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Abstract: Marine oligopeptide preparation (MOP) obtained from Chum Salmon 

(Oncorhynchus keta) by the method of enzymatic hydrolysis, has been found to possess a 

radioprotective property through stimulation of the radiation-induced immunosuppression. 

The current study aimed to further investigate the free radicals scavenging and antioxidant 

effects of MOP in radiation injured mice. Female ICR mice (6–8 weeks old) were 

randomly divided into 5 groups, i.e., blank control, irradiation control and MOP (0.225, 

0.450 and 1.350 g/kg body weight) plus an irradiation-treated group. The result revealed  

that MOP significantly increased the white blood cell counts after irradiation, and lessened 

the radiation-induced oxidative damage. These effects may be caused by augmentation  

of the activities of antioxidant enzymes, such as SOD and GSH-Px, reduction of the  

lipid peroxidation (MDA level) in liver, and protection against radiation-induced  

apoptosis. Therefore, we propose that MOP be used as an ideal antioxidant to alleviate 

radiation-induced oxidation damage in cancer patients. 
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1. Introduction 

In recent years it has been increasingly acknowledged that dietary proteins provide a rich source of 

bioactive peptides that can promote human health by reducing the risk of chronic diseases [1–3]. 

Similar to various endogenous bioactive peptides, such as some hormones, bioactive peptides from 

dietary sources have been defined as specific protein fragments that have a positive impact on body 

functions or conditions, and that may eventually benefit health. The activity is based on their inherent 

amino acid composition and sequence. The size of active sequences may vary from three to twenty 

amino acid residues, and many peptides are known to reveal multifunctional properties, such as 

antihypertension, immunomodulatory, antithrombotic, antioxidant, anticancer and antimicrobial 

activities, in addition to nutrient utilization [4]. 

Fish skin, bones, scales and residual minced meat, the by-products of the fish-processing industry, 

which usually cause wastage and pollution, can actually be turned into a high-protein food [5,6]. It has 

been found that enzymatic hydrolysis of dietary proteins offers a rapid and reproducible method for 

producing considerable bioactive peptide fractions, which are very likely to become health-beneficial 

food ingredients or nutraceutical preparations [7]. Actually, by enzymatic hydrolysis, bioactive 

peptides isolated from various kinds of fish, such as salmon [8,9], cod [10], yellow stripe trevally [11] 

and yellowfin sole [12], etc., have been proved to possess numerous biological activities beneficial for 

health. Therefore, we decided to conduct a research into enzymatic hydrolysis of Chum Salmon 

(Oncorhynchus keta), one of the most common species of fish in the Chinese farming industry, hoping 

that the findings of our study would be helpful in promoting the development of nutritional-value-added 

by-products, and alleviating the problem of fishing waste disposal. 

Although being viewed as a useful remedy for cancer therapy, ionizing radiation can also cause a 

series of deleterious side effects, including oxidation damage and disorders of the immune system  

and the hematopoietic system. Our earlier research demonstrated that marine oligopeptide  

preparation (MOP), compounds of low molecule peptides extracted from salmon minced meat by 

enzymatic hydrolysis, possess a radioprotective property through stimulation of the radiation-induced 

immunosuppression, and may have a supplementary protective effect in cancer therapy [13]. The 

present study reported here mainly focuses on the free radicals scavenging and antioxidant effects of 

MOP in radiation injured mice. 

2. Results and Discussion 

2.1. Characterization of MOP 

After HPLC purity and MALDI-TOF-MS analysis, we found that the molecular weight distribution 

of MOP was between 100 and 860 Da, and most of the peptides were distributed between 300 and 

860 Da (85.86% of the total). Noting that the amount of free amino acids was 2.05%, it was deduced 

that the main composition of MOP was due to small peptides. The composition of amino acids was 

further analyzed. Generally, MOP was mainly composed of Glu > Asp > Lys > Leu > Arg > Gly, and 

the amounts of indispensable amino acids (IAAs) were approximately comparable to the amounts of 

dispensable amino acids (DAAs) (Table 1). The composition of amino acid was similar to that in other 
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research in which soluble and fish protein hydrolysate contained high levels of Glu, Asp, Gly and Lys, 

whereas soy protein and casein contained high levels of Gln, Asn, Pro, Arg and Leu [14]. 

Table 1. Amino acid composition of marine oligopeptide preparation (MOP) from salmon. 

Amino acid No. residues/100 residues 
Arginine 7.12 
Histidine 3.39 
Isoleucine 3.76 
Leucine 7.71 
Lysine 9.18 

Methionine 3.52 
Phenylalanine 4.46 

Threonine 4.67 
Tryptophan 0.19 

Valine 5.17 
Indispensable AA (IAA) 49.16 

Alanine 5.70 
Aspartic acid 10.45 

Cystine 1.05 
Glutamic acid 15.72 

Glycine 6.56 
Proline 3.61 
Serine 4.10 

Tyrosine 3.65 
Dispensable AA (DAA) 50.84 

MOP, marine oligopeptide preparation; AA, amino acid. 

2.2. Effect of MOP on Irradiation-Reduced White Blood Cells Count 

After radiation, hematological system usually displays morphological changes earliest. Many 

studies reported that the peripheral blood leukocyte count decreased significantly in mice after  

whole-body irradiation (WBI) [15,16]. As illustrated in Figure 1, the white-cell count 3 days following 

irradiation was (0.77 ± 0.116) × 109/mL, significantly lower than in the non-irradiated controls  

(8.50 ± 0.709) × 109/mL (p < 0.01). This indicates that irradiation-induced injury has seriously 

weakened intrinsic hematological system and immunomodulatory function. Oral administration with 

MOP markedly protected the mice from the irradiation-induced injury. On the 3rd day after being 

irradiated, the white cell count was (1.30 ± 0.337) × 109/mL in high dose of MOP-treated animals, 

which were significantly higher than those of irradiated controls (p < 0.05). Similarly, on the 14th day 

after being irradiated, the white cell count in this group also increased significantly in comparison with 

irradiated controls (p < 0.05). In the 0.225 and 0.450 g/kg body weight (b.w.) MOP groups, the white 

cell counts were not significantly augment compared with the IR control group, although slight 

increases were observed. These results are consistent with our other data [13] in that WBI of mice do 

cause an exponential decline in cell survival of splenic cells and a depression capable of the response 

of splenic mononuclear cells to mitogens, both concanavalin A and lipopolysaccharide, and MOP can 
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alleviate these inhibition effects. Considering these findings, we conclude that MOP possesses good 

irradiation protection property, which partly attributes to their strong immunostimulative activity. 

Figure 1. Effect of MOP on irradiation-reduced white blood cells count in mice after WBI 

(4.5 Gy). Values represented the mean ± S.D. (n = 10 per group). * p < 0.05 versus blank 

control; # p < 0.05 versus irradiation control. MOP, marine oligopeptide preparation;  

WBI, whole-body irradiation; S.D., standard deviation; IR, irradiation; b.w., body weight. 

 

2.3. Effect of MOP on Superoxide Dismutase (SOD) Activity in Serum and Liver, Glutathione Peroxidase 

(GSH-Px) Activity and Malondialdehyde (MDA) Level in Liver after WBI 

One of the major reasons for cellular injury after radiation exposure is the generation of free 

radicals and the increased levels of lipid peroxides in tissues and especially cell membranes, which are 

major determinants of cellular damage. Many investigators have reported the inhibition of antioxidant 

systems in blood and tissues of mice and rats, accompanied by an increase in lipid peroxide products 

after irradiation exposure [17–19]. Similar results were obtained in our current study. As shown in 

Figure 2, increased MDA level, decreased GSH-Px activity and SOD activity following irradiation 

were observed for 14 days after receiving 4.5 Gy irradiation. Products of lipid peroxidation such as 

MDA, have the ability to interact with and alter macromolecules, possibly resulting in diseases. 

Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) constitute the enzymic antioxidant 

system, which scavenges oxidative stress (OS) production and lipid peroxidation. SOD is the only 

enzyme that disrupts superoxide radicals and is present in all cells with high amounts in erythrocytes. 

Besides, GSH-Px is an equally important antioxidant, which reacts with hydrogen peroxide thus 

preventing intracellular damage caused by the same. Thus, it has been demonstrated that the activity of 

antioxidative systems is suppressed after whole body γ-radiation exposure. 
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Figure 2. Effect of MOP on SOD activity in serum (A) and liver (B), GSH-Px activity (C) 

and MDA level (D) in liver after WBI (4.5 Gy). Values represented the mean ± S.D.  

(n = 10 per group). * p < 0.05 versus blank control; # p < 0.05 versus irradiation control. 

MOP, marine oligopeptide preparation; SOD, superoxide dismutase; GSH-Px, glutathione 

peroxidase; MDA, malondialdehyde; WBI, whole-body irradiation; S.D., standard deviation; 

IR, irradiation; b.w., body weight. 
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Figure 2. Cont. 

 

It is hypothesized that if the oxidative stress is involved in the origin of tissue damage, then 

successful antioxidant treatment should delay or prevent the onset of that damage [20]. Recently, there 

has been a great interest in the use of dietary agents as nontoxic antioxidants, compared with most 

synthetic radioprotectors, to reduce the deleterious side effects of radiation in cancer prevention and 

therapy [15,17,19]. In our study, compared with the irradiation control group, the inhibition of the 

MOP group was relieved. Treatment with 1.350 g/kg b.w. MOP, caused a significant increase of  

6% (P < 0.05) and 49% (P < 0.05) in the SOD activity in serum and liver, respectively, in comparison 

with the irradiation control, as well as the activity in liver of 0.450 g/kg b.w. MOP group (P < 0.05) 

(Figure 2A,B). Although the elevated GSH-Px activity in liver of 1.350 g/kg b.w. MOP group was not 

significant, this activity recovered to the level of the blank control group (Figure 2C). Besides, the 

MDA level of 1.350 g/kg b.w. MOP group markedly decreased (P < 0.05) in comparison with IR 

control (Figure 2D). The increased activity of antioxidant enzymes in MOP-treated irradiated rats may 

be brought about either by facilitating the replacement of lost antioxidase activity in irradiated tissue, 

or by enhancing synthesis of essential repair enzymes. Thus, the finding suggests that MOP protects 

irradiation-induced injury partly by its strong free radical scavenging activity. 

2.4. Effect of MOP on the Apoptosis Rate of Splenocytes after WBI 

Apart from oxidative stress, ionizing radiation have been shown to damage DNA, resulting in 

oxidative stress induced apoptosis [21] and various cancers [22,23]. The spleen is susceptible to 

ionizing radiation and is induced to undergo apoptosis on exposure to ionizing radiation. Several 

studies have shown that induction of apoptosis by WBI occurs in the cells of mice and rats [24,25]. 

The apoptosis of splenocytes in mice both with and without MOP treatment was evaluated by  

two-color flow cytometry (Annexin V-FITC/ PI Staining) analysis. As shown in Figure 3, the 

apoptosis rate of splenocytes after irradiation was significantly higher than in the non-irradiated 

controls (P < 0.05), while MOP pretreatment lessened this tendency. In particular, compared with 

irradiation control, treatment with 1.350 g/kg b.w. MOP caused a decline of 18% in the apoptosis rate 

of splenocytes (P < 0.05). The result was similar to the findings of our other studies [13] in that MOP 

treated group significantly impaired the radiation-induced changes of levels of apoptosis-related 
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proteins. Taken together, these results demonstrate that treatment with MOP protects the mitochondrial 

membrane against radiation-induced immune cell damage and genetic damage. 

Figure 3. Effect of MOP on the apoptosis rate of splenocytes after WBI (6 Gy). (A) Blank 

control; (B) IR control; (C) IR + 1.350 g/kg b.w. MOP group; (D) Values represented the 

mean ± S.D. (n = 10 per group). * p < 0.05 versus blank control; # p < 0.05 versus 

irradiation control. MOP, marine oligopeptide preparation; WBI, whole-body irradiation; 

IR, irradiation; b.w., body weight; S.D., standard deviation. 

 

3. Experimental Section 

3.1. Treatment of Mice with MOP 

MOP was prepared from wild-caught Chum Salmon (Oncorhynchus keta) (average body weight, 

1.47 kg) as described previously [26]. Six to eight weeks old female ICR mice, weighing 18–22 g, were 

obtained from the Animal Service of Health Science Center, Peking University. Animals were 

randomly divided into 5 groups, i.e., blank control, irradiation control and 1.350, 0.45 and 0.225 g/kg 

b.w. MOP plus irradiation-treated group, with 10 animals in each group. Blank and irradiation control 

animals were fed AIN93M Diet from Vital River Limited Company (Beijing, China). The mice in the 

experimental group were fed 1.350%, 0.45% and 0.225% MOP in AIN93M diet (a dose of 1.350, 0.45 

and 0.225 g/kg body weight (b.w.) MOP treatment in mice). 
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Their weight and food consumption were measured every week. No significant differences in diet 

or weight gain were found between the un-supplemented and supplemented mice (data not shown). All 

animals were adapted at animal colony facilities in the laboratory of animal service of Peking 

University for at least 1 week before treatment. Mice were housed four to five per cage. All animals 

were maintained at a constant temperature (23 ± 1 °C) and humidity (60 ± 10%) environment under a 

12-h light/dark cycle (light on 07:30–19:30 h) with free access to food and water. Animal treatment 

and maintenance were carried out in accordance with the Principle of Laboratory Animal Care  

of the National Institutes of Health (NIH) [27] and the guidelines of the Peking University Animal 

Research Committee. 

3.2. Irradiation of Animals with 60Co γ-Rays 

Each mouse was placed individually in a close-fitting Perspex box (3 × 3 × 11 cm) and exposed  

to WBI with a 60Co source irradiator (Theratron-780 Teletherapy Unit, Health Science Center,  

Peking University, China). Briefly, mice placed in the box were exposed to WBI with a dose rate of 

1.5 Gy min−1 for 4 min and source-surface distance of 150 cm. 

Except for the blank control, mice of the other four groups were fed different diets for 14 days and 

received a single dose of WBI with 4.5 Gy of 60Co γ-rays on the 15th day. On the 3rd day and 14th day 

after irradiation, the effects of MOP on white blood cell counts were measured. Besides, on the  

14th day after irradiation, the activity of antioxidant system and oxidative products were assayed. 

Except for the blank control, mice of the other four groups were fed different diets for 30 days and 

received a single dose of WBI with 6 Gy of 60Co γ-rays on the 30th day. 24 h after irradiation, to 

ascertain the effects of MOP on apoptosis, the apoptosis rate of splenocytes was measured by Annexin 

V-FITC/PI Staining analysis 

3.3. Number of White Blood Cells 

After irradiation, all mice were fed original diets. 20 μL peripheral blood added to 0.38 mL  

1% HCL were collected triple, before irradiation and on the 3rd and 14th day after irradiation, 

respectively. The number of white blood cells in the peripheral blood was determined using an 

automated hematology analyzer (Beckman Coulter Inc., USA). 

3.4. Measurement of Antioxidative Systems 

Fourteen days after irradiation, animals were deeply anesthetized by CO2 inhalation and sacrificed. 

The liver was promptly dissected and perfused with 50 mM (pH 7.4) ice-cold phosphate buffer saline 

solution (PBS). Then the tissue was homogenized in 1/5 (w/v) PBS containing a protease inhibitor 

cocktail (Sigma–Aldrich) with 10 strokes at 1200 rpm in a potter homogenizer. Homogenate was 

divided into two portions and one part was directly centrifuged at 8000 g for 10 min. Supernatant were 

used to determine MDA levels. The second part of the homogenate was sonicated four times for 30 s 

with 20 s intervals using a VWR Bronson Scientific sonicator, centrifuged at 5000 g for 10 min at 

4 °C, and the supernatants were collected to determine antioxidative systems and oxidative products. 
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SOD activity was measured according to the method of Fridovich et al. [28]. This method employs 

xanthine and xanthine oxidase to generate superoxide radicals. The superoxide radicals react with  

p-iodonitrotetrazlium violet to form a red formazan dye that was measured at 550 nm. Assay medium 

contained 0.01 M phosphate buffer, 3-cyclohexilamino-1-propanesulfonicacid (CAPS) buffer solution 

(50 mM CAPS, 0.94 mM EDTA) with pH 10.2, solution of substrate (0.05 mM xanthine and 

0.025 mM 2-(4-iodophenyl)-3-(4-nitrophenol)-5-phenyl tetrazolium chloride, INT) and 80 μL xanthine 

oxidase. SOD activity in liver was expressed as U/mg of protein, while this value in serum was 

expressed as U/mL. 

Measurement of GSH-Px activity was based on the following principle: GSH-Px catalyzes the 

oxidation of glutathione by cumene hydroperoxide [29]. In the presence of glutathione reductase and 

nicotinamide adenine dinucleotide phosphate (NADPH), the oxidized glutathione is immediately 

converted to the reduced form with a concomitant oxidation of NADPH to NADP+. The decrease in 

absorbance at 340 nm is measured. The enzyme unit of GSH-Px is defined as the number of 

micromoles of reduced NADPH oxidized per minute at 37 °C by 1 mL of supernatants under standard 

assay conditions. GSH-Px activity was expressed as U/mg protein. 

3.5. Measurement of Oxidative Products 

The level of oxidative products, i.e., MDA, in liver tissue was determined using the method of 

Uchiyama and Mihara [30]. Half a milliliter of homogenate was mixed with 3 mL of H3PO4 solution 

(1%, v/v) followed by addition of 1 mL of thiobarbituric acid solution (0.67%, w/v). Then the mixture 

was heated in a water bath for 60 min. The colored complex was extracted into n-butanol, and the 

absorption at 532 nm was measured using tetramethoxypropane as standard. MDA levels were expressed 

as nmol per mg of protein. 

3.6. Apoptosis Rate Measurement 

The apoptosis of spleen was evaluated by two-color flow cytometry (Annexin V-FITC/PI Staining) 

analysis. The spleens were removed using a sterile technique, and placed in sterile plates containing 

Hank’s balanced salt solution (HBSS, containing 137.93 mM NaCl, 5.33 mM KCl, 4.17 mM NaHCO3, 

0.441 mM KH2PO4, 0.338 mM Na2HPO4 and 5.56 mM D-Glucose), then the splenocytes were 

dissociated from the connective tissue capsule by gently pressing the organ through a 200 mesh, sterile 

metal sieve. The sieve was rinsed with HBSS, and the suspension collected in sterile 15 mL conical 

tubes, and red blood cells in the cell suspension were dissolved in haemolyzed solution (7 g/L NH4Cl 

and 2.6 g/L Tris-HCl). The resulting single-cell suspension was then washed twice with HBSS and 

centrifuged (180× g, 10 min). The supernatant was discarded, and the cells were resuspended in 

200 µL ice-cold binding buffer and 10 µL horseradish peroxidase (FITC)-labled Annexin V and 5 µL 

propidium iodide (PI) were added in. The cell suspension was gently mixed and incubated in the dark 

for 15 min at room temperature. Apoptosis was determined by flow cytometry (Becton Dickinson, 

USA). In the study Annexin V positive and PI negative cells were defined as apoptotic cells. Both 

Annexin V-FITC and PI negative cells were considered as viable cells, while both Annexin V-FITC 

and PI positive cells were considered as late apoptotic or already dead cells. 
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3.7. Statistical Analysis 

The one-way analysis of variance (ANOVA) test and multiple comparison of Dunnett’s t-test were 

used to evaluate the differences of parametric samples between control and MOP groups, and data 

were expressed as mean ± standard deviation (SD) for the values from the number of experiments 

shown in the figures. 

4. Conclusions 

This current research demonstrates that MOP significantly increases the white blood cell counts 

after irradiation, and alleviates the radiation-induced oxidation damage. These effects may be caused 

by augmentation of the activities of antioxidant enzymes, such as SOD and GSH-Px, reduction of the 

lipid peroxidation, and protection against radiation-induced apoptosis. Therefore, we propose that 

MOP be used as an ideal antioxdant to alleviate radiation-induced oxidation damage in cancer patients. 

Further studies should be undertaken to separate and identify certain specific peptides in the mixture 

responsible for the activity. 
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