
proteomes

Review

A Review of Functional Motifs Utilized by Viruses

Haitham Sobhy

Received: 22 October 2015; Accepted: 13 January 2016; Published: 21 January 2016
Academic Editor: Jacek R. Wisniewski

Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; haithamsobhy@gmail.com or
haitham.sobhy@umu.se; Tel.: +46-90-785-67-81

Abstract: Short linear motifs (SLiM) are short peptides that facilitate protein function and
protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with
cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein
characteristics, interactions, or the putative cellular role of a protein. In virology, it may reveal
aspects of the virus tropism and help find antiviral therapeutics. This review highlights the recent
understanding of functional motifs utilized by viruses. Special attention was paid to the function
of proteins harboring these motifs, and viruses encoding these proteins. The review highlights
motifs involved in (i) immune response and post-translational modifications (e.g., ubiquitylation,
SUMOylation or ISGylation); (ii) virus-host cell interactions, including virus attachment, entry,
fusion, egress and nuclear trafficking; (iii) virulence and antiviral activities; (iv) virion structure;
and (v) low-complexity regions (LCRs) or motifs enriched with residues (Xaa-rich motifs).

Keywords: clathrin endocytosis; low-complexity repeats; ubiquitylation; agnoprotein; APOBEC;
pentraxin; PDZ domain; retinoblastoma; inhibitor of apoptosis (IAP); transposition

1. Introduction

Interactions between viral and cellular proteins are required for virus entry, replication, or egress
from the cell. These interactions are facilitated by peptide sequences, so-called domains or motifs [1,2].
These sequences could be either (i) short linear motifs (SLiM), 3–11 residues, e.g., RGD; (ii) structural
motifs or domains, about 30 residues, e.g., tetratricopeptide repeat (TPR), zinc finger or ankyrin;
or (iii) they may contain a repeated residue(s) (e.g., Leu-rich, SR-rich, AR-rich or PEST-rich motifs).
The consensus motif follows the PROSITE pattern [3]. The consensus is formed of a regular
expression pattern, e.g., Px(2)[ED]. In the pattern, a single-letter amino acid abbreviation is indicated.
The alternative (degenerated) residues in a position are bracketed, while “x” letter denotes any residue
in the position. The number between parentheses refers to the number of occurrences of a residue.

Viruses utilize a number of functional motifs to attach and enter into host cells, or interact with
cellular proteins. This article aims to review the current understanding of motifs utilized by viruses for
fruitful infection, highlighting the function of motifs and/or proteins harboring these motifs, in an
attempt to classify the motifs based on the molecular function of the harboring proteins. The motifs can
be classified into five main categories (Figure 1): (i) motifs that mediate immune response; (ii) virus-host
interactions, including entry and cellular trafficking; (iii) virulence and antiviral activities, which may
disturb cellular processes; (iv) virion structure; and (v) motifs enriched with residues.
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Figure 1. Five categories of motifs were reviewed, based on function of proteins harboring the motif. 

2. Motif Involved in Immune Response and post-translational modification processes  

Immune response. B and T cells employ two types of receptors with positive and negative 
regulators, the so-called immunoreceptor tyrosine-based activation motif (ITAM) and the 
immunoreceptor tyrosine-based inhibition motif (ITIM), respectively [4]. These receptors are 
responsible for immune response and signal transduction in immune cells. They bear either ITAM 
(Yxx[LI]x6–8Yxx[LI]) or ITIM ([SIVL]xYxx[IVL]) motifs. The dendritic cell (DC) immunoreceptor 
(DCIR), a C-type lectin receptor expressed on DCs, acts as an attachment factor for human 
immunodeficiency virus type 1 (HIV-1) [5]. DCIR contains ITIM, which binds to the Glu-Pro-Ser 
(EPS) motif. Chemical inhibitors directed against this motif prevent attachment of HIV-1 to DCs. 

Post-translational modification processes. Cellular processes, such as ubiquitylation, 
SUMOylation and ISGylation, require particular motifs for proteins to bind and initiate them. In 
adenoviruses, protein VI recruits Nedd4 E3 ubiquitin ligases by the PPxY motif, facilitating its 
ubiquitylation [6]. The SLQxLA, VxHxMY, HCCH (Hx5Cx17–18Cx3–5H) and PPLP motifs in the viral 
infectivity factor (Vif) protein bind to Cullin5, ElonginB and C, inducing protein polyubiquitination 
and proteasome-mediated degradation [7–10]. 

SUMOylation is a post-translational modification process by which small protein (SUMO, small 
ubiquitin-related modifier) binds to a wide range of cellular proteins, modifying their functions by 
adding a bulky moiety, and promoting particular protein-protein interactions [11,12]. SUMOylation 
of substrates is initiated by the binding of SUMO with lysine residue in the SUMOylation consensus 
motif, φKx[DE], where φ denotes large hydrophobic residues (F, I, L or V). It is noteworthy that the 
SUMO motif is not the exclusive motif for SUMOylation, and the SUMO substrate can be modified 
in different sites, such as the SxS (φφxSxS[DE][DE][DE]) and [VI]x[VI][VI] motifs [12–14]. A number 
of viruses (including herpesviruses and hepatitis C virus, HCV) were able to trigger SUMOylation-
dependent mechanisms by recruiting E2 and E3 ubiquitin ligases [15–18]. SUMO was suggested to 
play roles in the nuclear localization of viral cargo [19], suggesting their roles in virus replication [17]. 
Notably, the sentrin-specific proteases (SENPs) family are SUMO proteases, which are able to detach 
SUMOs from their substrates [20]. Interfering with the proteins involved in (de-)SUMOylation 
processes via SENPs was suggested as a potential technique for developing an antiviral agent 
[17,18,21]. 

Viral proteins, such as paramyxovirus C and V proteins, mouse cytomegalovirus (CMV) pM27, 
and Kaposi's sarcoma-associated herpesvirus K3, K5 and viral interferon regulatory factor 3, can 
inhibit signal transduction and activators of transcription (STAT) or major histocompatibility 
complex [22–30]. These interactions downregulate the interferon (IFN) pathway, regulate the 
expression of interferon-stimulated genes (ISGs), and suppress both cytokine-mediated immunity 
and anti-viral defense [22]. Similar mechanisms were suggested for equine herpesvirus-1 [31], 
hepatitis E virus [32], and hepatitis B virus [33]. 

ISG15, a ubiquitin-like interferon-stimulated protein, is stimulated by interferon or viral 
infection [34,35]. ISG15 is cytokine-like protein that promotes antiviral immune response. On mice, 
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2. Motif Involved in Immune Response and post-translational modification processes

Immune response. B and T cells employ two types of receptors with positive and
negative regulators, the so-called immunoreceptor tyrosine-based activation motif (ITAM) and
the immunoreceptor tyrosine-based inhibition motif (ITIM), respectively [4]. These receptors are
responsible for immune response and signal transduction in immune cells. They bear either ITAM
(Yxx[LI]x6´8Yxx[LI]) or ITIM ([SIVL]xYxx[IVL]) motifs. The dendritic cell (DC) immunoreceptor
(DCIR), a C-type lectin receptor expressed on DCs, acts as an attachment factor for human
immunodeficiency virus type 1 (HIV-1) [5]. DCIR contains ITIM, which binds to the Glu-Pro-Ser
(EPS) motif. Chemical inhibitors directed against this motif prevent attachment of HIV-1 to DCs.

Post-translational modification processes. Cellular processes, such as ubiquitylation, SUMOylation
and ISGylation, require particular motifs for proteins to bind and initiate them. In adenoviruses,
protein VI recruits Nedd4 E3 ubiquitin ligases by the PPxY motif, facilitating its ubiquitylation [6].
The SLQxLA, VxHxMY, HCCH (Hx5Cx17´18Cx3´5H) and PPLP motifs in the viral infectivity
factor (Vif) protein bind to Cullin5, ElonginB and C, inducing protein polyubiquitination and
proteasome-mediated degradation [7–10].

SUMOylation is a post-translational modification process by which small protein (SUMO, small
ubiquitin-related modifier) binds to a wide range of cellular proteins, modifying their functions by
adding a bulky moiety, and promoting particular protein-protein interactions [11,12]. SUMOylation of
substrates is initiated by the binding of SUMO with lysine residue in the SUMOylation consensus motif,
ϕKx[DE], where ϕ denotes large hydrophobic residues (F, I, L or V). It is noteworthy that the SUMO
motif is not the exclusive motif for SUMOylation, and the SUMO substrate can be modified in different
sites, such as the SxS (ϕϕxSxS[DE][DE][DE]) and [VI]x[VI][VI] motifs [12–14]. A number of viruses
(including herpesviruses and hepatitis C virus, HCV) were able to trigger SUMOylation-dependent
mechanisms by recruiting E2 and E3 ubiquitin ligases [15–18]. SUMO was suggested to play roles
in the nuclear localization of viral cargo [19], suggesting their roles in virus replication [17]. Notably,
the sentrin-specific proteases (SENPs) family are SUMO proteases, which are able to detach SUMOs
from their substrates [20]. Interfering with the proteins involved in (de-)SUMOylation processes via
SENPs was suggested as a potential technique for developing an antiviral agent [17,18,21].

Viral proteins, such as paramyxovirus C and V proteins, mouse cytomegalovirus (CMV)
pM27, and Kaposi's sarcoma-associated herpesvirus K3, K5 and viral interferon regulatory factor
3, can inhibit signal transduction and activators of transcription (STAT) or major histocompatibility
complex [22–30]. These interactions downregulate the interferon (IFN) pathway, regulate the
expression of interferon-stimulated genes (ISGs), and suppress both cytokine-mediated immunity and
anti-viral defense [22]. Similar mechanisms were suggested for equine herpesvirus-1 [31], hepatitis E
virus [32], and hepatitis B virus [33].
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ISG15, a ubiquitin-like interferon-stimulated protein, is stimulated by interferon or viral
infection [34,35]. ISG15 is cytokine-like protein that promotes antiviral immune response. On mice,
ISG15 expression reduces Sindbis virus replication and clearance in multiple organs, and attenuates
infection [34]. Further evidence shows that Novirhabdovirus, Birnavirus and Iridovirus infection could
be inhibited by the over-expression of zebrafish ISG15 in EPC cells [36,37]. On the other hand, ISG15
conjugates with the substrate protein through its conserved LRLRGG consensus sequence, leading
to antiviral response [35]. Mutations of glycine residues (LRAA) destabilize this conjugation [36].
However, evidence shows that the fish ISG15 homolog can promote an antiviral immune response,
even in unconjugated form [37].

3. Motifs Required for Virus Attachment, Entry, Trafficking, and Egress

3.1. Viral Receptors

Viruses utilize receptors and co-receptors to attach and enter into host cells. HIV attaches to one
or two co-receptors, CCR5 or CXCR4, to enter cells [38–45]. The conserved GPG[RQ] motif in the
crown of the third variable loop region of the gp120 protein is crucial for virus attachment [43–47].
In adenovirus (Adv), it is suggested that the KKTK motif in Adv2 and Adv5 fiber shaft attaches to
heparin sulfate proteoglycans to start the infection [48,49]. A mutation in KKTK affects Adv5 tropism.
Further investigations show that the KKTK motif in Adv-C is important for post-entry steps [50,51].
Virus lacking the KKTK motif efficiently infects liver cells in vivo.

Integrin-binding. Integrins are cell surface adhesion molecules composed of α and β subunits.
They are expressed by a variety of cells and can be utilized by microbes [49,52]. Integrins interact with
the conserved Arg-Gly-Asp (RGD) motif of the adenovirus penton base, which promote endocytosis
and endosomal escape, as reviewed in [53,54]. Several reports suggest the ability of viruses to evolve
mechanisms by which they utilize RGD-like motifs (RGG or GGG), as reviewed in [55] or the potential
integrin-binding motif YGD motif [56] to enter into host cells. Moreover, the SDI motif in glycoprotein
H (gH) of equine herpes viruses 1 and 4 may bind to integrins [57]. Foot-and-mouth disease virus
(FMDV) VP1 capsid protein harbors the RGDLxxL sequence, which is required for binding to cellular
integrins [58]. The two Leu residues stabilize the interaction and play roles in determining integrin
specificity. Nonetheless, in the absence of RGD, DLxxL, KGD or KGE is employed for the attachment
to cellular receptors [58].

3.2. Virus Entry

3.2.1. Endocytosis

The 3a protein encoded by severe acute respiratory syndrome–associated coronavirus (SARS-CoV)
functions as an ion channel protein [59]. It harbors the Yxxϕ motif, which is necessary for endocytosis,
intracellular trafficking, and surface transport of SARS-CoV. Sodium taurocholate co-transporting
polypeptide (NTCP) at the plasma membrane is a receptor for hepatitis B and D viruses (HBV and
HDV) [60]. Endocytosis of HBV and HDV is regulated by the dileucine motif (222LL223) and the
phosphorylation of T225 and S226 in NTCP [61]. Moreover, PPxY is required for Adv5 entry and cellular
microtubule-dependent trafficking [6].

3.2.2. Clathrin Endocytosis

The clathrin-coated vesicles recruit soluble clathrin by adaptor proteins (APs) AP-1 (in the
trans-Golgi network) and AP-2 (at the cell surface). The clathrin-binding motifs of APs bind to
the N-terminal domain of clathrin. Two clathrin-binding motifs were defined: clathrin-box, which
conforms to sequence LϕXϕ[DE] or L[LI][DEN][LF][DE], and W-box, which conforms to sequence
PWxxW [62]. Moreover, the µ subunit of AP1 recognizes two sorting signals, a tyrosine-based Yxxϕ
motif and an acidic dileucine motif, [ED]xxxL[LI] [63]. HIV-1 viral protein unique (Vpu) hijacks
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AP-1 and antagonizes BST2 via YxYxxϕ, [63]. AP-1 reroutes BST2 to the lysozyme and mediates the
endo-lysosomal degradation of BST2. Similar mechanisms were described in HIV Nef, which hijacks
clathrin AP-1 and interacts with the major histocompatibility complex (MHC-1) [64,65]. This interaction
is stabilized by (PxxP)3 repeats and directs MHC-I to the endo-lysosomal pathway.

3.2.3. Virus Fusion

The short motif mediates interaction with other proteins leading to virus fusion and entry.
For example, the fusion protein encoded by the Newcastle disease virus (NDV) harbors LL and
Yxxϕmotifs in the cytoplasmic tail and plays a role in viral fusion, replication and pathogenesis [66,67].
Moreover, interferon-induced transmembrane (IFITM) proteins inhibit virus entry and cell-cell fusion
of several viruses, including coronavirus, HIV-1, influenza and Ebola viruses [68]. The KRxx (dibasic
residues) motif in the C-terminal of IFITM-1 modulates a species-specific antiviral sorting signal against
viruses by controlling protein subcellular localization, while IFITM-3 interacts with AP2 through its
Yxxϕ sorting motif at the N-terminus [69–71].

3.3. Virus Egress from the Cell

Viruses recruit endosomal sorting complexes required for the transport (ESCRT) pathway to
egress from the cell, which leads to virus budding and initiating new infection, as reviewed in [72–76].
The pathway is mediated by several molecular interactions between proteins through late (L)-domain
motifs (P[TS]AP, PPxY, YxxL, and ϕPxV) (Figure 2) [67,77,78]. These motifs mediate binding to ESCRT,
which leads to the budding and release of viruses, including a number of retroviruses, arenaviruses
and paramyxoviruses. In the absence of the PPPY motif, LYPxnL in the gag protein serves as an
alternative motif that recruits ESCRT machinery for the release and replication of retroviruses [79,80],
while in Ebola virus, these interactions are mediated by 7PTAP10, 10PPEY13 and 18YPxn[LI]26 [81].
First, proteins harboring the PPxY, LYPxnL or PTAP motifs interact with Nedd4, Alix and Tsg101
proteins, respectively. Then, these interactions trigger ESCRT machinery and the release of the virus
by budding [82]. Interestingly, archaeal ESCRT could be involved in the egress of Sulfolobus turreted
icosahedral virus by forming virus-associated pyramid structures on the cell membrane of Sulfolobus
Archaea, as reviewed in [83]. Due to the crucial role of these motifs, several attempts were suggested
for developing antiviral therapeutic agents targeting these motifs and/or the proteins harboring
them [78,81]. Targeting L-domain-dependent recruitment of host Nedd4 and Tsg101 shows depletion
of viral egress for a number of RNA viruses, including vesicular stomatitis, rabies viruses, and hepatitis
E virus [84,85].
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export signal (NES), which regulates proteins export from the nucleus to the cytoplasm; and (ii) the 
nuclear localization sequence (NLS) motif, which imports proteins into the nucleus [86,87]. The 
canonical NES consensus motif is LxxxLxxLxL, but L can be replaced by I, V, F or M [88], whereas 
the NLS motifs are classified into six classes (as seen below in Table 1 and Table S1) [89]. Interestingly, 
the first NLS was discovered in SV40 Large T-antigen with the monopartite PKKKRKV sequence [90–
92]. The nucleoprotein of influenza B virus (BNP) harbors a conserved 44KRxR47 motif, and a mutation 

Figure 2. A schematic diagram of arenavirus late-domain motifs and their role in interaction with
cellular proteins leading to virus budding and egress from the cell [67].

3.4. Nuclear Trafficking

The trafficking of a protein into or from the nucleus is orchestrated by two motifs: (i) nuclear export
signal (NES), which regulates proteins export from the nucleus to the cytoplasm; and (ii) the nuclear
localization sequence (NLS) motif, which imports proteins into the nucleus [86,87]. The canonical
NES consensus motif is LxxxLxxLxL, but L can be replaced by I, V, F or M [88], whereas the NLS
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motifs are classified into six classes (as seen below in Table 1 and Table S1) [89]. Interestingly, the first
NLS was discovered in SV40 Large T-antigen with the monopartite PKKKRKV sequence [90–92].
The nucleoprotein of influenza B virus (BNP) harbors a conserved 44KRxR47 motif, and a mutation on
the K or R residue results in the disruption or failure of nuclear import and localization, suggesting
that the motif is a NLS sequence [93,94].

Table 1. List of pattern of functional motifs and the function of the protein harboring them. 1

Function of Protein Containing the Pattern Pattern Motif References

6-cysteine motif, degradation of chitin
and chitotriose Cx13´20Cx5´6Cx9´19Cx10´14Cx4´14C [95,96]

Adenovirus fiber flexibility motif KLGxGLxF[DN] and KxGGLxF[DN] [50]

Agnoprotein function, productive viral infection L[FL][VI]F[VIL]LE[LF]LLxF and
Qxx[IML]xx[FY] [97–99]

Agnoprotein—NLS RRRRx5Rx4RK [100]

Binding of virus proteins to retinoblastoma
protein, gene expression and virus replication LxCxE and [LI]xCx[DE] [101–109]

Binding to ESCRT, paramyxoviruses budding ϕPxV [79]

Binding to integrins and viral attachment to
cellular receptors

RGD, DLxxL, LDV, RGDLxxL, SDI,
KGD and KGE [53–58]

Budded virions production and
nucleocapsid assembly Cx5CxnHx6C (C2HC zinc finger) [95,96]

Clathrin-binding motifs, clathrin-box LϕXϕ[DE], L[LI][DEN][LF][DE] and
PWxxW [62]

Cleavage motif of Newcastle disease virus [GE][KR]Q[GE]RL and [RK]RQ[RK]RF [110]

Cleavage site for Influenza A
virus hemagglutinin

KKKRGLF, [QE][ST]RGLF, Rx[RK]RGLF,
RxRRGLF and RxxRGLF [111]

Enhance virion-release, anti-tetherin activity DSGxxS [112,113]

Helix-Helix Interactions AxxxAxxxAxxxW and VxxxIxxLxxxL [114,115]

Heparan sulfate-binding motif,
post-internalization steps of adenovirus KKTK, or bbxb and bbbxxb [48–51]

HIV neutralization by human antibodies GPG[RQ] [43–47]

HIV release, interfering with tetherin function [GD]DIWK [113]

Induction of cellular-malignant transformation
by Kaposin, activation of cap-dependent
translation, and HIV retrotransposition

LxxLL [116–122]

IAP, block the apoptosis
Gx2Yx4Dx3Cx2Cx6Wx9Hx6´10C,

Cx2Cx9´39Cx1´3Hx2´3Cx2Cx4´48Cx2C
and A[KITV][AEP][FEISY]

[123–125]

Interact with clathrin adaptor protein PxxP and YxYxxΦ [63–65]

ISGylation, antiviral response LRGG and LRLRGG [35,36]

ITAM motif Yxx[LI]x6´8Yxx[LI] [4]

ITIM motif [SIVL]xYxx[IVL] [4]

Necessary for endocytosis, intracellular
trafficking, interact with clathrin APs, and

promotes viral spread, fusion and replication
YxxΦ [64,65]

Nuclear export signal (NES), regulates protein
export to nucleus from cytoplasm

[LIVFM]x2´3[LIVFM]x[LIVFM] and
LxxxLxxLxL [88]
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Table 1. Cont.

Function of Protein Containing the Pattern Pattern Motif References

NLS motifs

i: KR[KR]R and K[KR]RK
ii: [PR]xxKR{DE}[KR]

iii: KRx[WFY]xxAF
iv: [RP]xxKR[KR]{DE}
v: LGKR[KR][WFY]

Bipartite: KRx10´12K[KR][KR] and
KRx10´12K[KR]X[KR]

[89,93,94]

Pentraxin domain, pathogen recognition,
host defense, and antiviral response HxCx[ST]WxS [126,127]

Protein folding, Rossmann folds motifs, and bind
FAD or NAD(P) Gx3G, Gx3[GA] and Gx1´2GxxG [128]

Protein interaction and thiol-disulfide transfer CxxC and CxxxC [129–131]

Proton transport, channel function,
and transmembrane domain HxxxW [132]

Recruits ESCRT pathway, and mediates viral
budding and release YxxL, P[TS]AP and LYPxL [67,77,79]

Regulation by interaction of retrovirus Vif with
APOBEC, cullin5, elongin, and E3 ligase

PPLP, SLQxLA, VxHxMY, HCCH, YYxW,
DPD, YxxL, YRHHY, EDRW, DRMR,

TGERxW, LGxGxxIxW, WxSLVK,
W[HKN]SLVK, VxIPLx4´5L,

VxIPLx4´5Lxϕx2YwxL, SL[VI]x4Yx9Y and
T[DEQ]x5Adx2[IL]

[7–10,133–144]

Sorting signal, anti-tetherin ExxxLV [145]

SUMOylation—SUMO binding to substrate ϕϕxSxS[DE][DE][DE], ϕKx[DE] and
[VI]x[VI][VI] [12,13]

Ubiquitylation, interaction with Nedd4 E3
ubiquitin ligases, recruit ESCRT pathway,

and mediates virus entry, cellular
microtubule-dependent trafficking, budding,

and release

PPxY [6,67,77]

1 Degenerate residues are bracketed, braces refer to the excluded residues (i.e., any residues except those
between braces), “x” means any residue, b refers to basic residues (H, K or R), “ϕ” denotes large hydrophobic
residues (F, I, L or V), and the number of recurrence is indicated after residues.

Agnoprotein

Agnoprotein (agnosis means unknown in Latin) is a regulatory protein encoded by some
polyomaviruses, including the BK virus (BKV, named after the isolation from patient, initials B.K.), JC
virus (JCV, John Cunningham virus) and simian vacuolating virus 40 (SV40) [100]. The exact function
is unknown, but it is reported to have role in viral DNA replication and transcription, which requires
an FIL-rich motif (L[FL][VI]F[VIL]LE[LF]LLxF) at the N-terminus [97,98]. Moreover, it may facilitate
nuclear egress by interacting with heterochromatin protein 1 at the nuclear envelope [146]. Interactions
with proliferating cell nuclear antigen (PCNA) lead to the inhibition of PCNA-dependent DNA
synthesis and the reduction of cell proliferation [99]. The PCNA-interacting protein box (PIP motif,
Qxx[IML]xx[FY]) is shared with most of the PCNA-interacting proteins. Although JCV, BKV and
SV40 agnoproteins harbor PIP-like consensus (QR[LI][FL][IV]F), several regions could be involved
in the interaction [99]. The agnoproteins contain a L-rich and KR-rich motif (such as RRRRx5Rx4RK),
which may represent a classic NES and NLS, respectively [100]. Ironically, although agnoproteins
contain NES and NLS motifs, most of the known agnoproteins localize in the cytoplasm and/or are
perinuclear [100], and their nuclear trafficking needs to be elucidated.
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4. Viral Virulence

4.1. APOBEC-Binding Motifs

The “Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like” (APOBEC) proteins
are crucial for the editing of cytosine to uracil bases during reverse transcription (mRNA editing),
as reviewed in [8,133,147,148]. Three proteins, APOBEC-3C, 3F and 3G (A3C, A3F and A3G), exhibit
potent antiviral activity by inhibiting retroviruses, including HIV replication, reverse transcription
and DNA integration into the host genome [147]. Vif proteins encoded by HIV and simian
immunodeficiency virus (SIV) bind to E3 ubiquitin ligase, cullin5 and elongin, leading to A3
ubiquitination and proteasomal degradation [8–10,133,134,148]. By this mechanism, retroviruses
can suppress A3 antiretroviral activity [133]. These interactions are mediated by a number of motifs,
including the YRHHY, PPLP, DRMR, and T[DEQ]x5Adx2[IL] motifs, whereas other motifs were also
reported (Table 1) [133–144,149].

4.2. Pentraxin Domain

The Pentraxin superfamily are pattern recognition receptors, which include long pentraxin-3
and the short serum amyloid P component and C reactive protein. They have a diverse role in
inflammation, host defense and antiviral response [126,127]. These proteins are characterized by a
pentameric structure and the pentraxin domain (HxCx[ST]WxS). The hemagglutinin (HA) glycoprotein
of influenza A virus recognizes sialic acid on pentraxin-3, resulting in virus neutralization [150]. Further
analysis suggests that this interaction is critical for productive viral infection [151].

4.3. The PDZ Domain

PDZ is an abbreviation for post-synaptic density protein (PSD95), Drosophila disc large tumor
suppressor (Dlg1), and zonula occludens-I protein (zo-1). The canonical PDZ domains harbor
the conserved carboxylate-binding loop motif groove ([RK]xxx[GSTF]ϕGϕ) between αB and βB
structural elements [152]. It mediates protein-protein interaction, phosphorylation and regulates
cellular signaling, including transport and ion channel signaling, as reviewed in [152]. It also mediates
interactions between cytoplasmic proteins and tight junction proteins, which can be used by viruses to
enter into host cells, as reviewed in [153,154]. PDZ domains are classified into three classes based on the
C-terminus recognition sequence motif of their target proteins: the class I domain, which recognizes
the [ST]xϕ motif; the class II domain, which recognizes the ϕxϕ motif; and the class III domain,
which recognizes the [DE]xϕmotif.

The human papillomavirus (HPV) E6 protein targets PDZ domain–containing proteins, which are
regulated by protein phosphorylation and protein kinase signaling pathways, as shown in
Figure 3 [155,156]. Influenza A virus NS1 contains PDZ domain–binding motif (ESEV and RSKV
motifs in the NS1 of avian and human influenza viruses, respectively). A mutation in ESEV affects the
PI3K/Akt pathway, interactions of NS1 with scaffolding proteins and the virulence of avian H5N1
influenza viruses [157]. Tax1 is another PDZ-binding motif containing oncoprotein, encoded by Human
T-cell leukemia virus (HTLV-1) [158]. The Tax1 protein is involved in various functions, including
interaction with proteins (it harbors PDZ) involved in cell signaling, such as transcription factors
(cAMP response element-binding protein), nuclear factors (NF-κB), chromatin-modifying enzymes,
GTPases and kinases (MAPK). These signal cascades may lead to the inhibition of cell cycle progression,
and DNA repair, as reviewed in [158] and [159]. Tax1 acts as a transcriptional activator by activating
PI3K-Akt and NF-κB pathways, which induce transformation, continued cell cycle progression and
resisting apoptosis [159,160], and may induce CD83 expression on T cells [161].
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4.4. Anti-Tetherin Activity

Tetherin (bone marrow stromal antigen 2, BST2) is a cellular protein inhibiting virus release
and has antiviral activity. HIV-1 Vpu enhances the release of viral particles from infected cells by
counteracting human tetherin [162]. The ExxxLV motif in the second α-helix has been shown to be
required for tetherin degradation and virion release from CD4+ T cells [145]. Mutation of the motif
(which is conserved in most HIV-1 clades) inhibits the ESCRT-dependent degradation of Vpu-tetherin
complex [145]. This transmembrane interaction is required for Vpu interactions with APs [163]. Two
other domains in Vpu (Yxxϕ and DSGxxS) could mediate anti-tetherin activity [112], whereas the
[GD]DIWK motif in monkey BST2, but not in human, is required for interaction with HIV-1 Vpu [113].

4.5. Transmembrane Domain (TMD) Interactions

Viral proteins can interact with cellular proteins through TMDs to counteract innate immune
response. These interactions are mediated by motifs. HIV-1 Vpu can antagonize tetherin within the
lipid bilayer, with α-helical TMDs of both proteins [114]. The conservation of the Ax3Ax3Ax3W and
Vx3IxxLx3L motifs in HIV Vpu and primate BST2, respectively, suggests their putative role in TMD
interaction [114,115]. Also, the GxxxG motif is identified for protein-protein, transmembrane-helix and
helix-helix interactions [164,165]. Mutation in the 125GxxxG129 motif in the second transmembrane
segments of the NS4B protein may influence protein-folding and interactions, and the replication of
engineered HCV-JFH1 [166]. Another example is the influenza virus M2 ion channel protein, which is
vital for replication and proton transport [167,168]. M2 has a transmembrane domain, which harbors
the conserved HxxxW motif, where H and W are involved in the protein’s channel function. Similarly,
the p7 protein encoded by HCV is a viroporin that harbors the HxxxW conserved motif and can
transport protons [132].

4.6. Retinoblastoma (Rb or pRb)

The Rb encoded by humans is involved in protein-protein interactions, gene expression,
cell division and acts as a tumor suppressor. Interaction between oncogenic protein and Rb leads
to the phosphorylation and inactivation of Rb, and the progression of cancer. Viral oncoproteins
can utilize the conserved Rb-binding motif (LxCxE) on viral proteins to bind to Rb, modulate gene
expression, and cause tumor growth. Examples of Rb-binding proteins are as the following: (i) human
CMV UL97 serine-threonine kinase [101]; (ii) Polyomaviruses large and small T antigen oncoproteins,
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which interact with tumor suppressor proteins, and Merkel cell polyomavirus (MCPyV) large T antigen,
which harbors LxCxE and NLS (RKRK) motifs (essential for replication) [102–106]; (iii) White spot
syndrome virus IE1 and WSV056 that regulate cell cycle progression [107]; (iv) Adenovirus E1A [108];
and (v) HPV E7 [109]. Furthermore, Rb-related protein (RBR) in plants is involved in protein-protein
interactions and gene expression [169]. The geminiviruses replication factor AL1 interacts with RBR to
modulate host gene expression and DNA replication machinery. It is noteworthy that the LxCxE motif
is not the exclusive Rb-binding motif, for instance AL1 does not harbor the LxCxE motif, but recruits
helix 4 to bind to plant RBR [169].

4.7. Cleavage Site Motif

The viral protein precursor is cleaved by cellular proteases (e.g., matriptase or furin)
into active protein form. Among the examples, NDV fusion glycoprotein (F protein) is
encoded as an inactive precursor, which is cleaved proteolytically, into two bisulfide-linked
polypeptides [110,170]. This cleavage determines the strain type, either lentogenic (avirulent),
mesogenic (intermediate) or velogenic (virulent). The consensus sequence of the F protein cleavage
site of lentogenic is 112[GE][KR]Q[GE]RαÓL117, while the site of velogenic and mesogenic strains is
112[RK]RQ[RK]RÓF117 [110]. Moreover, the F protein mediates virus entry and fusion with the cell
membrane for most avian paramyxoviruses type 9 (APMV-9) strains. Recent reports show that the F
protein cleavage site sequence is not a major determinant of pathogenicity and virulence of APMV-7 in
chickens [171], and other regions of the F protein could modulate virus virulence [172]. In influenza
A virus, the cleavage site of HA is Rx[RK]RÓGLF in highly pathogenic avian influenza virus H5N1,
while RxxRÓ, RxRRÓ, and KKKRÓ are also reported [111]. The R and K can be replaced by non-basic
residues, such as [QE][ST]RÓGLF.

5. Motifs Essential for Virion Structure and Life Cycle (Usually Unique to Virus Families)

5.1. Motifs Involved in Structural Proteins

Adenoviruses bear short and/or long fibers. The fiber consists of a shaft and knob. Analysis
of Adv fibers showed that the Adv-D fiber shaft bears fiber flexibility motifs KLGxGLxF[DN] and
KxGGLxF[DN], which may have roles in interactions with host cells [50].

5.2. Transposition

Kaposin is an oncoprotein that transforms cells in culture and induces tumor formation.
Expression and transforming activity of Kaposin A protein is determined by the LxxLL motif [116,117],
whereas LQQLL in HIV-1 viral protein of regulation (Vpr) is required for retrotransposition [118,119].
Also, LxxLL and PDZ protein-binding domains are important for the HPV16 E6 protein to interact with
the p53 protein [120,173–175]. The interaction then activates mTORC1 (rapamycin complex 1) signaling,
kinase phosphorylation, translation initiation factor and cap-dependent translation. Therefore, HPV16
E6 protein is correlated with HPV-induced oncogenesis and could be considered as a future therapeutic
against HPV-induced cancers [120,121]. Further evidence shows that E6 proteins lacking the LxxLL
motif can interact with p53 [122].

5.3. Inhibitor of Apoptosis (IAP) Family Proteins (Apoptosis Suppressors)

IAP is encoded by virus members of eight families: Ascoviridae, Asfarviridae, Baculoviridae,
Hytrosaviridae, Iridoviridae, Malacoherpesviridae, Nudiviridae, and subfamily Entomopoxvirinae of family
Poxviridae [176]. Baculoviruses block apoptosis by encoding IAPs, which are characterized by the
presence of one or more baculoviral IAP repeat (BIR) domains, except for Deltabaculovirus [177,178].
The core component of BIR is a Cys/His motif (Gx2Yx4Dx3Cx2Cx6Wx9Hx6´10C) that coordinates
a single zinc ion; however, about two-thirds of the human IAP proteins harbor a C-terminus
RING domain (40–60 amino acids), with consensus Cx2Cx9´39Cx1´3Hx2´3Cx2Cx4´48Cx2C [123].
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IAP (70 amino acids) mediates protein-protein interactions essential for anti-apoptotic potential [124]
by binding to the IAP-binding motif (A[KITV][AEP][FEISY]) (Figure 4, Table S1) [125].
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6. Motifs Enriched with Residues (Xaa-Rich Motifs) and Low-Complexity Regions

Low-complexity regions (LCRs) are repeats or extensions of one or more residue(s), which could
be flanked or interrupted by other residues [180–183]. Few structural and functional data are available
on LCRs, because they may not crystallize easily [181–183]. However, they may play roles in
protein-protein interactions [183]. In bibliography, there is another type of sequences, which are
not referred to as LCRs. They are referred to as Xaa-rich or X-rich motifs, where “X” or “Xaa” refers to
any amino acid. They are enriched with residue(s), which may not be repeated, but are flanked by
other residues. These alternative residues enrich the structure of x-rich motifs. G-rich residues could
be considered as an example, such as GxxxG, [VI]xGxGxxG or (Gx1´3Gx1´3G). They can be detected
in oxidoreductases and may mediate binding to FAD or NAD [128]. Also, the KR-rich motif (such as
RKRK and RRRRx5Rx4RK) is an example which may represent a classic NLS [100]. The functions and
structures of these sequences deserve to be elucidated by future studies.

6.1. Cys-Rich Motifs

Thioredoxins (trx) belong to the oxidoreductase superfamily, and harbor thioredoxin fold,
which is a four-stranded β-sheet surrounded by three α-helices. It reduces thiol groups during
thiol-disulfide exchange [184–186]. The trx fold first was discovered in bacteria, then found in
eukaryotes. The family harbors a conserved CxxC active site motif, which is a signature for the
family and thiol-disulfide reactions. CxxC and CxxxC motifs have roles in poxvirus A16 protein
interaction and thiol-disulfide transfer during cytoplasmic redox pathway [129]. Moreover, the CxxC
motif in the HTLV-1 envelope-fusion protein (env) mediates disulfide isomerization and, hence,
promotes viral fusion and infection [130]. CxxxC in Respiratory syncytial virus G protein contributes
to virus pathogenicity by binding to the CX3CR1 receptor on host cells [131]. Blocking CX3CR1 with
antibodies reduces infection and triggers the immune response.

Proteins containing the chitin-binding domain, or the 6-cysteine motif, Cx13´20Cx5´6Cx9´19Cx10´14Cx4´14C,

are able to degrade chitin and chitotriose. Other proteins have antimicrobial activity and are associated
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with immune response against pathogens. Ac83 and ha83 proteins encoded by baculoviruses
harbor putative C2HC zinc finger (Cx5CxnHx6C) and 6-cysteine motifs, respectively, and have
a role in budded virion production and nucleocapsid assembly [95,96]. A zinc finger domain is
also characterized in the large T antigen of polyomaviruses, including SV40 [106,187]. Large T
antigen (LTag) contains four conserved domains, the J domain, the origin-binding domain (OBD),
the zinc-binding domain, and the AAA+ ATPase domains. The J domain may have a role in viral DNA
replication, OBD may contribute to DNA replication and binding to transcription factors, and ATPase
has enzymatic activities to support the required energy, while the zinc finger domain is responsible for
the oligomerization of LTag forming hexamers [106,187].

6.2. SR-Rich Motif

These LCR motifs are found in a number of viral proteins, which suggests their role in virus
replication [188]. Among these proteins are: (1) SSRSSSRSRGNSR in SARS-CoV nucleocapsid
protein; (2) RSNSRSRSRSRSRSR and SRSKSRARSQSR in turkey and human astrovirus capsid protein,
respectively; (3) SSRYSSTSRERSRLSR in Marburg virus L protein; and (4) RSISRDKTTTDYRSSRS in
the minor nucleoprotein of Ebola virus.

6.3. PEST Motif

This is a peptide sequence which is rich in Pro (P), Glu (E), Ser (S) and Thr (T). It acts as a signal
peptide for protein degradation. The motif is required for binding between the HPV16 E7 protein
with human interferon regulatory factor-9 [189]. The PEST motif was predicted in HBV proteins and
mouse norovirus non-structural protein; however, the exact role in infection is unknown and may not
be necessary for the infection process [190,191].

7. Concluding Remarks and Future Perspective

This article reviews the functional motifs utilized by viruses. These motifs are required for
productive virus infection. The patterns and functions of motifs were highlighted, aiming to present an
insight into motifs and their patterns. The proteins harboring these motifs, as well as viruses encoding
these proteins, were also highlighted. The motifs were divided into five main groups according to
their cellular function during the virus replication cycle (Figure 1, and as summarized in Table 1).

It worth emphasizing that viruses may use multiple motifs for one process. They might be able
to evolve mechanisms to utilize alternative motifs in the absence of the primary one. For example,
(i) SUMO-binding to substrate [12,13]; (ii) RGD-like motifs (RGG or GGG) [55]; and (iii) the LxCxE
motif is not the exclusive Rb-binding motifs [169]. Moreover, the consensus pattern is not the absolute
measure for the protein functions. Although the motif might fulfill the pattern consensus, it could
not perform the function. Other factors could influence the function. For example, the NTCP harbors
two LL motifs, (136LL137) and (222LL223), but the second motif was shown to be more effective in
regulating endocytosis [61], which could be due to the phosphorylation of the adjacent T225 and S226

residues. The 125GxxxG129 motif in the second transmembrane segments of the NS4B protein, but not
143GxxxG147 in the third segments, is required for HCV replication [166].

These motifs mediate interactions and molecular processes within host cells. Therefore,
an increasing amount of evidence suggests that motifs can be considered as potential targets for
therapeutic agents. These attempts include (i) interfering with post-translational modification processes
by SENPs proteases [17,18,21]; (ii) motifs mediating the ESCRT pathway (P[TS]AP, PPxY and KATN) as
anti-filovirus therapeutic agents [78,81,84,85]; (iii) inhibiting Vif-mediated degradation of antiretroviral
A3 [133,147]; (iv) HPV16 E6 protein acting against HPV-induced oncogenesis [120,121]. Moreover,
targeting and counteracting proteins (motifs) involved in entry could lead to an efficient therapeutic
strategy [192], whereas targeting cellular processes may lead to increased cytotoxicity.

It is also important to emphasize that studying functional motifs would benefit from the prediction
of protein characteristics, cellular interactions or the putative role of a protein. The link between
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functional motifs and protein functional analysis and/or prediction should be established by future
research. Moreover, these studies may assist in characterizing virus tropism and studying emerging
viruses (zoonotic viruses) capable of infecting humans [56,193]. Since these motifs are subjected to
evolutionary modifications, it is of interest to study lateral gene transfer between species or strains
as well as evolutionary events occurring in proteins. Also, it is important to study functional and
molecular modifications accompanying insertion into or mutation of the motifs within proteins. On the
other hand, the numbers of newly isolated viruses were expanded over last years, particularly giant
viruses, which harbor proteins of unknown functions. This expansion requires efforts by future
research to predict protein functions, which could be achieved by in silico determination of sequence
characteristics and prediction of structural and functional sites in the sequences prior to designing
further experiments.

Supplementary Materials: The following is available online at www.mdpi.com/2227-7382/4/1/3/s1. Table S1:
IAP and nuclear trafficking motifs.
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