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Decoding finger movement in 
humans using synergy of EEG 
cortical current signals
Natsue Yoshimura1,2,3,4, Hayato Tsuda1, Toshihiro Kawase1, Hiroyuki Kambara1 &  
Yasuharu Koike1,4

The synchronized activity of neuronal populations across multiple distant brain areas may reflect 
coordinated interactions of large-scale brain networks. Currently, there is no established method to 
investigate the temporal transitions between these large-scale networks that would allow, for example, 
to decode finger movements. Here we applied a matrix factorization method employing principal 
component and temporal independent component analyses to identify brain activity synchronizations. 
In accordance with previous studies investigating “muscle synergies”, we refer to this activity as “brain 
activity synergy”. Using electroencephalography (EEG), we first estimated cortical current sources 
(CSs) and then identified brain activity synergies within the estimated CS signals. A decoding analysis 
for finger movement in eight directions showed that such CS synergies provided more information 
for dissociating between movements than EEG sensor signals, EEG synergy, or CS signals, suggesting 
that temporal activation patterns of the synchronizing CSs may contain information related to 
motor control. A quantitative analysis of features selected by the decoders further revealed temporal 
transitions among the primary motor area, dorsal and ventral premotor areas, pre-supplementary 
motor area, and supplementary motor area, which may reflect transitions in motor planning and 
execution. These results provide a proof of concept for brain activity synergy estimation using CSs.

Cortical motor areas have complex functional anatomy, and the purpose behind their multiple interactions in vol-
untary movement is not fully understood. Neurons in these areas have unique properties and interact with each 
other in the various stages of movement, from motor planning to action generation, in what is known as func-
tional integration1–3. Considering the multiple parallel pathways between motor areas such as the primary motor 
area (M1), dorsal premotor area (PMd), ventral premotor area (PMv), and supplementary motor area (SMA), 
synchronizing temporal patterns by these areas may reflect their dynamic functions in voluntary movement.

In motor control research, muscle synergy analysis is performed to examine synchronization of muscle activity 
signals4–6. Typically, muscle synergies are calculated by applying matrix factorization methods to electromyogra-
phy (EMG) signals7. The muscle synergy theory is based on the idea that our highly redundant musculoskeletal 
system requires a framework for reducing the degrees of freedom in motor control to realize complex movements8.  
The utility of muscle synergy analysis is particularly evident in studies on motor impairment. Atypical muscle 
synergy patterns have been examined in stroke survivors with motor impairments, suggesting that muscle syner-
gies reflect a characteristic of motor function9–11. The hypothesis has been further supported through successful 
classification of arm and leg motion using muscle synergy12–14. Recent studies on humans and non-human pri-
mates also suggest the existence of brain areas that regulate muscular and kinematic synergies15–17. Therefore, 
synchronizing temporal patterns in the brain (i.e., synergy) may also possess ample information for decoding dif-
ferent motions. However, no approach to date has allowed for reliable classification of different motions from syn-
ergy in the brain derived from non-invasively recorded brain electric activity, e.g. electroencephalography (EEG).

In this study, we examined synchronization of brain activity signals in humans, hereinafter referred to as 
“brain activity synergy”. Invasive recording methods are typically effective for examining such neuronal activities. 
However, to provide a method with greater applicability in rehabilitation and motor learning, we chose to utilize 
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EEG. Its high temporal resolution allowed us to capture temporal transitions in motor control. We also com-
pensated for its low spatial resolution by applying EEG cortical current source estimation, which we previously 
used to reconstruct human muscle activity signals from EEG signals18. In this method, spatial resolution of EEG 
signals is computationally increased by distributing current sources (CSs) equidistantly over the cortical surface 
at a spacing of 2–3 mm and estimating their time series using a variational Bayesian method19.

Here we examined whether synchronization of distant CSs (CS synergy) reflects useable information on 
motor control. We applied a matrix factorization method20, 21 to CS signals to extract sets of CS synergy. We 
then attempted to decode finger-motion from the CS synergy signals using a sparse logistic regression (SLR)22. 
We compared the decoding performance with that using EEG signals, CS signals, and similarly calculated EEG 
synergy. We also compared temporal transitions of motor areas contributive to decoding using CS signals and 
CS synergy.

Results
CS synergy weight distributions and temporal patterns.  We recorded EEG and EMG signals during 
finger movement in 8 directions and estimated CS signals from the EEG signals. We then applied matrix fac-
torization to the CS signals using principal component analysis followed by temporal independent component 
analysis (PCAICA)20, 21, 23. Figure 1 shows characteristic synergy patterns from participant A. Among 128 esti-
mated synergies, some synergies showed synchronized CSs concentrated in specific motor-related areas, such as 
the PMv (synergy #11) and SMA (synergy #6). Our results also showed synchronization of CSs at distant areas. 
These synergies were distributed over multiple, distant motor-related areas, including the preSMA, PMd, M1, and 
hand knob (synergy #17), and preSMA, PMd, and PMv, (synergy #20). Overall, synergy temporal patterns varied, 

Figure 1.  Examples of synergy weight patterns on cortical maps and temporal patterns in participant A. The 
topological maps are for the left hemisphere, and white and gray areas represent gyri and sulci, respectively. The 
six colored areas denote motor-related regions of interest: hand knob, M1, PMd, PMv, SMA, and preSMA. The 
weight patterns are shown as distributions of CSs. Red CSs were assigned high absolute weight values, while 
dark blue CSs received low weight values. The temporal patterns under the maps represent means over trials and 
tasks.
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with positive or negative peaks tending to occur near EMG onset (around 200 ms) and initial cursor movement 
(around 400 ms). When we classified each synergy according to region of interest (ROI) with the highest mean 
synergy weight value (Table 1; see Materials and Method, Brain activity synergy estimation for details), all partic-
ipants except D showed hand knob and PMv-dominant synergies.

Comparison of decoding performances using EEG, EEG synergy, CS signals, and CS syn-
ergy.  We compared mean decoding performances for four types of brain activity signals, EEG, EEG synergy, 
CS signals, and CS synergy (Fig. 2). We asked participants to perform the 8-direction finger movement tasks in 
two different elbow angles, 0° and 90° (Fig. 3). This allowed us to design two types of decoders, one for target 
direction from the center origin (right, left, etc.) and the other for finger movement (flexion, extension, etc.). In 
our previous work, we designed decoders for classifying motor activity during different postures according to 
their relation to extrinsic or intrinsic coordinate frames24. The extrinsic coordinate frame refers to movement 
with respect to the external environment, while the intrinsic coordinate frame refers to action with respect to the 
body. In the current study, the decoder for target direction (Ext-label) extracted extrinsic coordinate information, 
while the decoder for finger movement (Int-label) extracted intrinsic coordination information. We compared 
mean accuracies for all four signal types in each decoder using non-parametric permutation tests and Benjamini 
& Hochberg false discovery rate correction for multiple comparisons25, 26. For both labeled decodings, CS synergy 
showed significantly higher performance than the other signal types (Int-label, CS synergy vs. CS signals, p = .005, 
CS synergy vs. EEG synergy, p = .005, CS synergy vs. EEG, p = .005; Ext-label, CS synergy vs. CS signals, p = .005, 
CS synergy vs. EEG synergy, p = .005, CS synergy vs. EEG, p = .005). Some comparisons between the other signal 
types also showed significant differences (Int-label, CS signals vs. EEG synergy, p = .04, EEG vs. EEG synergy, 
p = .04; Ext-label, CS signals vs. EEG synergy, p = .04, EEG vs. EEG synergy, p = .04). These results suggest that CS 
synergies include necessary pattern information for 8-class decoding not only in target direction (Ext-label, 72%) 
but also in finger motion (Int-label, 70%). Information on target direction seemed to be extractable even from 
EEG signals (mean accuracy of 53%), but finger motion information could be extracted only from CS synergy 
signals. All signal types showed significantly higher accuracies than chance level (12.5% for 8 classes) for both 
labeled decodings (CS synergy, Int-label, p = .005, Ext-label, p = .005; CS signals, Int-label, p = .005, Ext-label, 
p = .005; EEG synergy, Int-label, p = .005, Ext-label, p = .005; EEG, Int-label, p = .005, Ext-label, p = .005).

Brain area

Participant

A B C D E F

Hand knob 27 31 27 11 28 36

M1 16 13 8 28 15 14

PMd 12 17 17 15 19 15

PMv 39 28 32 31 27 23

preSMA 18 18 26 24 21 19

SMA 16 21 18 18 18 21

Table 1.  Number of synergies whose highest mean weight value was located in a region of interest.

Figure 2.  Comparisons of decoding performances using EEG signals, EEG synergy, CS signals, and CS 
synergy. Depicted accuracies are the mean of 80 cross-validation results for each decoding. Error bars denote 
standard error. Statistical differences were calculated using non-parametric permutation tests with Benjamini & 
Hochberg false discovery rate correction for multiple comparisons.
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Temporal comparison between CS synergy and CS signals for areas contributive to decoding.  Since SLR 
selects task-related critical features in the temporal and spatial domains, we were able to identify brain regions 
and timings that contributed to Int-label and Ext-label decoding. We counted the number of times each feature 
(synergy number or CS index) was selected by a decoder (8 classes for both Int- and Ext-label decoders) and 
plotted the top 10 selected features according to areas and time point (Fig. 4 for participant A; Supplementary 
Fig. S1 for the other participants). For both CS synergy (left panel in Figs 4 and S1) and CS signals (right panel), 
temporal features before cursor movement (around 450 ms) were frequently selected by all of the decoders in all 
participants. Although temporal activity varied across participants, tendencies were observed when comparing 
between CS synergy and CS signals. In CS synergy, spatial features were widely selected from the 6 motor areas, 
and many hand-knob-dominant synergies were selected, especially around EMG onset (border between pink and 
yellow areas).

Topological maps further showed that weight distribution patterns of the selected CS synergies differed 
between the Int- and Ext-label decoders. Specifically, a hand-knob-dominant synergy selected by Int-label 
decoder (red dot at 100 ms) showed weighted CSs mainly in the hand knob and M1, whereas another 
hand-knob-dominant synergy selected by the Ext-label decoder (green dot at 160 ms) showed many weighted 
CSs in PMd and SMA. Similarly, a PMd-dominant synergy selected by the Ext-label decoder (green dot at 180 
ms) showed more weighted CSs in PMd than one selected by the Int-label decoder (red dot at 180 ms). In decod-
ing with CS signals (right panel), CSs located in the hand knob were not frequently selected, and both Int- and 
Ext-label decoders tended to select the same CS. In addition, the top 10 selected CSs tended to cluster in a few 
areas (particularly PMd and PMv), most notably in participants A, B, and E.

Discussion
In this study, we applied the matrix factorization method PCAICA to CS signals to estimate brain activity syn-
ergies. The estimated CS synergies showed topological patterns concentrated in single motor-related areas or 
distributed over multiple motor-related areas. Their temporal patterns representing whole activity of the synchro-
nizing synergies tended to show positive or negative peaks at EMG onset and initial cursor movement (cursor 
onset). Similar to findings using muscle synergy12–14, efficacy of brain activity synergy was shown by decoding 
8 classes of finger movements. The decoding analysis revealed that the CS synergy time-series signals provided 
superior decoding performance over other signal types, especially in the Int-label decoding, which requires 
exploiting information related to body such as joints and muscles. The temporal patterns for CS synergies seemed 
to reflect characteristic differences between the 8 finger movements. Our quantitative analysis further revealed 
the possibility to extract not only spatial patterns but also temporal transitions in brain activity for motor control. 
Topological maps (Fig. 4) showed that the hand knob and M1 were the main contributive areas for controlling 
finger movement in the intrinsic coordinate frame, while PMd and PMv were the main contributors for move-
ment direction towards the target in the extrinsic coordinate frame, depending on their timing in transition from 

Figure 3.  Experimental design and the two elbow angles used. Eight targets were distributed 45° apart on 
a circle with a 10-cm radius. A trial started when one of the targets appeared onscreen. Participants moved 
the cursor from the center origin to the target using a single index-finger movement on a touchpad. They 
maintained the position for 2 s until the target disappeared. They then moved their index fingers back to the 
center origin and waited for the next trial 2 s later. To discriminate between usage of intrinsic and extrinsic 
information, participants performed the tasks using the same target layout, but at different elbow angles 0° and 
90°. Part of the illustration was created using Poser 11 Pro, (http://my.smithmicro.com/poser-3d-animation-
software.html).

http://S1
http://S1
http://my.smithmicro.com/poser-3d-animation-software.html
http://my.smithmicro.com/poser-3d-animation-software.html
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motor planning to execution. The differences in mapping were consistent with existing studies on non-human 
primates and humans24, 27, 28.

We had participants perform the finger movement tasks in two different elbow angles to examine the effec-
tiveness of brain activity synergy estimation. In our previous work using functional magnetic resonance imaging 
(fMRI), we found human neural representations of the intrinsic and extrinsic motor coordinate frames for the 
wrist24. So here we investigated whether similar results could be observed using EEG. The high temporal reso-
lution of EEG could potentially reveal temporal transitions between intrinsic and extrinsic coordinate frames. 
Although the experimental task in this study was different from that of our previous work, the concept for the 
representation analysis was identical. By employing the two elbow angles, 0° and 90°, we obtained data on differ-
ent finger movements toward the same target (motor control in extrinsic coordinates) and data on the same finger 
movements toward different target positions (motor control in intrinsic coordinates). The two types of labeling 
for target position and finger movement and mixing the two elbow angle data allowed us to extract critical and 
specific information on extrinsic and intrinsic coordination. Our previous work and prior studies have shown 
that direction of movement is mainly encoded in PMd and PMv, but also in M124, 27, 29, and muscle and joint infor-
mation are encoded mostly in M128, 30, 31. Although there was no significant difference in the number of times CSs 
in M1 and PM were selected by the Int-label and Ext-label decoders using CS synergy, the hand-knob-dominant 
synergy selected by the Int-label decoder at 100 ms (left-most topological map in Fig. 4) had higher CS weight 
values in M1 and hand knob, whereas the hand-knob-dominant synergy selected by the Ext-label decoder at 160 
ms (second map from the left) had more CSs in PMd and PMv. The same tendency was found in PMd-dominant 
synergies (remaining two maps). The synergy selected by the Int-label decoder at 180 ms had more CSs in M1 
and the hand knob than the one selected by the Ext-label decoder. Thus, CS synergy may allow for visualization 
of temporal transitions for intrinsic and extrinsic coordination. Moreover, even though CS signals and CS syn-
ergy shared similar contributive areas and temporal patterns, CS signals provided a significantly lower decoding 
performance (Fig. 2). This suggests that integrating similar CS patterns allowed SLR to select for secondary or 
tertiary characteristics. The variety of temporal patterns for synchronizing CSs may encode richer information 
relating to not only extrinsic but also intrinsic coordination. From a representational point of view, more detail in 
topological patterns was achieved when considering synergy and SLR weights together.

Figure 4.  Comparisons of top 10 features selected by Int-label (red dots) and Ext-label (green dots) decoders 
for CS synergy (left panel) and CS signals (right panel) in participant A. Features from the 8-class decoders are 
plotted according to time point and area. Dot size denotes the number of decoders that selected the feature. 
The pink area in each graph denotes the period when the target appeared, its right border denotes average 
EMG onset, and the yellow areas denote the period between EMG onset and average cursor movement onset. 
Topological maps and their respective temporal patterns (plotted in the same manner as in Fig. 1) are provided 
to compare CS distributions of select CS synergies and CS signals.
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Comparing topological maps of synergies among participants, we found that all participants showed similar 
types of synergies. For example, some synergies included CSs in one local area of PMd, PMv, SMA, preSMA, or 
M1, whereas other synergies included CSs in multiple distant areas. This similarity in synergy patterns is also seen 
in muscle synergy analysis and reflects characteristics of normal versus impaired motor control9–11. Interestingly, 
contributive synergies for decoding differed among participants, even though hand-knob-dominant synergies 
tended to contribute to Int-label decoding more than Ext-label decoding.

For a more thorough investigation of CS synergy, it would be worthwhile to compare our current findings with 
EMG signals and muscle synergies. Since this study used simple finger-movement tasks to validate the proposed 
method, in future work we plan to investigate the relation between brain and muscle synergies. Furthermore, we 
are interested in employing statistical method such as Akaike’s information criterion to optimize the number of 
synergies32, 33. We set the number of synergies to 128 according to the matrix rank of the original EEG signals, but 
we found that a smaller number of synergies still showed significantly higher decoding performance than that 
using CS signals, EEG synergy, and EEG signals.

Applying PCA followed by temporal ICA is generally expected to provide a higher decoding performance than 
either method alone34. However, here EEG synergy (EEG plus PCAICA) showed significantly lower performance 
than EEG signals. Wang et al. 34 performed a simple binary decoding of imagery of right- and left-hand move-
ments by applying PCAICA to EEG signals. Their method exploited activity differences between the right and 
left hemispheres, achieved using two EEG sensors over the central area (C3 and C4). But decoding in our study 
required classification of 8 different finger movements in different coordinate frames. To decode such detailed 
information, the spatial resolution of EEG sensors was insufficient, particularly considering the integration of 
synchronizing temporal patterns. Therefore, the improved decoding performance with CS synergies cannot be 
attributed solely to the PCAICA method, but more so to effective estimation of CS signals by the variational 
Bayesian multimodal encephalography (VBMEG)19 method we employed.

CS signals are computationally estimated from EEG signals using a machine-learning technique to solve the 
inverse problem. Therefore, there is always an argument against reliability. VBMEG employed in this study also 
requires solving an inverse problem to estimate CS signals from EEG signals, and it uses fMRI data as a hierarchi-
cal prior in Bayesian estimation. The validity of VBMEG has been shown in several studies18, 19, 35–39, and we have 
shown it to be more effective in muscle activity reconstruction than EEG signals, even when not using fMRI data. 
Therefore, the finding of this study, obtained without the use of fMRI, further support the validity of VBMEG.

Though the small number of participants limits the breadth of our conclusions, the decoding performance 
using CS synergy was significantly higher than that using other modes. Although the performance is slightly 
lower than that of using local field potentials in monkeys (80–90%), the 70% accuracies show potential for the 
method in non-invasive decoding40, 41. We believe the performance is a result of using a high temporal reso-
lution method to exploit transitions in brain activity signaling during motor control. Motor-control-based 
brain-machine interfaces (BMIs) often employ use mu (8–12 Hz) or beta (18–26 Hz) rhythm modulations called 
event-related desynchronizations, occurring with motor imagery42–44. Yet even with their efficacy in classification, 
challenges still remain for online application. To realize a BMI useable in daily life, hybrid BMIs with multimodal 
biosignal inputs have been proposed45–47. Our proposed method can be technically implemented online because 
all processes are linear calculations if we design our filters (inverse filter for CS estimation, weight matrices for 
PCA and temporal ICA, and decoders for task classification) in advance. In addition, even though temporal ICA 
requires the number of inputs to be more than the target number of sources, CS estimation can compensate for 
the limited number of EEG sensors by computationally increasing the number of inputs. However, similar to 
other EEG-based BMIs, nonstationarity of brain activity and artifacts would pose challenges in developing a 
robust system. Adaptive BMIs could offer a solution to address this issue48–50. If the pre-calculated filters do not 
provide sufficient decoding performance, a calibration program could be implemented to update the filters using 
more recent EEG data.

Materials and Methods
Participants.  Six healthy, right-handed, human participants (2 females and 4 males), between 30 and 51 
years of age (M = 40.67, SD = 7.23), participated in this study. The study protocol was approved by the ethics 
committee of the University of California, San Diego (Approval No. 14353) and carried out in accordance with 
the Declaration of Helsinki. Written informed consent was obtained from each participant before the experiment.

Behavioral tasks and EEG data acquisition.  Participants sat on a chair with their right forearm on an 
arm rest (350-series, Ergorest, Siilinjarvi, Finland) and their wrist on a desk. We then asked them to perform 
finger movements without moving the arm. They performed computer cursor movement tasks using the right 
index finger on a touchpad (T650, Logitech, Lausanne, Switzerland) and the arm positioned in one of two elbow 
angles, 0° and 90° (Fig. 3). One trial lasted 4 s. A circle was presented at the center origin for 2 s, during which 
participants positioned their index fingers at the center of the touchpad. Then a target circle was presented for 
the next 2 s at one of eight positions distributed 45° apart on a circle with a 10-cm radius. The participants were 
instructed to move a red circle cursor from the center origin toward the target with a single finger movement and 
keep the finger in that position until the target disappeared, even if the position was not near the target. After the 
target disappeared, participants moved their index fingers back to the center origin, and the next trial started. One 
run consisted of 32 trials such that all 8 target positions were presented 4 times in pseudo-randomized order. The 
elbow angle was changed every 10 runs and started from 0°. The participants performed 40 runs in total, result-
ing in 20 runs for each elbow angle. In changing the elbow angle, the same target direction cued different finger 
movements. For example, target 8 indicated finger extension at 0° and adduction at 90° (Fig. 3). The experimental 
program was created using Psychophysics Toolbox Version 3 (Psychtoolbox-3, http://psychtoolbox.org) based 

http://psychtoolbox.org
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on MATLAB 2013b (The MathWorks, Inc., U.S.A.), and the visual stimuli were presented on a 19-inch LCD. The 
cursor positions were saved at a sampling rate of 30 Hz.

We acquired EEG and EMG using a Biosemi Active Two amplifier system with active sensors (Biosemi, 
Amsterdam, Netherlands). EEG signals were recorded from 128 positions according to Biosemi’s equiradial lay-
out. To identify muscle activity onset, EMG sensors were placed over the right extensor indicis and flexor digito-
rum. Lab Streaming Layer (https://code.google.com/archive/p/labstreaminglayer/) was used to synchronize EEG, 
EMG, and the experimental program for signal processing. Signals were acquired at a sampling rate of 2048 Hz. 
Before EEG acquisition, coordinate positions of EEG sensors as well as the nasion, left pre-auricular point, and 
right pre-auricular point were measured using a posture functional capacity evaluation system (zebris Medical 
GmbH, Isny, Germany).

Anatomical MRI acquisition.  A 3D anatomical MRI image for the head was acquired at the Center for 
Functional MRI in the University of California, San Diego, using a General Electric (GE) Discovery MR750 
3.0 T equipped with a 32-channel receiver coil. A sagittal image was acquired using a T1-weighted spoiled gradi-
ent recalled sequence (TR = 8.132 s; TE = 3.192 ms; FA = 8°; FOV = 256 × 256 mm; matrix size = 256 × 256; 172 
slices; slice thickness = 1.2 mm). The sagittal image covered the whole head, including the face, specifically for use 
in constructing a polygon model of the cortical surface.

EEG data preprocessing.  EEG data were loaded into MATLAB using MoBILAB toolbox51 and exported 
to the EEGLAB platform52 (https://sccn.ucsd.edu/wiki/EEGLAB) to perform the following preprocessing: 
re-sampling, high-pass filtering, and eye-movement artifact removal using temporal ICA. The EEG data were res-
ampled to 500 Hz and high-pass filtered at a cutoff frequency of 1 Hz. Among several ICA algorithms in EEGLAB, 
we used adaptive component analysis (AMICA) (http://sccn.ucsd.edu/~jason/amica_web.html) for the artifact 
removal. Using target onset as the reference point, 80 epochs per target for each elbow angle were extracted. Each 
epoch had a duration of 3 s, 1 s of pre-onset and 2 s of post-onset. The epochs were saved according to task as a 
MATLAB file for later EEG cortical current source estimation and EEG synergy estimation.

EEG cortical current source estimation using a hierarchical Bayesian method.  CSs are equidis-
tantly distributed on the cortical surface, considering the anatomy of sulci and gyri and assuming that activity 
signals from CSs propagate through cerebrospinal fluid (CSF), skull, and scalp before being recorded by EEG sen-
sors. If the signals from CSs are reasonably estimated from EEG signals, brain activity information can be disso-
ciated into the spatial resolution of CSs. Among several methods for CS estimation, here we used the Variational 
Bayesian Multimodal Encephalography (VBMEG) toolbox19 (ATR Neural Information Analysis Laboratories, 
Japan; http://vbmeg.atr.jp/?lang=en). We also used it in our previous work to reconstruct muscle activity signals 
from CS signals18.

The estimation process was conducted in accordance with standard procedures described in the toolbox docu-
mentation, unless otherwise specified. Briefly, VBMEG requires anatomical T1-weighted MRI image to calculate 
a cortical surface model and a three-layer model, EEG time series signal data, and EEG sensor position coor-
dinate data for each participant. Optional functional MRI data used for priors in the Bayesian framework were 
not used in the current study. The cortical surface model consists of xyz coordinates of the distributed CSs on 
the cortical surface in the MRI image, and the three-layer model consists of boundary information for CSF, the 
skull, and scalp. The anatomical MRI image was first processed using the Segment function in SPM8 (Wellcome 
Department of Cognitive Neurology, UK; http://www.fil.ion.ucl.ac.uk/spm) to perform bias correction and tis-
sue segmentation of gray matter. A polygon model of the cortical surface was then created using FreeSurfer 
(Martinos Center for Biomedical Imaging, Charlestown, MA; http://surfer.nmr.mgh.harvard.edu/). The resulting 
files were used to create the cortical surface model and the three-layer model in the VBMEG framework. EEG 
sensor positions were also co-registered on the cortical surface model using positioning software supplied with 
VBMEG. A leadfield matrix, which calculates EEG signals from CS signals based on sulci and gyri anatomy and 
electrical conductivity differences between CSF, skull, and scalp, was designed from the cortical surface model, 
the three-layer model, and the co-registered EEG sensor position coordinates using VBMEG.

To estimate an inverse filter that calculates CS signals from EEG signals, VBMEG requires multiple param-
eters. We used defaults offered by VBMEG for all parameters except the following: analysis time range = −1 to 
2 s; analysis time range for current variance = −0.7 to −0.5 s; time window size = 0.5 s; shift size = 0.25 s; dipole 
reduction ratio = 0.2. A parameter for hierarchical prior activity was set to “Uniform” since we did not acquire 
fMRI. We designed an inverse filter using leave-one-trial-out cross validation, and applied the remaining trial 
data to the inverse filter to obtain CS data for the trial. For the following analyses, CS data located in Brodmann 
area (BA) 4 and 6 of the left hemisphere, which include M1, premotor area (PM), and SMA, were used since the 
experimental tasks involved right index finger movement. This helped to reduce computational time and memory 
usage, since the original number of CSs mapped onto the whole cortical surface was 20,004. BA assignment for 
each CS was performed using a VBMEG framework that calculates Montreal Neurological Institute (MNI) coor-
dinates via a normalization matrix obtained with the segmentation function in SPM8.

Brain activity synergy estimation.  Among several matrix factorization algorithms, we used a PCAICA 
method20, 21 for brain activity synergy estimation since it showed similar estimation performance to the most 
commonly used nonnegative matrix factorization (NMF) method53 in muscles synergy analysis. Since NMF 
requires non-negative values as input, we found PCAICA, which does not have that constraint, to be appropriate 
for brain activity signals.

https://code.google.com/archive/p/labstreaminglayer/
https://sccn.ucsd.edu/wiki/EEGLAB
http://sccn.ucsd.edu/~jason/amica_web.html
http://vbmeg.atr.jp/?lang=en
http://www.fil.ion.ucl.ac.uk/spm
http://surfer.nmr.mgh.harvard.edu/
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Here we define the number of EEG sensors or CSs as M, the number of synergies as N, and sampled time as  
1, …, T. By expressing brain activity at time t as an M-dimensional column vector b t( ), all brain activity can be 
expressed as M × T matrix: =B b b T[ (1) ( )] .

Brain activity synergies to be estimated are defined as a series of B-dimensional column vectors, …w w, , N1 . 
These matrices are expressed as an M × N matrix: W w w[ ]N1= .

Using recorded signals B, we estimate W and C to satisfy the following formula under the condition of defined 
synergy number N.

B WC (1)≈

In PCAICA, we first perform PCA to reduce the dimensionality of B. The 1st to M-th principal components 
are calculated as follows:

c w B

c w B

( )

( )

,

(2)

PCA PCA T

B
PCA

B
PCA T

1 1



=

=

where = c w i M, ( 1, , )i
PCA

i
PCA  are the estimates from PCA, ci

PCA are T-dimensional row vectors, and wi
PCA are 

M-dimensional column vectors that form an orthonormal basis. Therefore,
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If the first N principal components sufficiently explain the original signals B, then B can be expressed as 
≈B W CPCA PCA, where

=W w w[ ], and (4)PCA PCA
N
PCA

1
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Next, ICA was applied to the CPCA under condition of N independent components, resulting in the following 
formula:

C w w
c

c
W C[ ] ,

(6)
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where =c w i N, ( 1, , )i
ICA

i
ICA

  are the estimates from ICA, ci
ICA are T-dimensional row vectors, and wi

ICA are 
N-dimensional column vectors. For ICA, we used the fastICA algorithm (http://research.ics.aalto.fi.ica/fastica), 
as applied in an existing study on muscle synergy21.

Finally, the original signals B can be expressed as

≈ = .B W C W W C (7)PCA PCA PCA ICA ICA

In the brain activity synergy estimation, resulting estimates are =W W WPCA ICA and C C ICA= .
We applied the PCAICA method for the EEG signals and the CS signals to compare decoding performance 

and topology maps from decoder weights. Synergy data were down-sampled to 50 Hz and data from 0 to 1 s (50 
time points) were used for analysis. Half of the 80-trial data were used to estimate W  and C, and the remaining 40 
trial data were applied to W  to obtain Cdec in the task decoding. The number of synergies was set to 128 for the 
CSs, even though the number of estimated CSs in BA4 and BA6 was more than 128, considering the matrix rank 
of the original EEG sensor data.

Task decoding using EEG signals, EEG synergy, CS signals, and CS synergy.  We utilized two types 
of labeling for 8-class decoding to classify 8 finger motions (intrinsic coordination labeling (Int-label)) and 8 target 
directions (extrinsic coordination labeling (Ext-label)). For example, in training the Ext-label decoder, target 2 
was assigned the same label for both 0° and 90° elbow angles, whereas in training the Int-label decoder, target 2 
was assigned different labels for 0° and 90° since it required index finger adduction and flexion, respectively. Using 
the Cdec from 40 trials for each task, the 8-class decoders were trained based on SLR with a Laplace approximation 
of a one-versus-rest algorithm (SLR-LAP-1vsR) using SLR toolbox version 1.2.1 alpha (Advanced 
Telecommunications Research Institute International, Japan; http://www.cns.atr.jp/~oyamashi/SLR_WEB.html)22. 
SLR identifies a set of critical features (i.e., a decoder) that maximizes decoding performance using feature selec-
tion and weight value calculation. Specifically, in SLR-LAP-1vsR, a decoder was trained for each label class, and 
the class with the highest probability among the 8 decoders was selected as the estimation for a test trial. Decoder 

http://www.cns.atr.jp/~oyamashi/SLR_WEB.html
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weight matrices were determined through leave-one-trial-out cross validation. Therefore, one trial from each task 
(8-trial data) was used as test data, and the remaining trial data from each task were used for decoder training (39 
trials × 8 tasks). This was repeated 40 times using unique permutations of training and testing data.

The same procedure was applied for EEG signals, EEG synergy, CS signals, and CS synergy data, respectively. 
The number of dimensions differed according to the number of EEG sensors and CSs, as well as the number of 
estimated synergies from the EEG sensors and CSs. For each signal type, decoding accuracies were calculated for 
Ext-label and Int-label. Mean decoding accuracies were calculated using leave-one-trial-out cross validation for 
each participant, and then statistical comparisons of mean accuracies were performed using non-parametric per-
mutation tests25. Comparison was repeated 10,000 times using pseudo-randomized labels. Therefore, the labeling 
with the highest overall difference would have a p-value of 1/10,000, or 1.00e-04. Correction for multiple compar-
isons was then performed using the Benjamini & Hochberg false discovery rate method26.

Quantitative analysis of selected features for Int-label and Ext-label decoders.  For decoding 
using CS synergy and CS signals, we calculated the number of features (synergy number or CS index) selected 
by the 8-class decoders in Int-label and Ext-label decoding for cross-validation results higher than 40% accuracy 
(i.e., over three-times higher than chance level). After determining the top 10 selected features for each 8-class 
decoder, we plotted the number of times the each of the features was selected according to time and respective 
area.

We compared topological maps for the Int-label and Ext-label decoders to determine if they used signals from 
areas physiologically relevant to the 8 intrinsic coordinate movements and 8 extrinsic coordinate movements for 
each motor control phase, motor planning and motor execution. Since we previously demonstrated neural rep-
resentation of the two motor coordinate frames using fMRI24, and the results are consistent with existing findings 
using non-human primates27–29, 54, 55, the current study also targeted the same 5 ROIs: M1, PMd, PMv, SMA, and 
pre-SMA. The 5 ROIs were defined based on the Human Motor Area Template (HMAT)56. Besides the 5 ROIs, we 
also added the hand knob area due to its relevance to finger movement57, 58. The MNI coordinates of the hand 
knob area were defined as x, y, z = −34 ± 4, −25 ± 3, 57 ± 1159. We registered the 6 ROIs onto the left hemisphere 
of the individual cortical brain model using an inverse-normalization transformation matrix from an MNI tem-
plate to each individual participant’s native brain space. The areas were mapped onto the brain model as a part of 
the background in different colors. We also classified our synergies according to ROI with the highest mean syn-
ergy weight value W . Mean weight was calculated using synergy weight values of CSs located in each of the 6 
ROIs, and the ROI with the highest mean weight was assigned as the synergy’s dominant area. Dominant area was 
determined for all synergies, and the number of synergies for each ROI was summarized in Table 1.
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