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While no specific genetic markers are required in the diagnosis of multiple myeloma (MM), multiple genetic abnormalities
and gene signatures are used in disease prognostication and risk stratification. This is particularly important for the adequate
identification of the high-risk MM group, which does not benefit from any of the current therapies, and novel approaches need
to be proposed. Fluorescence in situ hybridization (FISH) has been employed for establishing risk-based stratification and still
remains the most used genetic technique in the clinical routine. The incorporation of gene expression profiling (GEP) in the study
of MM has shown to be a very powerful test in the patient stratification, but its incorporation in clinical routine depends on some
technical and logistic resolutions. Thus, FISH still remains the gold standard test for detecting genomic abnormalities and outcome

discrimination in MM.

1. Background

Multiple Myeloma (MM) is a malignancy characterized by
accumulation of clonal antibody-secreting plasma cells [1].
While no specific genetic markers are used for MM diag-
nosis, multiple genetic abnormalities have been associated
with malignant transformation and disease progression [2—
5]. The identification of genetics aberrations was greatly
improved after the implementation of analytic tools capable
to overcome the technical limitations related to low prolifer-
ation of the myeloma cell. Thus, several classifications have
been proposed based on the identification of the genomic
changes that help to discriminate between different genetic
groups of MM patients [3, 6-9].

Overall, MM is divided into two main genetic groups:
(1) the hyperdidploid group (H-MM), which can be defined
mainly by the gain of odd chromosomes 3, 5, 7, 9, 11, 15,
19, and 21 and (2) the nonhyperdiploid group (NH-MM),
characterized by the presence of chromosomal translocations
involving the immunoglobulin H (IgH) locus with several
chromosomal partners (4, 8, 11, 16) [10-12]. Each category
includes approximately half of cases, with a very low number
of overlapping cases.

Of interest, the dissection of the genetic landscape has
provided important genetic markers with demonstrated
clinical and disease stratification value [5, 13-15].

2. Cytogenetic Prognostic Markers—FISH

2.1. t(4;14)(p16;q32). This translocation affects the telom-
eric portion of chromosome 4p leading to the dysregulation
of two protooncogenes, FGFR3 in derivate chromosome 14
(der14) and multiple myeloma SET domain (MMSET) in
derivative chromosome 4 (der4) [16]. The t(4;14) is seen in
15-20% of primary MM [17]. The translocation is cryptic
and detectable only by FISH or reverse transcriptase—PCR
[17].

Several groups have associated the t(4;14) with infe-
rior outcome and more aggressive disease irrespective of
the treatment modality [2, 5, 18, 19] (Table1). It has
been suggested that this group of patients can benefit
from bortezomib-based therapy [20]. However, two recent
studies showed that, although bortezomib-based therapy
shows better results than previous therapies (vincristine,
adriamycin, and dexamethasone) in patients with t(4;14),
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TaBLE 1: Abnormalities associated with outcome in MM and
techniques used for detection.

Abnormalities Outcome Test
t(4;14)(p16;932) Poor FISH*
t(14;16)(q32;q23) Poor FISH
t(6;14)(p21;q32) Good? FISH
t(11;14)(q13;q932) Good/neutral FISH
Deletion 17p13 Poor FISH
Deletion 13 Poor Convenliopal
cytogenetics
normalties Poor FISH
Hyperdiploidy Good FISH or FCM**

(if not associated with deletion 17p13)

*Fluorescence in situ hybridization (FISH). ** Flow cytometry.

this translocation still has prognostic implications in a great
group of patients treated with this drug [18, 19].

2.2. 1(14;16)(q32;q23) and Other MAF Translocations. The
t(14;16) is found in 5-7% of all MM cases [4, 5, 21]. The
presence of t(14;16) has been associated with more aggressive
disease and shorter survival among the patients treated
with either conventional or high-dose chemotherapy [5, 6]
(Table 1). The prognosis of this translocation was recently
challenged by a study that suggests a neutral effect in a large
series of patients [21]. Given the very low prevalence of the
MAF abnormalities, the test to detect the presence of these
translocations has not been universally incorporated in the
clinical routine.

The upregulation of CCND3 (cyclin D3), as a result
of t(6;14)(p21;q32), is identified in only 3% of MM [5]
(Table 1). Until now, there is no known clinical or prognostic
information for this translocation.

2.3. #(11;14)(q13;932). This translocation results in the
juxtaposition of CCNDI proto-oncogene with the IgH locus
and as consequence an ectopic expression of cyclin D1 [22].
Of all MM, the #(11;14) has been described in 15% of cases
and is associated with CD20 expression, lymphoplasmacytic
morphology, hyposecretory disease, and Ig light chain usage
[22,23].

Most studies have suggested that the presence alone of
t(11;14) may confer a favorable outcome (Table 1), but this
effect is not strong enough to be statistically significant
(probably because of small magnitude of this translocation)
[22-24]. Moreover, due to heterogeneity within patients with
t(11;14) there exists a difficulty in establishing a favorable
outcome for patients with this genetic aberration. For
instance, the presence of K-RAS mutations in patients with
t(11;14) is also more prevalent (50%) than in patients with
other primary IgH translocations (10%) [25]. In addition,
the presence of t(11;14) is associated with an aggressive
phenotype such as plasma cell leukemia [23]. A recent study
with a larger series of patient with t(4;14) has suggested
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that the effect of t(11;14) on prognosis remains neutral [24]
(Table 1).

2.4. Ploidy Status. In MM, aneuploid is frequently observed
[11, 12] and delineates the disease into two main genetic
subtypes, H-MM and NH-MM. H-MM is more common
among males, has a higher incidence of MM bone disease,
and carries a more favorable outcome [6] (Table 1). Among
patients with H-MM, 13 deletion and chromosome 1
abnormalities have not apparent prognostic significance but
the presence of deletions of 17p13 in remains an important
prognostic factor. In addition, a study showed that most of
the prognostic value of H-MM was related to the gain of
chromosome 5 [24, 26].

2.5. Deletion of 17p. The deletion of 17p13 remains the most
important molecular prognostic factor in MM [5, 6, 20].
The deletion 17p13 is generally monoallelic and includes
TP53. The abnormality is detected in only 10% of new
diagnosis MM cases, but its prevalence increases in later
stages of the disease. Patients with 17p13 deletions often
have more aggressive and extramedullary disease (such as
plasmacytomas), center nervous system involvement, and
hypercalcemia [6, 27]. This abnormality is associated with
a shorter survival irrespective of the treatment modality,
including the novel bortezomib and IMiDs-based therapies
[5, 6, 14, 27] (Table 1).

2.6. Chromosomes 1 and 13. Chromosome 1 abnormalities
are found in almost half of MM cases [28]. There is an
enrichment of genes associated with proliferation in the
affected region [8]. Although the poor prognosis value
of this abnormality has been recently demonstrated, its
incorporation into standard clinical practice has not been
implemented yet [28] (Table 1).

The deletion of chromosome 13 is found in 50% of
MM cases [4-6, 8, 29]. Although this abnormality was
originally identified as negative prognostic factor in MM,
several studies had proved the association of chromosome 13
monosomy with the t(4;14) [6, 30, 31]. Even in the absence of
this association or other high-risk markers, the chromosome
13 alone is not a predictive of poor prognosis when identified
by FISH (Table 1). On the other hand, its identification by
conventional cytogenetics is a surrogate of high proliferation
and is used as a poor prognostic marker [32] (Table 1).

3. Comprehensive Genomic Tools in
MM Risk Stratification

The advent of high-resolution genomics tools provided
a remarkable revolution in the analysis of MM and the
identification of genomic signatures able to identify high-risk
patients and to predict patient outcome [6, 8, 33]. Several
high-resolution available tests provide a comprehensive anal-
ysis at the DNA (aCGH, single-nucleotide polymorphism
(SNP) arrays, and whole-genome sequencing (WGS)) and
RNA levels (gene expression profiling (GEP)).
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Among these technologies, the use of GEP is the most
promising risk stratification tool in MM. The use of GEP has
been successfully implemented in MM, and several genetic
signatures have been proposed [8, 33, 34]. The most used
signatures are based on the analysis of proliferation markers
or in centrosome index and successfully detected the 15-20%
of worse prognosis patients [35].

The prognostic classification, using genetic analysis as
outcome discrimination, has been used in several cohorts
of MM treated with the conventional and high-dose
chemotherapy followed by stem cell transplant (SCT) [5,
8, 35]. Moreover, the ongoing studies involving patients
with MM are focused on the use of these genetic markers
provided by genetic changes, as predictors of outcome in
those treated with proteasome inhibitors. Although GEP is
still mainly used for research purposes, some groups have
successfully implemented its use in the routine clinical care
[35]. Other approaches such as aCGH and WGS have not
been implemented in the clinical routine yet, being used in
the research laboratory.

4. Conclusion

Genetic studies have played a crucial role in the determi-
nation of the risk-based stratification of MM. Nowadays,
FISH and GEP are the most powerful tools for successfully
identifying disease subgroups with different outcomes.

References

[1] R. A. Kyle and S. V. Rajkumar, “Drug therapy: multiple
myeloma,” The New England Journal of Medicine, vol. 351, no.
18, pp. 1860-1921, 2004.

[2] R. Fonseca, B. Barlogie, R. Bataille et al., “Genetics and
cytogenetics of multiple myeloma: a workshop report,” Cancer
Research, vol. 64, no. 4, pp. 1546-1558, 2004.

[3] P.L.Bergsagel and W. M. Kuehl, “Molecular pathogenesis and
a consequent classification of multiple myeloma,” Journal of
Clinical Oncology, vol. 23, no. 26, pp. 6333-6338, 2005.

[4] W. J. Chng, O. Glebov, P. L. Bergsagel, and W. M. Kuehl,
“Genetic events in the pathogenesis of multiple myeloma,”
Best Practice and Research: Clinical Haematology, vol. 20, no.
4, pp. 571-596, 2007.

[5] R. Fonseca, E. Blood, M. Rue et al., “Clinical and biologic
implications of recurrent genomic aberrations in myeloma,”
Blood, vol. 101, no. 11, pp. 45694575, 2003.

[6] R. Fonseca, P. L. Bergsagel, J. Drach et al.,, “International
myeloma working group molecular classification of multiple
myeloma: spotlight review,” Leukemia, vol. 23, no. 12, pp.
2210-2221, 2009.

[7] F Zhan, Y. Huang, S. Colla et al., “The molecular classification
of multiple myeloma,” Blood, vol. 108, no. 6, pp. 2020-2028,
2006.

[8] J. D. Shaughnessy, E. Zhan, B. E. Burington et al., “Avalidated
gene expression model of high-risk multiple myeloma is
defined by deregulated expression of genes mapping to
chromosome 1,” Blood, vol. 109, no. 6, pp. 2276-2284, 2007.

[9] J. San-Miguel, M. V. Mateos, and N. C. Gutierrez, “Risk
stratification in the era of novel therapies,” Cancer Journal, vol.
15, no. 6, pp. 457—-464, 2009.

[10] N. V. Smadja, C. Fruchart, E. Isnard et al., “Chromosomal
analysis in multiple myeloma: cytogenetic evidence of two
different diseases,” Leukemia, vol. 12, no. 6, pp. 960-969, 1998.

[11] C. S. Debes-Marun, G. W. Dewald, S. Bryant et al., “Chro-
mosome abnormalities clustering and its implications for
pathogenesis and prognosis in myeloma,” Leukemia, vol. 17,
no. 2, pp. 427-436, 2003.

[12] R. Fonseca, C. S. Debes-Marun, E. B. Picken et al., “The
recurrent IgH translocations are highly associated with non-
hyperdiploid variant multiple myeloma,” Blood, vol. 102, no.
7, pp- 2562-2567, 2003.

[13] H. Avet-Loiseau, M. Attal, P. Moreau et al., “Genetic abnor-
malities and survival in multiple myeloma: the experience of
the Intergroupe Francophone du Myélome,” Blood, vol. 109,
no. 8, pp. 3489-3495, 2007.

[14] S. K. Kumar, J. R. Mikhael, E K. Buadi et al., “Management
of newly diagnosed symptomatic multiple myeloma: updated
Mayo Stratification of Myeloma and Risk-Adapted Therapy
(mSMART) consensus guidelines,” Mayo Clinic Proceedings,
vol. 84, no. 12, pp. 1095-1110, 2009.

[15] D. R. Carrasco, G. Tonon, Y. Huang et al., “High-resolution
genomic profiles define distinct clinico-pathogenetic sub-
groups of multiple myeloma patients,” Cancer Cell, vol. 9, no.
4, pp. 313-325, 2006.

[16] M. Chesi, E. Nardini, R. S. C. Lim, K. D. Smith, W. Michael
Kuehl, and P. L. Bergsagel, “The t(4;14) translocation in
myeloma dysregulates both FGFR3 and a novel gene, MMSET,
resulting in IgH/MMSET hybrid transcripts,” Blood, vol. 92,
no. 9, pp. 3025-3034, 1998.

[17] J. J. Keats, T. Reiman, C. A. Maxwell et al., “In multiple
myeloma, t(4;14)(pl6;q32) is an adverse prognostic factor
irrespective of FGFR3 expression,” Blood, vol. 101, no. 4, pp.
1520-1529, 2003.

[18] H. Avet-Loiseau, J. Soulier, J. P. Fermand et al., “Impact
of high-risk cytogenetics and prior therapy on outcomes
in patients with advanced relapsed or refractory multiple
myeloma treated with lenalidomide plus dexaméthasone,”
Leukemia, vol. 24, no. 3, pp. 623-628, 2010.

[19] M. Mateos, N. Gutierrez, and B. Paiva, “Clinical outcome
according to both cytogenetic abnormalities (CA) detected by
fluorescence in situ hibridization (FISH) and hyperdiploidy
assessed by flow cytometry (FCM) in elderly newly diagnosed
myeloma patients treated with A Bortezomib-based combina-
tion,” Blood, 2010, abstract 309.

[20] J. E San Miguel, R. Schlag, N. K. Khuageva et al., “Bortezomib
plus melphalan and prednisone for initial treatment of
multiple myeloma,” The New England Journal of Medicine, vol.
359, no. 9, pp. 906-917, 2008.

[21] H. Avet-Loiseau, F. Malard, L. Campion et al., “Translocation
t(14;16) and multiple myeloma: is it really an independent
prognostic factor?” Blood, vol. 117, no. 6, pp. 2009-2011, 2011.

[22] J. D. Hoyer, C. A. Hanson, R. Fonseca, P. R. Greipp, G. W.
Dewald, and P. J. Kurtin, “The (11;14)(q13;q32) translocation
in multiple myeloma: a morphologic and immunohistochem-
ical study,” American Journal of Clinical Pathology, vol. 113, no.
6, pp. 831-837, 2000.

[23] R. Garand, H. Avet-Loiseau, FE. Accard, P. Moreau, J. L.
Harousseau, and R. Bataille, “t(11;14) and t(4;14) translo-
cations correlated with mature lymphoplasmacytoid and
immature morphology, respectively, in multiple myeloma,”
Leukemia, vol. 17, no. 10, pp. 2032-2035, 2003.

[24] R. Fonseca, E. A. Blood, M. M. Oken et al., “Myeloma and the
t(11;14)(q13;q32); evidence for a biologically defined unique
subset of patients,” Blood, vol. 99, no. 10, pp. 3735-3741, 2002.



(25]

[26]

[27

(35]

W. J. Chng, N. Gonzalez-Paz, T. Price-Troska et al., “Clinical
and biological significance of RAS mutations in multiple
myeloma,” Leukemia, vol. 22, no. 12, pp. 2280-2284, 2008.
W.J. Chng, S. Kumar, S. VanWier et al., “Molecular dissection
of hyperdiploid multiple myeloma by gene expression profil-
ing,” Cancer Research, vol. 67, no. 7, pp. 2982-2989, 2007.

J. Drach, J. Ackermann, E. Fritz et al., “Presence of a p53 gene
deletion in patients with multiple myeloma predicts for short
survival after conventional-dose chemotherapy,” Blood, vol.
92, no. 3, pp. 802-809, 1998.

F. Zhan, S. Colla, X. Wu et al, “CKSIB, overexpressed
in aggressive disease, regulates multiple myeloma growth
and survival through SKP2- and p27Kipl-dependent and -
independent mechanisms,” Blood, vol. 109, no. 11, pp. 4995—
5001, 2007.

G. Tricot, B. Barlogie, S. Jagannath et al., “Poor prognosis in
multiple myeloma is associated only with partial or complete
deletions of chromosome 13 or abnormalities involving 11q
and not with other karyotype abnormalities,” Blood, vol. 86,
no. 11, pp. 42504256, 1995.

W.J. Chng, R. Santana-Dévila, S. A. van Wier et al., “Prognos-
tic factors for hyperdiploid-myeloma: effects of chromosome
13 deletions and IgH translocations,” Leukemia, vol. 20, no. 5,
pp. 807-813, 2006.

N. C. Gutiérrez, M. V. Castellanos, M. L. Martin et al., “Prog-
nostic and biological implications of genetic abnormalities in
multiple myeloma undergoing autologous stem cell transplan-
tation: t(4;14) is the most relevant adverse prognostic factor,
whereas RB deletion as a unique abnormality is not associated
with adverse prognosis,” Leukemia, vol. 21, no. 1, pp. 143-150,
2007.

L. Chiecchio, R. K. M. Protheroe, A. H. Ibrahim et al., “Dele-
tion of chromosome 13 detected by conventional cytogenetics
is a critical prognostic factor in myeloma,” Leukemia, vol. 20,
no. 9, pp. 1610-1617, 2006.

P. L. Bergsagel, W. M. Kuehl, E Zhan, J. Sawyer, B. Barlogie,
and J. Shaughnessy, “Cyclin D dysregulation: an early and
unifying pathogenic event in multiple myeloma,” Blood, vol.
106, no. 1, pp. 296-303, 2005.

W. J. Chng, E. Braggio, G. Mulligan et al., “The centrosome
index is a powerful prognostic marker in myeloma and
identifies a cohort of patients that might benefit from aurora
kinase inhibition,” Blood, vol. 111, no. 3, pp. 1603-1609, 2008.
R. Fonseca and J. San Miguel, “Prognostic factors and staging
in multiple myeloma,” Hematology/Oncology Clinics of North
America, vol. 21, no. 6, pp. 1115-1140, 2007.

Genetics Research International



	Background
	Cytogenetic Prognostic Markers---FISH
	t(4;14)(p16;q32)
	t(14;16)(q32;q23) and Other MAF Translocations
	t(11;14)(q13;q32)
	Ploidy Status
	Deletion of 17p
	Chromosomes 1 and 13

	Comprehensive Genomic Tools inMM Risk Stratification
	Conclusion
	References

