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Task allocation is a central feature of collective organization. Living collective systems,
such as multicellular organisms or social insect colonies, have evolved diverse ways to
allocate individuals to different tasks, ranging from rigid, inflexible task allocation that
is not adjusted to changing circumstances to more fluid, flexible task allocation that is
rapidly adjusted to the external environment. While the mechanisms underlying task
allocation have been intensely studied, it remains poorly understood whether differ-
ences in the flexibility of task allocation can be viewed as adaptive responses to different
ecological contexts—for example, different degrees of temporal variability. Motivated
by this question, we develop an analytically tractable mathematical framework to explore
the evolution of task allocation in dynamic environments. We find that collective flexibil-
ity is not necessarily always adaptive, and fails to evolve in environments that change too
slowly (relative to how long tasks can be left unattended) or too quickly (relative to how
rapidly task allocation can be adjusted). We further employ the framework to investigate
how environmental variability impacts the internal organization of task allocation, which
allows us to propose adaptive explanations for some puzzling empirical observations,
such as seemingly unnecessary task switching under constant environmental conditions,
apparent task specialization without efficiency benefits, and high levels of individual
inactivity. Altogether, this work provides a general framework for probing the evolved
diversity of task allocation strategies in nature and reinforces the idea that considering a
system’s ecology is crucial to explaining its collective organization.
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Collective distributed systems—such as multicellular organisms, social insect colonies,
or computer networks—depend on the coordinated functioning of individual compo-
nents that perform different tasks. All these systems face a fundamental problem of task
allocation: how to distribute individuals over different tasks to ensure that the system
meets the demands of the dynamic environment that it operates in. Living collective
systems have evolved myriad ways to solve this problem and exhibit substantial cross-
system variation in diverse properties of task allocation (1–5).
In particular, systems vary in their degree of collective flexibility—that is, in the extent

to which they flexibly adjust task allocation to changing external circumstances. For exam-
ple, colonies of harvester ants (Pogonomyrmex barbatus) adjust their foraging activity in
response to food availability, presence of predators, and weather conditions (6–8). In con-
trast, red wood ant (Formica polyctena) colonies are more consistent in their foraging effort
and do not readily adjust foraging activity to changes in the environment (9, 10). Simi-
larly, while some species of multicellular cyanobacteria regulate nitrogen fixation in
response to the diurnal cycle by switching from photosynthesis during the day to nitrogen
fixation at night, other species lack this collective flexibility and instead have evolved dedi-
cated, irreversibly differentiated cells that fix nitrogen continually (11–17). Finally, while
cells in most human tissues irreversibly differentiate during development, the immune sys-
tem is unusual in that it exhibits substantial flexibility in response to unpredictable attacks
by pathogens, through activation and proliferation of specific immune cells and realloca-
tion of existing immune cells to different defensive functions (18–21).
While such cross-system variation in the flexibility of task allocation is not necessarily

adaptive and could partly result from constraints on the mechanisms by which task alloca-
tion can be achieved, one would expect that, at least to some extent, this variation reflects
the different ecological pressures that different systems face (9, 22–25). In particular, the
temporal variability of the environment may be an important ecological factor, as environ-
ments in which the yields or demands of different tasks vary substantially over time may
select for the evolution of flexibility to cope with, or take advantage of, this environmental
variation (9, 26–28). Understanding the evolution of collective flexibility, then, requires a
framework that can evaluate task allocation in the context of a dynamic environment.
Although the need for such a framework has been pointed out by multiple authors
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(22–24), most current evolutionary models of task allocation do
not account for the variability of the environment that the system
operates in (refs. 29–34, although see ref. 35 for a notable excep-
tion in the specific context of age polyethism in social insects).
To address this gap, here we develop a simple and analytically

tractable theoretical framework to study the evolution of task
allocation in dynamic environments. We take a complementary
approach to the existing theoretical literature and focus on the
ultimate factors that shape the properties of task allocation,
instead of the proximate, individual-level, mechanisms by which
task allocation emerges [e.g., response thresholds, communication
between individuals, spatial differentiation (22)]. Indeed, because
we aim to compare across systems where task allocation may be
achieved via diverse underlying mechanisms, our approach leaves
these mechanisms largely implicit and instead describes the result-
ing task allocation dynamics phenomenologically. This approach
allows us to investigate how the evolution of task allocation is
shaped by various ecological factors, including how variable the
environment is, how sensitive tasks are to environmental varia-
tion, how long tasks can be left unattended for, and how quickly
the system can respond to changes in environmental conditions.
We first use our framework to explore the ecological condi-

tions under which systems that face a variable environment
might evolve collective flexibility. Subsequently, we investigate
how selection for (or against) collective flexibility may, in turn,
impact various aspects of the internal organization of task allo-
cation—including how frequently individuals switch between
different tasks, whether or not some tasks are performed by dedi-
cated specialists, and whether or not individuals spend some of
their time being inactive (i.e., not performing any task).

Model

Our model describes a collective system that allocates its indi-
viduals to different essential tasks. The system may adjust its
task allocation in response to a temporally variable external
environment. We assume that task allocation evolves to opti-
mize some form of collective fitness (which is appropriate for
the systems we have in mind, such as multicellular organisms
and social insect colonies), and we determine how the optimal
task allocation depends on various ecological parameters. For
simplicity, we assume that there are only two tasks, which

suffices to capture the essence of task allocation: increasing allo-
cation toward one task detracts from other tasks.

Environmental Variability. The system experiences two equally
likely environmental states A and B (Fig. 1A). The environment
changes at a rate λ > 0, upon which a new environmental state is
sampled independently of the current state (and possibly equal to
it). Task yields may differ across environments, and so we denote
the environment-specific task yields by Y1,A, Y1,B , Y2,A, and Y2,B ,
where, for example, Y1,A denotes the yields for task 1 in environ-
ment A. To summarize how sensitive each task is to environmen-
tal conditions, we also introduce parameters θ1 ¼ Y1,A=Y1,B and
θ2 ¼ Y2,A=Y2,B . If θi > 1, then task i has higher yield in environ-
ment A than in environment B; if, conversely, θi < 1, then task
i has higher yield in environment B than in environment A;
finally, if θi ¼ 1, then task i has equal yields in environments
A and B, and hence it is not sensitive to the environment.

Task Allocation Dynamics. We assume that individuals are con-
tinually active and thus, at any point in time, either performing
task 1 or task 2. We write a1ðtÞ for the fraction of individuals
that are performing task 1 at time t , and a2 tð Þ ¼ 1� a1ðtÞ for
the fraction of individuals that are performing task 2. We
assume that the system has a capacity for homeostasis, so that,
given enough time in one environment, the fractions of
individuals ða1, a2Þ allocated to each task stabilize at some
equilibrium task allocation ðz1, z2Þ. We write z1,A, z2,Að Þ ¼
ðz1,A, 1� z1,AÞ for the equilibrium allocation reached in envi-
ronment A and z1,B , z2,Bð Þ ¼ z1,B , 1� z1,Bð Þ for the equilib-
rium allocation reached in environment B.

How quickly the system approaches the equilibrium task allo-
cation upon a change in environmental conditions depends on
constraints on the system’s ability to detect and respond to
changes in environmental conditions, which we capture via a
parameter δ. In particular, we assume that the system approaches
the environment-dependent equilibria exponentially at rate δ (Fig.
1B), so that the task allocation dynamics are given by

dai
dt

¼ δ � zi � aið Þ: [1]

The mechanisms that underlie these dynamics are left implicit.
Thus, we do not explicitly consider how individuals detect

A B C

Fig. 1. Model setup. (A) We model a collective system that experiences two equally likely environments A and B. New environments are sampled at a rate
λ, independent from the current environment. Task yields Yi may depend on the environment; two parameters, θ1 ¼ Y1,A=Y1,B and θ2 ¼ Y2,A=Y2,B, indicate how
sensitive each task is to environmental conditions. (B) The fraction of individuals a1ðtÞ allocated toward task 1 approaches equilibrium values z1,A (in environ-
ment A) and z1,B (in environment B). Task allocation is adjusted at rate δ. (C) Task yields Yi are added to a collective task stock Si , proportional to current allo-
cation ai . Task stocks are depleted at a rate γ. The system is evaluated on its ability to maintain stocks for both tasks; we use the average value of S1 tð Þ � S2ðtÞ
as a measure of collective fitness.
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changes in the environment, whether and how they communi-
cate information about the environment to other individuals,
and how they decide to perform a particular task. We simply
assume that a combination of such mechanisms will allow the
system to adjust its task allocation to its environment, and we
use the parameter δ to summarize the resulting time scale of
adjustment. This phenomenological approach allows us to
compare the fitness consequences of different patterns of task
allocation across collective systems in which these patterns may
emerge through diverse underlying mechanisms.

Task Performance and Fitness. For simplicity, we assume that
the total yield obtained for each task scales linearly with the
number of individuals allocated to it, so that, at time t , the
total yield for task i equals ai tð ÞYiðtÞ. In other words, we
assume that, if interactions among individuals do exist, they do
not lead to diminishing returns or synergistic effects in total
yield (i.e., per capita yield decreasing or increasing as a function
of allocation, respectively). To track the system’s task perfor-
mance over time, we assume that obtained task yields for task i
are added to a collective task stock Si (Fig. 1C). For example,
for tasks that extract resources from the environment (e.g.,
nitrogen fixation in cyanobacteria, or foraging in ants), the
stock represents the amount of resource the system currently
has. Task yields are added to the task stock at a rate β and are
depleted from the stock at a rate γ > 0,

dSi
dt

¼ βaiYi � γSi :

Because β affects the task stock dynamics only by rescaling the
average stock size, we can, without loss of generality, assume that
β¼ γ, so that γ sets the time scale of task stock dynamics without
affecting the average stock size (SI Appendix). This simplifies the
task stock dynamics to dSi=dt ¼ γ aiYi � Sið Þ: When task stock
dynamics are fast (high γ), the stock mostly comprises task yields
that have been obtained very recently; when task stock dynamics
are slow (low γ), task yields that were obtained farther in the past
also substantially contribute to the task stock. Thus, the rate of
task stock depletion γ sets the time scale over which the system
can temporally integrate task yields.
We introduce a measure of collective fitness F that evaluates

the system on its ability to maximize task yields, while, at the
same time, ensuring that no task goes unattended for too long.
Specifically, we define F ¼ hS1 tð Þ � S2 tð Þit as the temporally
averaged product S1ðtÞ � S2ðtÞ of the stocks for both tasks. Mul-
tiplying the sizes of the stock for each task renders the two tasks
nonsubstitutable and requires the system to balance its effort
toward both. However, tasks do not necessarily have to be
attended to at all times: When performance of a task is tempo-
rarily interrupted, the corresponding task stock will not disap-
pear immediately, but will only be depleted at rate γ. We can
therefore also think of γ as determining how long tasks can be
left unattended for.
In averaging S1 tð Þ � S2ðtÞ over time, we assume that the fit-

ness effects of performing both tasks are additive over the life-
span of the system. We will moreover assume that the system is
sufficiently long-lived to be repeatedly exposed to all possible
environmental conditions over its lifespan. Under this assump-
tion, we need to take into account only environmental variation
that occurs within (but not across) generations of the system.
In SI Appendix, we derive a closed-form expression for collec-

tive fitness F in terms of the three relevant ecological time
scales set by the rates of environmental fluctuations (λ), task
stock depletion (γ), and adjustment of task allocation (δ); the

environment-dependent task yields (Y1,A, Y1,B , Y2,A, Y2,B); and
the equilibrium task allocation (z1,A, z1,B) in each environment
(see SI Appendix, Fig. S1 for validation of the result). We use
this closed-form expression to compute the optimal equilibrium
task allocations (z1,A, z1,B) that maximize fitness (subject to the
constraints 0 ≤ z1,A, z1,B ≤ 1) for given values of the other
parameters.

Results and Discussion

The Evolution of Collective Flexibility.
All three ecological time scales impact the optimal task alloca-
tion. We start by investigating systems where the yields of only
one of the two tasks depend on environmental conditions
(θ1 > 1, θ2 ¼ 1). For example, this scenario could represent
multicellular cyanobacteria where we can assume that the yields
of photosynthesis, but not nitrogen fixation, depend on the
time of day, or some ant colonies where we can assume that the
yields of foraging, but not of nest-associated tasks such as nurs-
ing or nest maintenance, depend on food availability around
the colony. For such systems, environmental variability in task
yields creates an incentive to adjust task allocation to the envi-
ronment: Performing the environment-sensitive task specifically
under the conditions that favor it can increase task yields and
thereby system fitness. At the same time, however, temporarily
biasing allocation toward a task comes with the risk that the
corresponding neglect of the other task reduces fitness. There-
fore, it is not clear a priori whether and when environmental
variability renders it optimal to adjust task allocation to the
environment.

To address this question, we use our model to determine the
optimal dynamic task allocation as a function of the three eco-
logical time scales considered: adjustment of task allocation
(Fig. 2A), task stock depletion (Fig. 2B), and environmental
variability (Fig. 2C). We characterize this optimal task alloca-
tion by its equilibrium allocations z1,A and z1,B (toward task 1
in environments A and B, respectively), as well as the corre-
sponding average allocations a1,A ¼ δ

δþλ � z1,A þ λ
δþλ � z1,Aþz1,B

2 and

a1,B ¼ δ
δþλ � z1,B þ λ

δþλ � z1,Aþz1,B
2 (SI Appendix), which take into

account that the system is not necessarily able to reach its equi-
librium allocation. Indeed, the average allocation closely
matches the equilibrium allocation when the system is able to
adjust its task allocation quickly relative to the time scale of
environmental fluctuations (δ=λ sufficiently large; e.g., scenario
iii in Fig. 2), but deviates from the equilibrium allocation when
the system adjusts too slowly to be able to reach its equilibrium
allocation before the environment changes again (δ=λ not large
enough; e.g., scenario ii in Fig. 2). We quantify collective flexi-
bility as the difference between the average allocations toward
task 1 in environments A and B, i.e., a1,A � a1,B ¼
ðz1,A � z1,BÞ � δ

δþλ. This measure of collective flexibility equals 0
when a1,A ¼ a1,B , meaning that there is no difference in average
task allocation between the two environments, and 1 when
a1,A ¼ 1 and a1,B ¼ 0, meaning that, in environment A, only
task 1 is performed, and in environment B, only task 2 is
performed.

We find that the evolution of task allocation depends
strongly on all three ecological time scales considered and that
diverse task allocation dynamics can be evolutionarily optimal.
We first focus on each time scale separately and vary the rate
parameters δ, γ, and λ independently (while keeping the other
two fixed; see SI Appendix for formal analysis); subsequently,
we consider all time scales simultaneously to derive general
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conditions for the evolution of collective flexibility that depend
on the relative magnitudes of δ, γ, and λ.
In Fig. 2 D–I, we show the optimal task allocation dynamics

for three choices of parameters that differ in the rate δ at which
the system can adjust its task allocation to the environment
(corresponding to cases i through iii in Fig. 2A). For low δ, we
find that it is optimal to be unresponsive to the environment
and equally allocate individuals to both tasks, thereby ensuring
that the system properly balances its attention toward them
(a1,A ≈ a1,B ≈ 1=2; Fig. 2 A, D, and E). As δ increases, the sys-
tem evolves to adjust its task allocation to its environment (Fig.
2 A and F–I), preferentially performing the environment-
sensitive task under conditions that favor it (i.e., a1,A > 1=2
and a1,B < 1=2). Adjusting task allocation to the environment
allows the system to obtain higher task yields, maintain higher
task stocks (compare Fig. 2 G and I with E), and therefore
achieve higher fitness (SI Appendix, Fig. S2). The level of col-
lective flexibility a1,A � a1,B that evolves increases with δ,
because for higher δ the system evolves more biased equilibrium
allocations z1,A and z1,B (Fig. 2A), and it reaches these

equilibrium allocations faster (e.g., compare scenario ii, where
the equilibrium allocation is typically not reached before the
environment changes [Fig. 2F], to scenario iii, where the system
spends most of its time at the equilibrium allocation for the
current environment [Fig. 2H]).

When we instead vary the rate of task stock depletion γ, we
find that adjustments of task allocation fail to evolve when task
stocks are depleted too quickly (high γ; Fig. 2B), because then
temporarily neglecting tasks is strongly selected against. In con-
trast, when task stocks are depleted more slowly and the fitness
consequences of temporarily neglecting tasks are less dire
(γ ! 0), it becomes optimal to bias task allocation as much as
possible (z1,A ! 1, z1,B ! 0). In this case, the level of collective
flexibility approaches δ=ðδþ λÞ and is thus determined by how
quickly the system adjusts its task allocation relative to the time
scale of environmental fluctuations (SI Appendix and Fig. 2B).

Finally, when we vary the rate of environmental fluctuations
λ, we find that adjustments of task allocation evolve only if the
environment changes sufficiently quickly (λ sufficiently large;
Fig. 2C). If the environment changes too slowly, biasing task
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allocation toward a specific task would again lower fitness,
because it causes the other task to go neglected for too long. As
λ increases, the equilibrium task allocations z1,A and z1,B
become progressively more biased, although, eventually, adjust-
ments to the environment fail to be realized because the envi-
ronment changes too quickly for the system to be able to adjust
to it (i.e., a1,A and a1,B approach 1/2; Fig. 2C).
The task allocation dynamics that evolve have some surpris-

ing features. For example, as Fig. 2D shows, it may be optimal
to continue to perform tasks when their yields are low (or even
zero; SI Appendix, Fig. S3): In environment B, task 1 is still
being performed by half of the individuals, even though its
yield is 4 times lower than in environment A. Thus, the appar-
ent inefficiency of performing tasks under suboptimal condi-
tions can be evolutionarily optimal. Another unexpected finding
is that, even though both tasks contribute equally to fitness, the
optimal task allocation can be asymmetric. For example, in sce-
nario iii (Fig. 2 H and I), individuals spend on average 30%
more time performing task 2 than task 1 and only the perfor-
mance of task 1 is restricted to specific environmental condi-
tions. We can show analytically that if the environment-sensitive
task 1 is sufficiently sensitive to the environment (i.e., provided
θ1 > ð4γþ λÞ=λ; SI Appendix), then for large enough δ it
becomes optimal to only perform it in environment A (z1,B
becomes 0 and a1,B approaches 0 as δ!∞; Fig. 2A). In con-
trast, for the environment-insensitive task 2, it is always optimal
to perform it in both environments (i.e., z1,A and a1,A never
become 1; Fig. 2A), with allocation toward it never dropping
below γ=ð2γþ λÞ (SI Appendix). Thus, only for sufficiently
environment-sensitive tasks can it be optimal to temporarily
ignore them, and, as a result, total allocation—over the lifespan
of the system—may be biased toward environment-insensitive
tasks.
Collective flexibility evolves only under certain ecological condi-
tions. Having explored the effect of each of the three ecological
time scales separately, we now look at the effect of all three
varying simultaneously. The level of collective flexibility that
evolves in the model varies continuously as a function of λ, δ,
and γ, ranging from a regime in which negligible collective flex-
ibility evolves (a1,A � a1,B ≈ 0) to a regime in which near-
maximal levels of collective flexibility evolve (a1,A � a1,B ≈ 1),
with intermediate levels of collective flexibility in between (Fig.
3A, and see SI Appendix, Fig. S4 for the corresponding values
of z1,A, z1,B , a1,A , and a1,B ). We see that the evolution of non-
negligible collective flexibility requires two conditions to be
met simultaneously (Fig. 3B). First, the rate of task stock
depletion must be sufficiently low relative to the rate at which
the environment fluctuates (γ=λ sufficiently small), so that
tasks can be temporarily left unattended without the corre-
sponding task stock being depleted to such low levels that fit-
ness is compromised. Second, the rate of adjustment of task
allocation should be sufficiently high relative to the rate at
which the environment fluctuates (δ=λ sufficiently large), so
that a biased task allocation can be achieved before the envi-
ronment changes.
These general theoretical conditions for the evolution of col-

lective flexibility comport with empirical observations in desert
harvester ants (P. barbatus), where collective flexibility—in the
form of regulating foraging activity levels in response to day-to-day
variation in humidity—has been shown to be adaptive (7, 8).
Relative to the daily time scale of environmental fluctuations, in
harvester ant colonies the adjustment of task allocation indeed
takes place on a much faster time scale [within minutes, via
interactions with returning foragers or patrollers (8, 36)], while

their task stocks deplete on a much slower time scale [collected
seeds are stored for up to months (7)].

Based on our results, we predict that across systems that face
similar constraints on task allocation (i.e., have similar values of
γ, δ), such as closely related species of ants, collective flexibility
is least likely to evolve in systems living in environments that
change very quickly or very slowly and is most likely to evolve
in systems living at intermediate degrees of temporal environ-
mental variability (Fig. 3C). Indeed, the evolution of collective
flexibility requires the environment to change quickly enough
for the system to be able to exploit environmental variability,
but not so quickly that the system loses the ability to adjust its
task allocation in time.
Collective flexibility can evolve whenever tasks differ in how their
yields depend on the environment. Our results generalize to
scenarios in which not one but both tasks are sensitive to
environmental conditions. In this case, either one environ-
ment maximizes yields for both tasks (correlated task yields
across environments; θ1, θ2 > 1 or θ1, θ2 < 1), or the yields
for the two tasks are maximized in opposite environments
(anticorrelated task yields; θ1 < 1 < θ2 or θ2 < 1 < θ1). As an
example of correlated task yields, consider pollen and nectar for-
aging in a honey bee colony (37), both of which may result in
higher yields during good weather conditions. In contrast, a
hypothetical primitive multicellular organism that allocates cells
to feeding and motility and navigates a spatially heterogeneous
resource environment could be an example of anticorrelated task
yields, if feeding (but not motility) is favored when resources are
plentiful while motility (but not feeding) is favored when resour-
ces are scarce.

In this more general setup where both tasks are sensitive to
the environment, we find that collective flexibility can evolve as
long as the two tasks differ in how they depend on environ-
mental conditions (θ1 ≠ θ2; Fig. 3C), but that no collective
flexibility can evolve when θ1 ¼ θ2 (see Fig. 3C for θ1 ¼ θ2 ¼
4 and SI Appendix for a general mathematical derivation). In
particular, collective flexibility can evolve even when task yields
are correlated (Fig. 3C; θ1 ¼ 4, θ2 ¼ 2). In this case, the more
environment-sensitive task will be prioritized under conditions
favorable to both tasks, increasing the yield for this task to such
an extent that it outweighs a concomitant decrease in yield for
the less environment-sensitive task (which is now preferentially
performed under conditions unfavorable to both tasks). While
collective flexibility can evolve even when task yields are corre-
lated, it is most pronounced (Fig. 3C) and provides the largest
fitness benefits (SI Appendix, Fig. S2) when task yields are,
instead, anticorrelated across environments, so that adjusting
task allocation to the environment can simultaneously increase
the yields obtained for both tasks.

Consequences of Environmental Variability for the Internal
Organization of Task Allocation. The framework we have devel-
oped to investigate the evolution of collective flexibility addition-
ally presents the opportunity to explore how environmental
variability affects the internal organization of task allocation. We
do so in three separate extensions of our framework that each
focus on a different organizational property: task switching, spe-
cialization, and inactivity, respectively. Together, these exten-
sions showcase the versatility of our framework as a platform to
investigate the evolution of diverse aspects of task allocation in
the context of a dynamic environment.
Costly task switching may evolve to achieve collective flexibility.
One way in which systems adjust their task allocation to chang-
ing conditions is by reallocating existing individuals to different
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tasks (i.e., task switching).* Task switching may be associated
with fitness costs, because adjusting to a new task can require
time and/or energy (42–44). So far, we have not considered such
costs to flexibility: While in our original model systems are con-
strained by how quickly they can adjust their task allocation,
these adjustments are not costly. We therefore extend our model
to incorporate task-switching costs and explore what task-
switching strategies evolve when task switching is costly but at
the same time required for collective flexibility.
Incorporating task-switching costs requires specifying how

the net change in the overall task allocation (as given by Eq. 1)
comes about from individuals switching between tasks (Fig.
4A). For simplicity, we make the minimal assumption that
task-switching rates depend only on the task being performed
and on the current environment. Consequently, we parametrize
our task-switching model by four parameters, r1!2,A, r1!2,B ,
r2!1,A, and r2!1,B , that describe the per capita rates of task
switching in either direction (from task 1 to task 2 or vice
versa) and in either environment (A or B). In SI Appendix, we
show that there is a unique way to choose these parameters that
is consistent with Eq. 1: We must have r1!2,A ¼ δz2,A,
r1!2,B ¼ δz2,B , r2!1,A ¼ δz1,A, and r2!1,B ¼ δz1,B . These equa-
tions can be interpreted as individuals reevaluating their current
task at rate δ (prompted, for example, by observations of the envi-
ronment) and then adopting task 1 with probability z1 and task
2 with probability z2. While this setup is an oversimplification of

the decision-making processes underlying task switching in
many real systems, it suffices to explore theoretically the trade-
off between the benefits of collective flexibility and the costs of
task switching.

The above assumptions on the rates of task switching allow
the net change in task allocation to be decomposed into flows
of individuals switching from task 2 to task 1 (at a per capita
rate δz1) and from task 1 to task 2 (at a per capita rate δz2)
(Fig. 4A). The average rate of task switching now equals

δ ¼ δ � a1,A � z2,A þ a2,A � z1,Að Þ þ a1,B � z2,B þ a2,B � z1,Bð Þ
2

< δ

[2]

(SI Appendix). Total (i.e., system-level) task-switching costs can
therefore be implemented by subtracting from fitness a cost cδ,
where c is a parameter that controls how costly one task switch-
ing event is, regardless of the direction of the switch. To char-
acterize the evolution of task switching, we will calculate what
combination of δ ∈ ð0,∞Þ and z1,A, z1,B ∈ ½0, 1� maximizes fit-
ness. Thus, δ is now evolvable rather than being a fixed con-
straint on task allocation. Higher values of δ allow the system
to adjust its task allocation more quickly, but may also lead to
higher total task-switching costs (Eq. 2).

We find that, in the extreme case of no task-switching costs
(c ¼ 0), arbitrarily large reevaluation rates δ evolve, as increas-
ing δ allows for quicker collective adjustments of task allocation
at no additional cost (Fig. 4B). At the other extreme of very
high task-switching costs, arbitrarily small reevaluation rates
evolve (δ! 0) because the costs of task switching outweigh
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Fig. 3. The evolution of collective flexibility. (A) The evolution of collective flexibility depends on the relative ratios of three ecological time scales: the time
scales of adjustment of task allocation to the environment (δ parameter), task stock depletion (γ parameter), and environmental fluctuations (λ parameter).
The two-dimensional visualization takes advantage of the fact that there are three time scales but only two degrees of freedom: Rescaling each time scale
by the same amount does not affect the model dynamics. The three axes are interdependent (indeed, δ=λ¼ ðδ=γÞ � ðγ=λÞ); each point in the coordinate space
can be orthogonally projected on each axis (in the plane of the figure). Parameters are θ1 ¼ 4 and θ2 ¼ 1. (B) Collective flexibility evolves when γ=λ is suffi-
ciently small and δ=λ is sufficiently large. (C) Collective flexibility can evolve whenever θ1 ≠ θ2 and is maximized for intermediate environment fluctuation
rates λ. Parameters γ ¼ 0:2 and δ¼ 1:0 are kept fixed.

*Not all systems rely on task switching, however. Alternatively, the system may adjust to
its environment by adjusting the production of individuals specialized for different tasks
(38–41).
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any potential benefits of collective flexibility. As a result, indi-
viduals rarely switch tasks, and end up being essentially irrevers-
ibly committed to their current task (Fig. 4C). This confirms
that task-switching costs can suffice to drive the evolution of
specialization, a result that has been previously obtained with
simulation models (43, 45). Our analysis additionally reveals an
ecological dimension to this phenomenon: How high task-
switching costs need to be to drive the evolution of irreversible
specialization depends on the potential benefits of collective
flexibility. The higher the benefits of collective flexibility
(which are maximized at intermediate environmental fluctua-
tion rates λ; SI Appendix, Fig. S2), the higher the task-
switching costs needed to offset those benefits and drive the
evolution of irreversible specialization (Fig. 4B).
When task-switching costs are not high enough to completely

impede the evolution of flexibility, we find that two types of flexi-
ble task-switching strategies can evolve (Fig. 4B). In environments
that change sufficiently quickly (relative to the time scale of task
stock depletion), individuals evolve to instantaneously and deter-
ministically switch tasks (δ¼∞; z1,A ¼ 1, z1,B ¼ 0) in response
to shifts in environmental conditions (Fig. 4D), akin to undiffer-
entiated cyanobacteria in which all cells switch between photosyn-
thesis during the day and nitrogen fixation at night. While this
strategy limits task-switching costs by having individuals switch
between tasks only in response to environmental change (indeed,
we have δ ¼ λ=2, so the total costs of task switching remain
bounded), it is not feasible in environments that change too
slowly, where it would cause tasks to go neglected for too long.
In those environments, a task-switching strategy evolves instead
in which individuals switch tasks stochastically, even in the
absence of environmental change, thereby making sure that both
tasks receive attention at all times (Fig. 4E).

These results provide theoretical corroboration for the
empirical observation that in some real systems individuals
frequently switch tasks, even in the apparent absence of envi-
ronmental changes that would necessitate a shift in overall task
allocation. In paper wasps (Polybia), for example, workers con-
structing the nest flexibly switch between water collection, pulp
collection, and building (46, 47). Similarly, while most animal
cells are irreversibly assigned a task during development and
therefore never switch tasks, some multicellular animals exhibit
a more labile (and evolutionarily more ancient) form of cell dif-
ferentiation in which cells readily transition between different
cell types (48–51). For example, in sponges (e.g., Amphimedon
queenslandica), archeocytes can spontaneously transdifferentiate
to become choanocytes, and vice versa (52–54). Our results
suggest that such individual-level flexibility can be adaptive—
even when it leads to unnecessary and potentially costly task
switching in the absence of environmental change—because it
enables collective adjustments of task allocation when environ-
mental conditions do change.
Environmental variability constrains the evolution of individual
specialization. So far, we have been agnostic toward which indi-
viduals are performing what tasks. In a second extension of our
original model, we consider how the system may distribute the
performance of different tasks across different individuals (i.e.,
spatially) in addition to distributing them across different envi-
ronmental conditions (i.e., temporally). In many extant collective
systems, individuals indeed exhibit persistent differences in task
performance, although to varying degrees (46, 55–63). We
reason that such specialization may be favored because it has
the potential—albeit not universal (64)—intrinsic benefit of
improved efficiency (i.e., specialists may be more efficient at a
task due to experience or task-specific physiological adaptations)
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(33, 34, 65–67). At the same time, however, specialization limits
an individual’s ability to be reallocated to other tasks when
needed, thereby constraining the system’s collective flexibility.
We therefore use our model to explore how environmental vari-
ability impacts the evolution of specialization.
We consider the evolution of specialists “one task at a time,”

which allows us to capture how the evolution of specialists may
potentially differ between tasks. Specifically, we assume that a
fraction s of individuals are identical “specialists” that perform
only task 1, and the remaining fraction, 1� s, are identical
“generalists” that can perform both tasks and adjust their task
allocation at a rate δ without an associated cost, as in the origi-
nal model. We introduce a parameter α that controls the effi-
ciency gains of specialization: specifically, the yields specialists
obtain for task 1 are multiplied by 1þ α. Treating the
efficiency parameter α as a fixed constraint, we allow the pro-
portion of specialists s and the task allocation of generalists to
evolve, and ask what combination of s ∈ ½0, 1� and z1,A, z1,B ∈
½0, 1� maximizes fitness (SI Appendix).
We first determine how the minimum efficiency benefits α�

required for the evolution of at least some specialists (i.e.,
s > 0) depend on ecological conditions. We find that specializa-
tion is easiest to evolve (i.e., requires the lowest α�) when the
potential benefits of collective flexibility are limited. In particu-
lar, when it is optimal to perform a task under all conditions,
minimal efficiency benefits suffice: Specialists for such a task
can evolve as soon as α > 0 (Fig. 5A and SI Appendix). In con-
trast, when the benefits of collective flexibility render it optimal
to restrict the performance of a task to specific environmental
conditions, evolving specialists is more difficult. In this case,
the efficiency gains of specialization must outweigh the fitness
costs incurred by sacrificing some collective flexibility, and sub-
stantial gains in efficiency may be required for specialization to
evolve (Fig. 5A).
How easy it is to evolve specialists for a task depends on

the task’s sensitivity to environmental conditions. Individuals

specialize most easily on tasks whose yields are relatively insensi-
tive to environmental fluctuations because, for those tasks, it
tends to be evolutionarily optimal to perform them most or all of
the time (thereby allowing specialists to evolve even when effi-
ciency benefits are small; SI Appendix, Fig. S6). For example, we
predict that an undifferentiated cyanobacterium that can photo-
synthesize only during the day but can fix nitrogen at any time
would require smaller efficiency benefits to evolve cells specialized
for nitrogen fixation (a less environment-sensitive task) than to
evolve cells specialized for photosynthesis (a more environment-
sensitive task). Consistent with this, some species of cyanobacteria
(e.g., Anabaena variabilis) have evolved specialized nitrogen-fixing
cells, while the remaining cells continue to perform both tasks:
They photosynthesize during the day but also engage in environ-
mentally regulated nitrogen fixation, for example at night (68).
Similarly, in the context of reproductive division of labor, we pre-
dict that reproductive specialists (e.g., an ant queen whose only
task is to lay eggs, or a stem cell in a multicellular tissue whose
only task is to produce new cells) evolve most easily in environ-
ments where the demand for new individuals is relatively insensi-
tive to environmental fluctuations. In contrast, a more balanced
distribution of reproductive tasks [e.g., in ant colonies with
worker reproduction (69–71)] would be more favored in environ-
ments that require flexibility in the production of new individu-
als, for example, due to recurring but unpredictable disturbances
in which substantial numbers of individuals are lost from the
system.

The optimal fraction of specialists varies across ecological
conditions (Fig. 5B). First, when the benefits of collective flexi-
bility outweigh the efficiency gains of specialization, no special-
ists evolve (s ¼ 0), and all individuals are generalists, dividing
their attention over both tasks in response to the environment
as in the original model (Fig. 5C). Second, in the absence of
substantial benefits to collective flexibility, complete division of
labor evolves in which half the individuals become task 1 spe-
cialists (s ¼ 0:5), and the remaining generalists perform only
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task 2—essentially becoming specialists as well, even though
they do not derive an efficiency benefit (Fig. 5E). Finally, in
between these two extremes, a compromise between improved
efficiency and collective flexibility emerges in which a minority
of individuals are specialists (0 < s < 0:5), and the task they
specialize on is also performed by generalists under some envi-
ronmental conditions (Fig. 5D). Thus, it can be evolutionarily
optimal to employ a mix of generalists and specialists, thereby
reaping some efficiency benefits of specialization while still
being able to adjust to the environment.
While, for simplicity, we have considered specialists that per-

form only task 1, we can relax this assumption by allowing spe-
cialists to also occasionally perform task 2, albeit less frequently
than generalists (SI Appendix, Fig. S7). As before, we find that
evolving specialists requires the smallest efficiency gains for tasks
whose yields are relatively insensitive to environmental condi-
tions. However, in this more general setup, the evolution of spe-
cialists depends not only on gained efficiency for task 1 but also
on whether and to what extent specialists incur a reduction in
efficiency for task 2 as a result of specializing on task 1. Thus, in
general, whether specialists for a task can evolve depends on the
interplay between how strongly specialists bias their task perfor-
mance toward it, how sensitive the task is to environmental con-
ditions, and how gains in efficiency for the task trade-off with a
loss in efficiency for other tasks (SI Appendix, Fig. S7).
Temporary inactivity can evolve to enhance collective flexibility.
As a final application of our original model, we consider the
possibility of inactivity. While we have so far assumed that
individuals are continually active, individuals could also be
temporarily inactive (i.e., not performing any task). Low levels
of inactivity are not necessarily surprising (they could be
explained by constraints on activity, e.g., the need to rest), but
some systems show perplexingly high levels of inactivity (72,
73). For example, Leptothorax allardycei ants appear to spend
most (55%) of their time doing nothing (74). This raises the
question of whether temporary inactivity could, in fact, be
adaptive, despite inactive individuals not contributing to pro-
ductivity. Multiple hypotheses have been suggested for why
high levels of temporary inactivity could be beneficial (72,
75–78). We use our model to explore one such hypothesis, which
proposes that inactivity may be adaptive because it increases the
system’s flexibility (72, 77). Specifically, temporarily inactive indi-
viduals could enhance collective flexibility if they can be more
quickly recruited (e.g., due to being more attentive to increased
demand for any task) to tasks that require additional attention
than individuals that are actively performing other tasks.
We implement inactivity by letting active individuals quit

their task at a rate τ, upon which they join an inactive pool. As
in our task-switching model, we assume that individuals
actively performing the other task are recruited to task i at rate
δzi (Fig. 4A), but that inactive individuals are recruited to task
i at rate κδzi (SI Appendix, Fig. S8A). Setting κ > 1 incorporates
the assumption that inactive individuals can be more quickly
recruited to a task than active individuals performing a different
task. Because individuals switch from being active to being inac-
tive at rate τ and switch from being inactive to active at total
rate κδ, each individual spends, on average, a fraction τ=ðτþ κδÞ
of its time inactive. Thus, while the composition of the inactive
pool will change over time, its total size (as a fraction of the total
number of individuals) stabilizes at τ=ðτþ κδÞ. In response to
the environment, the system can adjust what tasks active individ-
uals perform, but not what fraction of individuals are (in)active.
To determine whether inactivity can evolve even though tem-

porarily inactive individuals do not contribute to productivity, we

calculate what combination of task quitting rate τ ∈ ½0,∞Þ and
z1,A, z1,B ∈ ½0, 1� maximizes fitness. Although task quitting is not
required to achieve collective flexibility, we find that having a posi-
tive τ (and thereby a pool of temporarily inactive individuals) may
indeed be evolutionarily advantageous (SI Appendix, Fig. S8B).
Moreover, high levels of inactivity (up to 25% of each individual’s
time, in some cases) can evolve, resulting in a correspondingly siz-
able pool of inactive individuals at any one time (up to 25% of
individuals; see SI Appendix, Fig. S8D). Thus, inactivity can
indeed evolve to enhance collective flexibility, allowing the system
to more rapidly adjust its task allocation to changing circumstan-
ces (SI Appendix, Fig. S8 C and E). We expect inactivity to evolve
for this reason when collective flexibility is adaptive but not fully
realizable due to constraints on the rate at which the system can
adjust its task allocation (SI Appendix, Fig. S8 B and D).

These results provide theoretical support for the previously
proposed hypothesis that observed worker inactivity in social
insects could be a component of an adaptive colony-level task
allocation strategy (72, 77). Specifically, they confirm that high
levels of inactivity could have evolved to allow colonies to
adjust more rapidly what task is being performed by active
workers in response to environmental fluctuations, even when
the number of active workers stays constant over time. This
hypothesis is consistent with empirical evidence from some spe-
cies of social insects, where temporarily inactive workers have
been confirmed to act as a “reserve” labor force [i.e., Temno-
thorax rugatulus ants (76)], although other explanations might
be required for inactivity in other species (61, 76–79).

Conclusion

For a collective system that faces a variable environment, flexi-
bility may seem intuitively advantageous. Indeed, if we think of
the collective system as an individual in its own right, then this
intuition is corroborated by general models for the evolution of
phenotypic plasticity, some of which predict that plasticity in
labile traits (such as task allocation) should always be favored,
at least when not costly (80–82). In contrast, our framework
predicts that the evolution of collective flexibility should not
necessarily be expected: Flexibility in task allocation may be mal-
adaptive, unachievable, or both. This discrepancy in predictions
arises because, instead of presupposing that the optimal pheno-
type is determined solely by the current environment (27, 80,
82), our framework allows the optimal task allocation to emerge
dynamically from the interaction between the system and its envi-
ronment. This more mechanistic approach accounts for the fact
that what allocation is optimal depends not only on the environ-
ment but also on what tasks have been recently performed, as the
system may, at least to some extent, be able to aggregate its task
performance over time. We find that the emergent optimal task
allocation may end up being much less variable than the environ-
ment itself, thereby limiting the potential for the evolution of
flexibility. In particular, flexibility is not favored when the envi-
ronment changes so slowly that task performance cannot be effec-
tively aggregated across environments, or when the environment
changes so quickly that the system cannot adjust to it in time.
Flexibility may even be so strongly selected against that it
becomes optimal to continue to perform tasks under very unfa-
vorable conditions (when their yields are low or even zero).

Whether collective flexibility is selected for, in turn, has
ramifications for the internal organization of task allocation.
Indeed, whether and to what extent systems may evolve vari-
ous organizational properties—including task switching, spe-
cialization, and inactivity—depends on trade-offs between the
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potential fitness benefits of collective flexibility and other rele-
vant factors, such as task-switching costs or efficiency benefits
to specialization. Through these trade-offs, our framework has
the potential to explain substantial variation in the organiza-
tion of task allocation across ecological conditions and pro-
vide theoretical explanations for organizational properties that

may, at least at first glance, seem counterintuitive. In Table 1,
we summarize some of these properties that have been
observed empirically, together with theoretical interpretations
that are possible when one takes into account the variability
of the environment (and the associated potential benefits of
collective flexibility).

Table 1. Puzzling empirical observations on task allocation that can potentially be adaptive in the context of a
dynamic environment

General observation Illustrative empirical example(s)
Possible theoretical interpretation of the general

observation

Individuals continue to switch
tasks in the absence of
environmental changes that
necessitate a shift in task
allocation.

Sponge cells (A. queenslandica)
spontaneously transition between
different cell types: As part of normal
tissue homeostasis, archeocytes can
transdifferentiate to become
choanocytes and vice versa (52, 54).

Frequent task switching may be favored, even
when costly, because it facilitates collective
flexibility. The incurred costs for “unnecessary”
task switching under constant conditions are
offset by the benefits of being able to rapidly
adjust overall task allocation when
environmental conditions do change. (See
Costly task switching may evolve to achieve
collective flexibility.)

Tasks are performed by a mix of
generalists and specialists.

In A. variabilis cyanobacteria, nitrogen is
fixed by specialized heterocysts but
also by vegetative cells (68).

The mix of generalists and specialists may
represent an intermediate optimum that
allows the system to derive some efficiency
benefits of specialization (by having some
specialists perform the task) while still
maintaining the ability to flexibly adjust task
allocation to a changing environment (by also
allocating generalists to the task when
needed). (See Environmental variability
constrains the evolution of individual
specialization.)

In stingless bees (Tetragonisca angustula),
nest defense is performed by a mix of
specialized soldiers and nonspecialists
recruited to guarding tasks (95).

Some tasks are performed by
specialists, while other tasks are
not.

During nest construction in Metapolybia
wasps, specialists are employed for
water foraging but not for other tasks
such as building and pulp foraging
(96).

Even when their potential efficiency benefits of
specialization are the same, tasks can
nevertheless differ in whether those efficiency
benefits are sufficient to offset the costs of
sacrificing some flexibility; in particular, larger
efficiency benefits are required to specialize on
more environment-sensitive tasks. (See
Environmental variability constrains the evolution
of individual specialization.)

Individuals specialize on a task
without deriving efficiency
benefits.

In Temnothorax albipennis ants,
specialization and efficiency do not
correlate: Workers that spend more of
their time on a certain task are not
more efficient at it than workers that
spend less time on it (64).

“Inefficient specialists” may be de facto
generalists who spend all (or most) of their
time on a particular task to complement
specialists for other tasks (which could be
favored, for example, because they do derive
efficiency benefits). (See Environmental
variability constrains the evolution of individual
specialization.)

Individuals are not performing any
task, thereby seemingly
compromising system
productivity.

L. allardycei ants appear to spend most
(55%) of their time doing nothing (74).
For other examples, see ref. 72 and
references therein.

If inactive individuals can quickly be recruited to
tasks that require additional attention, then
having an inactive pool of individuals may be
adaptive—even though those individuals do
not contribute to productivity—because it
enhances collective flexibility: It allows the
system to adjust its task allocation more
rapidly to changing external circumstances.
(See Temporary inactivity can evolve to enhance
collective flexibility.)

Each row lists a general empirical observation illustrated with a specific example, and a potential theoretical explanation supported by our framework. The proposed explanations
illustrate how considering a system’s dynamic environment can provide potential interpretations of unexplained aspects of its task allocation. Beyond the explanation proposed by our
framework, many alternative explanations—including nonadaptive ones—deserve consideration as well.
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We propose that the presented framework is sufficiently ver-
satile to be used broadly to study how ecology shapes the evolu-
tion of task allocation, and we outline a few directions for
future work. First, while our model accounts for environmental
variability by having task yields vary temporally, future models
could explore additional ecological pressures, such as unpredict-
able disturbances that affect individuals performing specific
tasks (e.g., predator-induced mortality of foragers in social
insects) (29, 30, 83–86). Second, future work could relax the
implicit assumption that the system has perfect information about
its environment, in order to explore the implications of noisy
information that is potentially asymmetrically distributed across
individuals (87–90). Finally, we have shown that inactivity could
(at least in certain systems) be interpreted as an evolutionary inno-
vation that allows systems to partially escape one of the ecological
constraints on task allocation—the limited rate at which task

allocation can be adjusted. Why and under what conditions simi-
lar innovations could have evolved, such as individuals specialized
to quickly detect changes in the environment (e.g., sensory cells
in multicellular animals), communication mechanisms to quickly
spread information about those changes among individuals [e.g.,
social interactions in insect colonies (91–93)], and storage mecha-
nisms that prevent task stocks from being depleted too quickly
[e.g., replete ants that act as living reservoirs (94)], are further
questions that are ripe for theoretical analysis in the type of eco-
logically explicit framework developed here.

Data Availability. There are no data underlying this work.
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