
(

α̂1(t) h
))

(

tanh(
α̂2W

2
)

)

×
(

aL(VI (t))csch
(

α̂3(t) L
)

− coth
(

α̂3(t) L
))

× cosh
(

α̂3(t) z
)

VI (t),

(45)M2zy(z) = −

(

2h3W bmnp

3

)

(

ϒ̂2 + ϒ̂5
W

2
+ ϒ̂6 W z

)

.

(46)Mzy(z, t) = ϒ̃1(t)+ ϒ̃2(t)z + ϒ̃3(t) cosh
(

α̂3(t) z
)

(47)ϒ̃1(t) =

(

κeσ0

F r̂(h,W , L)
t

)(

2h3W

3

)(

ϒ̂2 + ϒ̂5
W

2

)

bmnp

Figure 4.  Three possible bending moments for an IPMC beam. (a) Mzx is exactly zero, (b) Mzz is almost zero, 
(c) Mzy dominates the IPMC bending in the direction of the x-axis.
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Calculation of the IPMC tip displacement in a large deformation situation. To calculate the 
IPMC tip displacement, first, we need to determine its shape function. Most of the previous works have modeled 
the mechanical vibration of the IPMC through linear Euler–Bernoulli (LEB) cantilever beam theory incorporat-
ing damping and accommodating suitable boundary  conditions16,30,32,33,42. Based on LEB cantilever beam theory, 
the relation between the shape function of the IPMC,ω(z, t) , and its bending moment, Mzy(z, t) , is defined as 
follows:

Y is Young’s modulus of the Nafion membrane, and I is the moment of inertia and calculated by the following 
equation:

However, LEB cantilever beam theory is valid just for infinitesimal strains which means this theory can only 
model small deformation (vibration) of a beam. Hence, we cannot use it for modeling large deformation situa-
tions of an IPMC beam.

Mathematically the curvature of a function like ω(z, t) can be calculated by κMath(z, t) which is defined as 
follows:

On the other hand, the curvature of a beam under an applied bending moment,Mzy(z, t), is mechanically 
defined by:

Consequently, our aim is to find a function like ω(z, t) that its curvature matches with the curvature of a 
cantilever beam (IPMC) with an applied bending moment Mzy(z, t) to it. To find this function, κMath(z, t) is set 
equal to κMech(z, t) and the resulted PDE is solved. Then, the following nonlinear PDE is obtained.

Lemma 3 In Eq. (54), if we ignore the square of the beam slope (i.e. term 
(

∂ω(z,t)
∂z

)2
), we reach to the PDE resulted 

by LEB beam theory (Eq. 50) for small deformations.

Equation (54) is a nonlinear PDE but it is solvable analytically. So, ω(z, t) will be obtained as follows:

where

(48)ϒ̃2(t) =

(
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t

)(
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)

(
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kf ,kg,τf  and τg are constant coefficients and should be estimated in the model estimation stage.

The curve ω(z, t) describes the deflection of the beam at some position z. To find the tip displacement of the beam 
(IPMC) at each moment we name the IPMC tip displacement as δTip(t) . Some previously published papers like 32, 
have used Eq. (62) which is an approximation of IPMC tip displacement for very small deformations.

In Eq. (62), L is the length of the IPMC. To extend this approximation to large deformations which we follow in this 
paper, we rewrite Eq. (62) as Eq. (63).

zL(t) describes the dynamic coordinate of z component of the IPMC’s tip as follows:

Equation (64) describes the arc length of the IPMC that is constant and equal to L.

Lemma 4 In Eq. (64) if we ignore the square of the curve slope (i.e. term 
(

∂ω(z,t)
∂z

)2
), we reach to Eq. (62) that is an 

approximation of IPMC tip displacement for very small deformations.

Parameter estimation and model validation. In this section, we aim to validate our claims and find an 
accurate well-defined relationship between the input applied voltage ( VI (t) ) and the output tip displacement of 
the IPMC ( δTip(t) ). Totally, to produce VI (t) and acquire δTip(t) , we used a set of hardware apparatus. As shown 
in this Fig. 5, the setup was composed of several components: a computer with MATLAB 2012b, a data acquisi-
tion board, a differential electronic amplifier, an accurate mechanical camera handler, a tin-plated copper clips, 
and a camera. To record the IPMC actuation data, the desired input signals ( VI (t) ) were produced in MATLAB 
and written serial to send to the data acquisition board (DAQ board). The output voltage of one of the digital 
to analog converter (DAC) outputs of the DAQ was amplified and shifted by a designed differential amplifier 
and then applied to the IPMC using a clip. When the signal was applied to the IPMC, a video was taken of the 
IPMC’s actuation by a video camera, simultaneously. Then, by employing appropriate video and image process-
ing techniques (we refer the reader to Appendix D), the required features were extracted from these video files 9. 
The sampling rate of the data acquisition was 29.7 S/s which was equal to the frame per second of the recorded 
video (29.7 FPS).

Table 1 summarizes specifications of the IPMC used in this research. In all physics-based models there are 
some specified physical parameters and some unknown parameters. The specified physical parameters were 
reported in the references and are listed in Table 2 but unknown parameters should be estimated in the param-
eter estimation stage.

For parameter estimation and validation of the model we used the GA toolbox of MATLAB software. Three 
different signals were applied as the input voltage to the IPMC and measured its tip displacement in response 
to each stimulus. Applied stimulus signals were chirp, Pseudo Random Binary Sequence (PRBS) and sinusoidal 
signals with a peak voltage of 2.3 V. Then, we estimated the unknown parameters of the proposed model using the 
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∣
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half of each input–output data pairs (voltage as the input and the tip displacement of the IPMC in the x-direction 
as the output). For model validation the defined model was tested by the rest of the data pairs.

There are a variety of classic and intelligent methods to estimate unknown parameters and we chose a genetic 
algorithm-based (GA) optimization method to find unknown parameters. The estimated parameters are reported 
in Table 3. Figures 6 and 7 illustrate the experimental tests of the model for Chirp and PRBS applied voltages. 
Moreover, the displacement vs. voltage state-trajectory for chirp dataset is shown in Fig. 8. Results indicate 
that the proposed model follows the actual output precisely. Moreover, to quantify the accuracy of the model 
by a numerical criterion, the normalized mean-square error (NMSE) was selected. The NMSE of the model in 
response to sinusoidal, PRBS, and chirp input signals are 0.07, 0.025 and 0.0047, respectively. Accordingly, the 
proposed model is accurate and can work properly in large deformation situations and practical applications. 
Furthermore, we compared the result of the proposed model with two other methods, Laguerre expansion 
method (LEM) and ANFIS-NARX  paradigm10. The reason for choosing these two methods is that we used only 
the information of the input to predict the output in the proposed model which means the proposed method is 

Figure 5.  The photograph of hardware  apparatus9.

Table 1.  Specifications of the IPMC strip used in this research.

Specification Description

Length × Width × Thickness 28 mm × 6 mm × 0.2 mm

Membrane material Dupont™ Nafion 117

Electrode and cations Platinum and Na + 

Table 2.  Specified physical parameters.

F = 96458
[

C
mol

]

ke = 1.34 × 10
−6

[

F
m

]

Y = 5.71× 108 [Pa] C− = 1200

[

mol
m3

]

d = 1.03× 10−11
[

m2

s

]

R = 8.3143
[

J
mol.K

]

T = 293 [K] L×W × h = 28× 6× 0.0889
[

mm3
]

Table 3.  Estimated parameters using genetic algorithm.

kf 0.5 ϒ̂2 0.04 rel 0.11

τf 44 ϒ̂5 0.03 µ 2.4

kg 4.5 ϒ̂6 5 ×  10–3 σ0 0.10

τg 0.07 rM 0.15

Bmnp 0.003 rew 0.175
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a non-autoregressive model, hence, we should compare our model with other non-autoregressive methods. One 
of the best non-autoregressive models is Laguerre Expansion Technique (LET)43 that in Table 4 we compared 
the NMSE of the proposed model with LET. The mean NMSE of the proposed model is about 24 times smaller 
than the mean NMSE of LEM which means that, the proposed model is 24 times more accurate than LEM. As 
the second method, we compared the proposed model with ANFIS-NARX paradigm. ANFIS-NARX para-
digm is an autoregressive method that is valid for IPMC large deformation  situation10. As reported in Table 4, 

Figure 6.  Model validation. Top: applied chirp voltage (with increasing frequency (up-Chirp)) to the IPMC 
(with a peak voltage of 2.3 V). Middle: the actual and estimated tip displacement of the IPMC in the x-direction. 
Bottom: the square error rate.

Figure 7.  Model validation. Top: applied PRBS voltage to the IPMC (with a peak voltage of 2.3 V). Middle: the 
actual and estimated tip displacement of the IPMC in the x-direction. Bottom: the square error rate.
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ANFIS–NARX paradigm is more accurate than the proposed model, but it doesn’t mean it is more appropriate 
because ANFIS–NARX is an autoregressive model which uses output feedback to achieve a precise prediction 
model. Using output data for an accurate modeling eliminates the causal relationship between the applied volt-
age and the IPMC bending. Moreover, in most of practical applications acquiring output feedback of the IPMC 
is not feasible. Hence, from the viewpoint of practical applications, a non-autoregressive model even with less 
accuracy is preferred to a more accurate autoregressive model.

Conclusion
It this paper a fully analytical and physics-based 3D ion transport model was presented for large deformable 
IPMC actuators. This model exhibits a compact and explicit relationship between the input voltage and the 
output tip displacement of the IPMC actuator which is uniquely valid for large deformation situation. During 
the various stages of modeling, four Lemmas were presented which support that the proposed model passed 
a true way as well as the previous models for small deformations and moreover, is an explanation of them for 
large deformations. Furthermore, several experimental results were presented to demonstrate its applicability 
to arbitrary electrical inputs. The agreement between model predictions and experimental results also provides 
insight into the underlying actuating mechanisms of IPMC materials due to the physical based of the model.
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