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ABSTRACT
Background: Examination of meal intakes can elucidate the role of individual meals or meal patterns in health not

evident by examining nutrient and food intakes. To date, meal-based research has been limited to focus on population

rather than individual intakes, without considering portions or nutrient content when characterizing meals.

Objectives: We aimed to characterize meals commonly consumed, incorporating portions and nutritional content, and

to determine the accuracy of nutrient intake estimates using these meals at both population and individual levels.

Methods: The 2008–2010 Irish National Adult Nutrition Survey (NANS) data were used. A total of 1500 participants,

with a mean ± SD age of 44.5 ± 17.0 y and BMI of 27.1 ± 5.0 kg/m2, recorded their intake using a 4-d weighed food

diary. Food groups were identified using k-means clustering. Partitioning around the medoids clustering was used to

categorize similar meals into groups (generic meals) based on their Nutrient Rich Foods Index (NRF9.3) score and the

food groups that they contained. The nutrient content for each generic meal was defined as the mean content of the

grouped meals. Seven standard portion sizes were defined for each generic meal. Mean daily nutrient intakes were

estimated using the original and the generic data.

Results: The 27,336 meals consumed were aggregated to 63 generic meals. Effect sizes from the comparisons of mean

daily nutrient intakes (from the original compared with generic meals) were negligible or small, with P values ranging

from <0.001 to 0.941. When participants were classified according to nutrient-based guidelines (high, adequate, or low),

the proportion of individuals who were classified into the same category ranged from 55.3% to 91.5%.

Conclusions: A generic meal–based method can estimate nutrient intakes based on meal rather than food intake

at the sample population and individual levels. Future work will focus on incorporating this concept into a meal-based

dietary intake assessment tool. J Nutr 2022;152:2297–2308.
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Introduction

Because nutrients and foods are consumed as part of meals,
meal-based intake information may complement existing
dietary guidelines with regard to understanding and meal
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planning by consumers (1, 2). Knowledge derived from meal-
based research would allow dietary guidelines to provide advice
on the basis of different meal types and their combinations, the
timing of meals, and the types of foods consumed together as
part of those meals, rather than focusing only on the types of
foods that should be consumed over the course of a day (2, 3).
This advice may be more intuitively understood because people
tend to conceptualize their dietary intakes as meals rather than
daily intakes of foods (4, 5). A meal-based approach may also
be superior in technology-based intake assessments and the
provision of personalized nutrition recommendations, because
meal intakes can be recorded in a way that is less burdensome
than recording of individual food intakes (6).

Previous meal-based research has used national dietary
survey data to identify a small list of generic, or commonly
consumed, meals in a given population that are representative
of the much larger list of actual meals consumed by that
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population (7–11). These generic meals typify the actual meals
that are consumed and are defined by their nutritional content
and the food groups that they contain (7–11). Research on
generic meals to date has focused on their potential for
estimating dietary intakes at a population level (7–9) or
characterizing the types of foods that individuals commonly
combine to make meals (7–11). No studies have assessed
whether generic meals can be used to classify individuals’
dietary intakes into categories according to nutrient-based
dietary guidelines. This method of categorizing individual
intakes has been used in other forms of technology-based
personalized nutrition, whereby the dietary advice provided
to individuals is determined by whether they consume low,
moderate, or high quantities of nutrients according to nutrient-
based guidelines (12). The use of technology in dietary intake
assessment can reduce respondent burden (13), and meal-based
methods have been proposed as a lower-burden way in which
dietary intakes could be assessed with regard to nutrient-based
guidelines and dietary feedback provided using Internet and
mobile technology (6). Determining the ability of meal-based
intakes to correctly estimate nutrient intakes at an individual
level is important for the development of such meal-based intake
assessment and feedback tools.

Good agreement with food-based methods (such as food
diaries) has been obtained using these generic meals to
determine mean daily intakes at a sample population level, with
median correlation coefficients ranging from 0.44 (7) to 0.61
(9) for correlations between estimated nutrient intakes derived
from the food data and the generic data. However, methods
of identifying generic meals to date have failed to incorporate
portion sizes and have limited emphasis on nutritional content
when identifying generic meals. This may limit their ability to
capture the variability of nutrient intakes between individuals
and may not be sufficient to identify generic meals and meal
patterns that are relevant for the promotion of health (7, 8, 14).
The approaches used to date have relied on the frequent itemset
data mining methods (7–9), latent variable mixture modeling
(10), and principal components analysis (11). Although these
approaches are effective in identifying common combinations
of food groups within meals, they cannot distinguish between
those meals that contain similar or identical food groups but
are considerably different in their nutritional contents, for
example, the foods in the meat/fish group can vary considerably
with regard to their energy content and fat composition
(7, 9–11, 15).

The objectives of this study are to determine generic meals
in national dietary survey data incorporating both portion size
and the nutritional content of meals, and to assess the degree
of agreement between nutrient intakes derived using the generic
meals and the original meals at both the sample population and
individual levels.

Methods
Study sample
The analysis was carried out on previously collected data from the
National Adult Nutrition Survey (NANS) in Ireland (16). NANS
recruited participants aged between 18 and 90 y who were free-
living and not pregnant or breastfeeding. Data were collected between
October 2008 and April 2010. The sample was representative of
Irish adults with respect to age, gender, social class, and geographical
location. Each participant completed a 4-d weighed food diary.
Reported food intake data were converted into nutrient data using

WISP C© (Tinuviel Software). In this original data set each participant
had nutrient intake values for each food consumed during the
recording period. Ethical approval was provided by University College
Cork Clinical Research Ethics Committee of the Cork Teaching
Hospitals. Further details on the study sample are available elsewhere
(16).

Food groups
Clustering is a data analysis technique that groups observations (in this
case, foods) into groups, or clusters, in such a way that the features
(or variables; in this case, the nutrients of interest within the foods)
of the observations within a given cluster are more similar to each
other than to the observations (foods) in other clusters (17). Within
the current analysis, foods reported in the dietary survey were firstly
grouped into 1 of 6 groups within the Irish Food pyramid (vegetables,
salad, and fruit; cereal, bread, potato, pasta, and rice; milk, yogurt,
and cheese; meat, poultry, fish, eggs, beans, and nuts; fats, spreads, and
oils; and foods high in fat, sugar, and/or salt) (18), and then further
grouped using k-means clustering (Figure 1). A seventh group (other)
was used for the remaining foods that did not belong to any of the
aforementioned groups. This approach thus identified subgroups of
foods within each of the existing food pyramid food groups, with
similar compositions of the key nutrients of concern, outlined in what
follows. The Irish food pyramid was used as the starting point to
allow potential future applications of this work (dietary assessment and
dietary advice) to be easily understood in the context of existing dietary
guidelines. The purpose of using these newly derived subgroups rather
than existing food groupings, within the NANS data set, was to allow
the food groups to be created in a data-driven manner that accounts
for nutrients of public health importance and demonstrates a pathway
for any future researcher to adapt to future data sets. Specifically, the
features (or input variables) chosen for the clustering were the 12
nutrients used in the previously validated nutrition quality index, the
Nutrient Rich Foods Index (NRF9.3) (19): protein, fiber, vitamin A,
vitamin C, vitamin E, calcium, iron, magnesium, potassium, saturated
fat, added sugar, and sodium; that is, foods were clustered based on
their similarity in relation to those nutrients. Food supplements and
energy-free foods were not included in this analysis, because they had
not been included in the original validation studies of the NRF9.3 (19).
Variables were in units per 100 kcal and were z-standardized before
clustering. K-means clustering requires that the number of clusters is
chosen before clustering. Within this study the number of clusters was
chosen by applying 24 different indices used to determine the number
of clusters to the data and choosing the number of clusters that was
most frequently proposed among the indices (20). For 2 of the groups
(cereal, bread, potato, pasta, and rice; milk, yogurt, and cheese), the
clustering solution arising from the most frequently proposed number
of clusters led to some clusters containing only 2–3 foods. In these
instances, the next most frequently chosen value for cluster number
was used. The range of possible values assessed for cluster number
was from 2 to 10 inclusive. Charrad et al. (20) provide details on
the indices used. The values of the indices obtained for the vegetables,
salad, and fruit group of the food pyramid have been provided as an
example in Supplemental Table 1A; values for all groups are available
on request. Foods that did not have a specific group in the food pyramid
were not clustered, but considered as individual food groups: alcoholic
beverages, nonalcoholic beverages, and miscellaneous foods such as
sauces, dips, and dressings. The fats, spreads, and oils group was not
further split using clustering given the small number of foods in this
group (n = 36). Table 1 presents the original groups in the food
pyramid and the number of clusters identified within each group. In
total there were 12 food groups identified through clustering and the
3 remaining groups aforementioned that do not appear in the food
pyramid (Table 1). These 15 food groups were then used to derive
generic meals as described next.

Generic meals
After the k-means clustering to determine the 15 food groups, individual
foods listed within each meal, reported by participants, were replaced
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FIGURE 1 Flowchart of the process for deriving generic meals. The original database is from 1500 participants recording their dietary intakes
over a period of 4 d during the National Adult Nutrition Survey in Ireland, 2008–2010. NRF9.3, Nutrient Rich Foods Index; PAM, partitioning
around the medoids.

with the food group to which they belonged. Individual meals were
then defined by the individual food groups that made up each meal,
meaning that for each food reported in a given meal, the food group
to which it was assigned was used to represent that food, instead of
the individual item (Figure 1). After this substitution of food groups in
place of foods in the meal, an NRF9.3 (19) score was calculated for
each individual meal as an indicator of nutritional quality. The score,
developed by Fulgoni et al. (19), was calculated based on 9 nutrients to
encourage (protein, dietary fiber, calcium, iron, potassium, magnesium,
and vitamins A, C, and E) and 3 nutrients to limit (saturated fat, added
sugar, and sodium). For each of these nutrients the quantity of the
nutrient per 100 kcal present in each meal as a percentage of European
reference intakes (RIs) was calculated. RIs were derived from Regulation

(EU) No. 1169/2011 (21) where available. Those that were not available
in that regulation (added sugar and dietary fiber) were instead derived
from the European Food Safety Authority (EFSA) (22). RI percentages
were limited to 100% to avoid overvaluing meals. The percentage RI
scores for the nutrients to encourage were summed, as were the scores
for the nutrients to limit. The nutrients to limit score was subtracted
from the nutrients to encourage score to give an overall NRF9.3 score
for each meal.

Within the NANS study participants self-selected the meal type to
which each recorded intake belonged from the following list: breakfast,
light meal (lunch), light meal (evening meal), main meal (lunch), main
meal (evening meal), morning snack, afternoon snack, evening snack,
night snack, alcoholic beverage, and nonalcoholic beverage. These
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TABLE 1 The numbers of clusters identified within each of the groups of the Irish Food Pyramid
(food groups) with descriptions of the clusters1

Food groups Clusters/groups, n Description of clusters/groups

Vegetables, salad, and fruit 2 No clear distinction of traditional food groups or
descriptions was observed between these clusters,
simply called F&V1 and F&V2.

Cereal, bread, potato, pasta, and rice 3 1. Cereals
2. Potatoes
3. Breads, oats, pasta, and rice.

Milk, yogurt, and cheese 2 1. Milk and yogurt (and nondairy alternatives)
2. Cheese.

Meat, poultry, fish, eggs, beans, and nuts 2 No clear distinction of traditional food groups or
descriptions was observed between these clusters,
called proteinfoods1 and proteinfoods2.

Fats, spreads, and oils (not further split) 1 Not applicable: only 1 group.
Foods and drinks high in fat, sugar, or salt 2 No clear distinction of traditional food groups or

descriptions was observed between these clusters,
simply called HFSS1 and HFSS2.

Other (not clustered, manually grouped) 3 1. Alcoholic beverages
2. Nonalcoholic beverages
3. Soups, sauces, and miscellaneous foods.

1K-means clustering was carried out on the foods in each of the groups of the Irish food pyramid to identify clusters/subgroups
within these groups. Clustering was performed separately for each group. Input variables for the clustering were the 12 nutrients in
the Nutrient Rich Foods Index (NRF9.3) as reported by Fulgoni et al. (19). The number of clusters in each group was identified using
24 different indices to determine the optimal number of clusters between 2 and 10 based on the process described by Charrad et
al. (20).

meal types were condensed into the following 5 types: breakfasts,
light meals, main meals, snacks, and beverages. Meals were also
categorized by whether they were consumed on a weekday or a weekend
day, giving rise to meals being divided into 10 categories (weekend
breakfasts, weekday breakfasts, etc.). Within each meal category, the
individual meals (defined by the food groups that they contained) were
then grouped/clustered using partitioning around the medoids (PAM)
clustering allowing for clustering based on both numerical and categoric
variables (23, 24). The variables used to cluster were the NRF9.3 score
for each meal and 15 binary variables indicating for each food group
whether it was present or absent in the meal. PAM clustering requires
that the number of clusters is chosen before clustering. Similar to the
first clustering step, the number of clusters was chosen by applying 24
different cluster number indices to the data and choosing the number
of clusters that was most frequently proposed among the indices (20).
Values obtained from the various indices for the clustering of weekend
breakfast meals have been provided in Supplemental Table 1B as an
example; values for all meal types are available on request. The range of
possible values assessed for cluster number was from 4 to 15 inclusive.
This clustering process gave rise to a total of 63 clusters, i.e., generic
meals.

The nutrient content of a given generic meal was then calculated as
the mean nutrient content per 100 g of the individual meals that make up
that generic meal. Before calculating mean nutrient content and portion
size (described in what follows), meals considered to be outliers (based
on energy and/or micronutrient content) within each generic meal were
removed in a 2-step process. Firstly, meals that contained >1.5 times
the IQR for energy were removed. Secondly, meals that contained >10
times the mean for any micronutrient were removed.

The weights (g) for the individual meals in each generic meal were
used to determine generic portion sizes. Each generic meal was assigned
7 generic portion sizes. These portion sizes were determined for a given
generic meal by ordering each of the individual meals by weight and
dividing the meals into septiles. The median weights of each septile were
assigned as the generic portion sizes for that meal (Figure 1).

Generic intakes
To create the generic data set, the nutrient intake values of meals
consumed in the original data set were replaced with the appropriate

generic meal composition based on the portion size consumed
(Figure 1). Mean daily intakes of the nutrients of interest were calculated
using both the original and generic data sets.

Statistical analysis
All analysis was carried out using R version 4.0.3 (25) in the RStudio
integrated development environment (version 1.3.1093) (26). Mean
nutrient intakes arising from the original and generic data sets were
compared using a paired t test. To account for the multiple testing
of energy and 30 nutrients, a Bonferroni-adjusted α of 0.05/31 was
considered for statistical significance, i.e., P values < 0.002 were
considered statistically significant. The nutrients compared between
the 2 data sets included fat, saturated fat, monounsaturated fat,
polyunsaturated fat, protein, carbohydrate, total sugars, added sugars
[all of which were compared both using gram amounts and in terms
of percentage total energy intake (% TEI)], dietary fiber (g), calcium
(mg), iron (mg), potassium (mg), phosphorus (mg), sodium (mg), total
vitamin A (μg), retinol (μg), carotene (μg), vitamins C (mg), D (μg), E
(mg), B-12 (μg), and folate (μg).

The correlation of nutrient intakes between the 2 data sets
was examined using Spearman rank correlation coefficients. Nutrient
intakes in both data sets were divided into quartiles. This allowed for the
calculation of the proportion of individuals who remained in the same
quartile in both data sets (exact agreement), the proportion who were
classified in the same or adjacent quartiles (exact agreement + adjacent),
the proportion who were classified 2 quartiles apart (disagreement),
and the proportion who were classified 3 quartiles apart (extreme
disagreement). Bland–Altman analysis was carried out whereby the
mean difference between the 2 data sets and the limits of agreement
(mean difference ± 1.96 SD) for each nutrient were calculated. It
is expected that ≥95% of observations will fall within the limits of
agreement for comparable methods (27).

Finally, participants were classified, separately for both data sets,
according to nutrient-based dietary guidelines (28–30). For example,
they were classified as to whether their nutrient intakes were low,
adequate, or high according to those guidelines. The nutrients
assessed included protein, carbohydrate, fat, monounsaturated fat,
polyunsaturated fat, saturated fat, salt, dietary fiber, calcium, iron,
folate, thiamin, riboflavin, and vitamins A, B-12, and C. The proportion
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TABLE 2 Participant demographics

Male Female Total

n (%) 740 (49.3) 760 (50.7) 1500 (100)
Age, y 43.8 ± 17.2 45.2 ± 16.8 44.5 ± 17.0
BMI, kg/m2 27.6 ± 4.6 26.6 ± 5.3 27.1 ± 5.0
Weight, kg 85.7 ± 14.7 69.7 ± 13.4 77.5 ± 16.1

of individuals who were classified into the same category in both data
sets was calculated for each nutrient.

Results
Of the 1500 participants who completed the NANS study, 740
(49.3%) were male and 760 (50.7%) were female. The overall
mean ± SD age was 44.5 ± 17 y. The overall mean ± SD
BMI was 27.1 ± 5.0 kg/m2 (Table 2). Implausible estimates of
energy intake were deemed to be those giving rise to an energy
intake:basal metabolic rate ratio < 1.10 (31). The results of the
analysis were not affected when participants with implausible
estimates of energy intake were removed (data not shown). The
results presented here, therefore, are those based on the data
from all 1500 participants.

A total of 27,336 individual meals were consumed by the
1500 participants during their 4-d recording period. Of these
meals, 17,848 were consumed on a weekday and 9488 were
consumed during the weekend. Overall, the most consumed
meal type was snacks (n = 7710), followed by main meals
(n = 6025), breakfast (n = 5698), light meals (n = 4455), and
beverages (n = 3448). These individual meals were aggregated
to 63 generic meals. These were comprised of 4 breakfasts, 8
light meals, 11 main meals, 4 snacks, and 4 beverages during
the weekdays, and 4 breakfasts, 6 light meals, 14 main meals,
4 snacks, and 4 beverages during the weekend (Figure 1).
Supplemental Table 2 presents generic meal portion sizes and
food-based descriptions based on the most frequently occurring
foods in each food group of each meal. The nutritional content
of each of the generic meals was determined from the mean
nutritional content of the individual meals making up those
generic meals excluding outlier meals. In total, 3825 meals
were excluded on the basis of being outliers with regard to
energy content and 2279 were excluded on the basis of being
outliers with regard to micronutrient content. Therefore, a total
of 21,232 meals were used to determine the nutrient content of
the generic meals.

Comparison of mean intakes

When comparing the sample population mean intakes of the
original and the generic meal data (original data set compared
with data set with generic meals substituted in), the mean
percentage difference between estimated mean daily nutrient
intakes for the original and generic data sets was 5.6%. The
percentage difference between the data sets for all of the
macronutrients and energy was <5%, ranging from 0.0%
for total sugars as % TEI to 4.2% for added sugars as
% TEI. The percentage differences for the micronutrients
ranged from 3.0% for sodium (mg) to 25.3% for retinol (μg)
(Table 3).

Despite the small percentage differences for most nutrients,
statistically significant differences were observed in mean in-
takes of 20 of the 30 nutrients assessed and for energy (adjusted

P < 0.002). Nutrients that were not significantly different
were fat in grams, saturated fat in grams, monounsaturated
fat as %TEI, polyunsaturated fat as % TEI, protein as % TEI,
carbohydrate in grams, total sugars in grams, total sugars as %
TEI, added sugars in grams, added sugars as % TEI, and dietary
fiber in grams (Table 3). All of the micronutrients assessed
were found to differ significantly between the 2 data sets.
However, of the 20 significant differences, 15 had a negligible
effect size (Cohen’s d < 0.2) and the remainder had a small
effect size (Cohen’s d ≥ 0.2 and <0.5). Those with a small
effect size were potassium (Cohen’s d = 0.262), phosphorus
(Cohen’s d = 0.263), vitamin D (Cohen’s d = 0.229), folate
(Cohen’s d = 0.255), and vitamin B-12 (Cohen’s d = 0.265)
(Table 3).

Spearman rank correlation coefficients between the original
and generic data sets ranged from 0.23 for polyunsaturated fat
(% TEI) to 0.75 for potassium (mg), with a mean correlation
across all nutrients of 0.53 (Table 4). Bland–Altman analysis
identified 13 nutrients for which ≥95% of participants fell
within the limits of agreement. The proportion of individuals
that fell within the limits of agreement ranged from 93.7% for
sodium (mg) to 98.4% for retinol (μg) (Table 4). Figure 2 shows
the Bland–Altman plots for the macronutrients.

Individual intake classification

The proportion of participants remaining in the same quartile
in both the original and generic data sets ranged from 31%
for polyunsaturated fat (% TEI) to 53% for potassium
(mg). Extreme disagreement of ≥5% of participants was
observed for 6 nutrients: polyunsaturated fat as % TEI (8%),
monounsaturated fat as % TEI (6%), total fat as % TEI (6%),
vitamin D (6%), saturated fat as % TEI (5%), and vitamin
B-12 (5%). The mean proportion of individuals in extreme
disagreement across all nutrients was 3.3% (Table 4).

When participants were classified (high, adequate, or low)
according to nutrient-based guidelines, the proportion of
individuals who were classified into the same category ranged
from 55.3% for polyunsaturated fat (% TEI) to 91.5% for both
protein (g/kg body weight) and salt (g). The mean proportion of
exact agreement across all nutrients was 79.8% (Table 5).

Discussion

This study examined a novel generic meal–based method of
exploratory analysis of dietary intake data. Unlike previous
work in this area (7–11), the research described here utilizes
data-driven methods of defining food groups based on nutrients
from the NRF9.3 (19), and incorporates a range of standard
portion sizes, which aimed to improve the accuracy of a meal-
based intake method to estimate intakes at both a population
and an individual level, which hitherto had not been considered.
Differences between mean nutrient intakes determined using
this generic meal–based method and the standard food-based
method were found to be small or negligible. This study
also compared nutrient intakes at the individual level, for the
first time, demonstrating that participants can be classified
according to nutrient-based dietary guidelines (for example,
high, adequate, or low intakes) using the generic meal–based
method, suggesting a possible role for the use of generic meals
in meal-based dietary intake assessment.

Food groupings vary from study to study and are often
tailored to the specific research in which they are used (32).
Previous research examining generic meals has used pre-existing
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TABLE 3 Mean daily nutrient intakes estimated using the original food-based data set and the generic meal–based data set1

Data set

Original,
mean ± SD

Generic,
mean ± SD

Difference,
% P value2

Effect size,
Cohen’s d

Effect size,3

magnitude

Energy, kJ 8431 ± 2747 8088 ± 2394 − 4.1 <0.001∗ 0.166 Negligible
Fat, g 75.7 ± 29.4 73.6 ± 22.4 − 2.8 0.002 0.081 Negligible
Fat, % TEI 33.8 ± 6.5 34.5 ± 2.9 2.1 <0.001∗ 0.108 Negligible
Saturated fat, g 29.7 ± 12.9 29.3 ± 9.4 − 1.3 0.174 0.035 Negligible
Saturated fat, % TEI 13.3 ± 3.6 13.7 ± 1.4 3.0 <0.001∗ 0.135 Negligible
Monounsaturated fat, g 27.7 ± 11.4 26.7 ± 8.1 − 3.6 <0.001∗ 0.094 Negligible
Monounsaturated fat, % TEI 12.3 ± 2.7 12.5 ± 1.1 1.6 0.003 0.077 Negligible
Polyunsaturated fat, g 13.3 ± 6.5 12.8 ± 3.9 − 3.8 0.001∗ 0.088 Negligible
Polyunsaturated fat, % TEI 6.0 ± 2.2 6.0 ± 0.6 0.0 0.941 0.002 Negligible
Protein, g 83.3 ± 26.9 79.9 ± 22.0 − 4.1 <0.001∗ 0.156 Negligible
Protein, % TEI 17.0 ± 3.6 16.8 ± 1.9 − 1.2 0.020 0.060 Negligible
Carbohydrate, g 228 ± 78.9 226 ± 70.1 − 1.0 0.181 0.035 Negligible
Carbohydrate, % TEI 42.9 ± 6.9 44.0 ± 3.5 2.6 <0.001∗ 0.179 Negligible
Total sugars, g 90.3 ± 43.1 87.7 ± 34.0 − 2.9 0.006 0.072 Negligible
Total sugars, % TEI 16.9 ± 5.8 16.9 ± 3.1 0.0 0.765 0.008 Negligible
Added sugars, g 39.5 ± 31.1 39.2 ± 20.4 − 0.8 0.573 0.015 Negligible
Added sugars, % TEI 7.2 ± 4.7 7.5 ± 2.5 4.2 0.002 0.080 Negligible
Dietary fiber, g 19.1 ± 7.9 19.1 ± 6.0 0.0 0.916 0.003 Negligible
Calcium, mg 895 ± 369 844 ± 256 − 5.7 <0.001∗ 0.169 Negligible
Iron, mg 11.9 ± 5.0 11.3 ± 3.7 − 5.0 <0.001∗ 0.145 Negligible
Potassium, mg 3035 ± 966 2859 ± 813 − 5.8 <0.001∗ 0.262 Small
Phosphorus, mg 1378 ± 461 1297 ± 361 − 5.9 <0.001∗ 0.236 Small
Sodium, mg 2493 ± 901 2418 ± 712 − 3.0 <0.001∗ 0.096 Negligible
Total vitamin A, μg 1023 ± 831 875 ± 326 − 14.5 <0.001∗ 0.191 Negligible
Retinol, μg 410 ± 623 307 ± 102 − 25.3 <0.001∗ 0.167 Negligible
Carotene, μg 3674 ± 3174 3408 ± 1623 − 7.3 <0.001∗ 0.095 Negligible
Vitamin C, mg 79.4 ± 52.4 71.9 ± 28.6 − 9.4 <0.001∗ 0.178 Negligible
Vitamin D, μg 3.2 ± 2.6 2.7 ± 0.9 − 15.6 <0.001∗ 0.229 Small
Vitamin E, mg 9.5 ± 4.9 8.9 ± 2.9 − 6.3 <0.001∗ 0.116 Negligible
Total folate, μg 318 ± 152 285 ± 90.4 − 10.3 <0.001∗ 0.255 Small
Vitamin B-12, μg 4.7 ± 3.5 3.8 ± 1.1 − 19.1 <0.001∗ 0.265 Small

1TEI, total energy intake.
2P values were calculated using a paired t test. ∗Statistically significant using paired t test with Bonferroni-adjustment, P < 0.002.
3Effect sizes < 0.2 were deemed to be negligible, and those ≥0.2 and <0.5 were deemed to be small (77).

food groups as part of the process (7–11). The current research
aimed to develop a generic meals process to assess dietary
intakes with regard to nutrients of public health importance,
specifically the 12 nutrients from the NRF9.3 (19). Because it
was not feasible to group hundreds of foods manually based
on their similarities for 12 different nutrients, clustering was
applied instead. Although the use of nutrients in the derivation
of generic meals appeared to improve the process, the use of
the specific 12 nutrients in the generic meal–based approach
may have affected the agreement between the 2 methods for
intakes of those nutrients, above others. For example, the
mean correlation between the methods for those nutrients used
as input for k-means clustering was 0.57, whereas the mean
correlation for nutrients that were not included was 0.48. This
may provide scope for the inclusion of a different set of nutrients
or other food components depending on the research question
at hand. Indeed, previous studies that have clustered foods
have also incorporated prior knowledge of nutrition in the
selection of variables. For example, Pennington and Fisher (33)
clustered fruit and vegetables using food components known
to be primarily provided by these foods; Burden et al. (34)
clustered foods based on macronutrient content with the aim
of minimizing their differences between groups; and in a study

concerning the antioxidant content of fruit and vegetables,
Patras et al. (35) clustered foods based on their content of
known antioxidant compounds.

In the present study, the choice of input variables for
clustering deliberately focused on nutrients of known public
health importance, introducing a degree of prior knowledge
to a largely data-driven method. One of the limitations of
this approach is that some of the variables included may
be irrelevant or redundant for the purpose of clustering and
thereby mask the underlying structures in the data (36). The
alternative is to exclude prior knowledge and use a purely data-
driven approach to selecting input variables for clustering (36,
37) that would enable foods to be grouped based only on
the food components that differentiate those foods. Although
these data-driven methods are valuable approaches to identify
inherent patterns or groupings in the data, they may not
perform as well in identifying groupings that are relevant
to disease prevention or health promotion (14), which is of
importance in this current study. Although a purely data-driven
approach to clustering was not used in this instance, such
approaches warrant further investigation because groupings
driven by the underlying data structures of food composition
may help researchers develop food groups for FFQs (33, 34),
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FIGURE 2 Bland–Altman plots for energy and macronutrients. The middle dashed line, and associated number, represents the mean difference
in mean daily intakes between the original and generic databases. The upper and lower dashed lines, and associated numbers, represent the
upper and lower LOA, respectively. Original and generic refer to the original and generic data sets. Each point represents an individual participant
(n = 1500). LOA, limits of agreement; TEI, total energy intake.

be useful in teaching about food composition, and aid health
professionals to produce dietary advice about foods with similar
compositions when the contents of multiple nutrients are of
interest (33).

The methods described in this study build on previously
published studies that used the frequent itemset data mining
method (7–9) to derive the generic meals used in their analysis.
These studies did not include portion size in their generic meal

TABLE 5 Exact agreement between the original food-based data set and generic meal–based data
set for categorization of participants’ nutrient intakes according to nutrient-based dietary guidelines1

Nutrient

Possible categories for
classification of individual

nutrient intakes

Proportion classified to
the same category,

%

Protein, g/kg BW Low, adequate, and high 91.5
Carbohydrate, % TEI Low, adequate, and high 65.5
Fat, % TEI Low, adequate, and high 62.4
Monounsaturated fat, % TEI Low, adequate, and high 85.5
Polyunsaturated fat, % TEI Low, adequate, and high 55.3
Saturated fat, % TEI Adequate and high 82.9
Salt, g Adequate and high 91.5
Dietary fiber, g Low and adequate 87.1
Calcium, mg Low, adequate, and high 72.2
Iron, mg Low, adequate, and high 90.2
Vitamin A, μg Low, adequate, and high 76.8
Folate, μg Low, adequate, and high 72.1
Thiamin, mg Low and adequate 91.1
Riboflavin, mg Low and adequate 90.9
Vitamin B-12, μg Low and adequate 88.7
Vitamin C, mg Low, adequate, and high 72.7

1Participants were placed in categories according to nutrient-based guidelines. The percentages give the percentage of participants
who were placed in the same category according to both the original and generic data sets. BW, body weight; TEI, total energy
intake.
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framework and the methods used accounted for food group
“descriptions”but not nutrient content when identifying generic
meals. The clustering method used in this current work derived
generic meals based on nutrients of public health interest from
the NRF9.3 (19) while also accounting for the food groups
of which those generic meals were comprised. By identifying
generic meals separately for weekdays and weekends, this
method accounts for the differences that exist between weekday
and weekend dietary intakes in relation to energy (38–40)
and nutrient intake, food group consumption (38), and meal
patterns (8). This approach was used to enhance the accuracy
of the method, but also to ensure that identification of generic
meals was guided by nutrients that are of public health
importance and that are therefore central to dietary guidelines
(41–43). As such, any dietary assessment or feedback tool
incorporating this generic meal approach will be of relevance
to existing guidelines.

Previous studies on generic meals have not incorporated
portion size, and this is evident in the small variance in nutrient
intakes seen in those studies (7, 9). The inclusion of portion size
in the current study identified a greater range of nutrient intakes
more reflective of the actual range of intakes observed in the
original data set. The approach used here assigned 7 standard
portion sizes to each generic meal based on actual meal intake
weights. Comparable approaches have been used in established
methods of dietary intake assessment.

Standard portion sizes used in semiquantitative FFQs are
based on known population consumption patterns (44, 45),
and participants must choose the portion size that they
typically consume for each food in the questionnaire (46, 47).
Whereas 24-h recalls have traditionally asked participants to
estimate portion size using weight, household measures, or food
models/images (48), Web-based versions also provide the option
of standard portion sizes when weight/volume is unknown (49–
53). The portion sizes presented for each food are based on
various centiles of intake observed in national diet surveys (49–
53). The majority of FFQs are designed to include portion
size (54, 55). Despite this, it has been questioned whether
this practice is warranted (54–56) given that improvements
in estimates of nutrient intakes due to portion size are small
(57, 58). During the development of the generic meals method
described in the present study, both the inclusion and exclusion
of portion size were assessed (data not shown). The inclusion of
portion size resulted in better agreement with the original data
for absolute nutrient intakes but had no impact on agreement
for energy-adjusted nutrient intakes.

The percentage differences for most nutrients between the
generic and original data for mean daily nutrient intakes
(mean difference: 5.6%) were small considering the error
that is inherent in dietary intake assessment. For comparison,
mean daily estimated energy and protein intake using 4-
d food records, three 24-h recalls, or an FFQ differs from
doubly labeled water energy values by 20%–27% and from
protein intake based on urinary nitrogen by 4%–10% (59).
On comparing the results of the current study with previous
studies of generic meals in the same population (7), improved
agreement with the original data was observed for absolute
nutrient intakes but similar for energy-adjusted intakes. The
results of the current study, however, found poorer agreement
than those reported for generic meals in a Japanese population
(9). However, that study only reported energy-adjusted nutrient
intakes and not absolute intakes. The differences between
the current study and others, however, are not limited to
portion size, and therefore the varying results may only be

partly attributable to the inclusion of portion size in our
study.

The current study demonstrated the ability of our generic
meals approach to rank individuals within the sample popula-
tion based on nutrient intakes. When individuals were classified
into quartiles based on nutrient intakes using the generic data,
the proportions classified in the same or adjacent quartiles as the
original data were comparable with the equivalent proportions
reported in previous generic meal research (72%–88%) (7) and
in validation studies comparing FFQs with diet records (65%–
88%) (60, 61) and 24-h recalls (55%–86%) (62, 63). This
study also shows that participants can be classified according
to nutrient-based guidelines using the generic data set, with
the agreement with the original data set ranging from 55.3%
to 91.5%. Several factors appear to have led to the range of
agreements observed. Those nutrients with poorer agreement
tended to be those expressed in % TEI, those that were not used
as input variables in the clustering, and those that had 3 possible
categories in the nutrient-based guidelines as opposed to 2.
Further work is warranted to determine the best combination
of these variables or whether this approach is limited owing to
being unsuitable for certain nutrients.

The work presented here has significant potential for use
in the provision of population and individual dietary advice.
Currently, dietary advice is provided at a variety of levels. For
example, government dietary guidelines are typically food and
nutrient based, and targeted at national populations or certain
population subgroups based on characteristics such as sex and
age (64). Researchers have also shown that dietary advice can
be targeted to population subgroups based on their metabolic
profiles (65–67) and genetic profiles (67–69), and research has
also examined the targeting of advice at an individual level
based on existing dietary intakes (12, 70–74). Those studies
providing advice at the individual level use food-based dietary
assessment to classify individuals according to nutrient-based
guidelines (e.g., high, adequate, or low). These classifications
determine the advice provided (12, 70–74). The current study
demonstrated for the first time the ability of a generic meals
approach to classify individuals according to nutrient-based
dietary guidelines. The results show promise for the use of
generic meals in dietary assessment and feedback, for example,
it may be possible for images of the generic meals described
in this study to be presented to participants who could select
the images of the meals and portions that most represent their
dietary intakes, which in turn could be used to derive nutrient
intakes, rather than recording each individual food consumed.
Such a meal-based approach is likely to be more intuitive and
less burdensome for end users (1, 6).

However, although the current study has described a method
for the exploratory analysis of dietary intake data, this generic
meal–based method has not yet been validated for use in
a dietary intake assessment tool. The results presented here
compare generic meal–based intakes with the food-based
intakes from which those generic meals were derived. Given
the inherent correlations between these data sets, this may
overestimate the agreement between the 2 methods. The
generic meal–based method described here may facilitate the
development of a dietary assessment tool that is meal- rather
than food-based. Further work is required to examine the
generic meal–based method for use in collecting new dietary
data from individuals and categorizing their intakes according
to nutrient-based dietary guidelines. It is also unknown in meal-
based research whether certain generic meals better represent
their food-based equivalents than others because analysis of
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accuracy is carried out at the mean daily intake level (7–9).
Analysis at the individual generic meal level could provide
additional insights to further develop this process.

The work presented here should be considered in the context
of its strengths and limitations. The primarily data-driven
nature of the method limits the applicability of the results to
other populations. However, the method itself can be applied
to data sets from other populations to assess generic meal
intakes. The nationally representative nature of the sample
used here (16) strengthens the generalizability of the results
within the Irish population. Despite this, the data used in this
study were collected between 2008 and 2010, so the generic
meals described may not necessarily be reflective of present-
day meal intakes in Ireland. All self-reported dietary intake
data are subject to measurement error (75). The use of a 4-
d weighed dietary intake record to gather the dietary data
used in this study will mitigate, but not eliminate, this problem
(59, 76).

In conclusion, the novel generic meals approach described
here characterizes the meals consumed in a nationally rep-
resentative Irish population, providing a means to estimate
nutrient intakes based on meal rather than food intake at the
sample population and individual levels. Future work will aim
to determine the utility of this exploratory work in other data
sets and assess the adequacy of this approach in the development
of a meal-based approach to dietary assessment. This may
enable a meal-based method of dietary assessment that is less
burdensome and more intuitive for individuals to complete than
food-based methods (1, 6).
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