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ABSTRACT

Genome-wide association (GWA) study aims to
identify the genetic factors associated with the
traits of interest. However, the power of GWA
analysis has been seriously limited by the
enormous number of markers tested. Recently, the
gene set analysis (GSA) methods were introduced to
GWA studies to address the association of gene
sets that share common biological functions. GSA
considerably increased the power of association
analysis and successfully identified coordinated as-
sociation patterns of gene sets. There have been
several approaches in this direction with some limi-
tations. Here, we present a general approach for
GSA in GWA analysis and a stand-alone software
GSA-SNP that implements three widely used GSA
methods. GSA-SNP provides a fast computation
and an easy-to-use interface. The software and
test datasets are freely available at http://gsa
.muldas.org. We provide an exemplary analysis on
adult heights in a Korean population.

INTRODUCTION

Genome-wide association (GWA) study of a large popu-
lation offers potential genetic causes of complex disease or
the traits of interest (1,2). The typical approach assesses
the association of each SNP independently with binary
phenotypes (case–control) or continuously represented
phenotypes (quantitative trait). However, due to the
enormous number of SNPs analyzed, such an individual
association analysis produces only a handful of significant
SNPs from a stringent cutoff. The problem with this
approach is that we may not delineate the underlying bio-
logical mechanism from the small number of SNPs

beyond individual markers or genes. Moreover, many of
those prominent SNPs are not reproducible among inde-
pendent experiments. Another important problem is that
many moderate but meaningful associations are lost below
the stringent cutoff. In recent years, the gene set analysis
(GSA) methods were taken into account in GWA studies
which may address these problems.
GSA methods were originally developed for a transcrip-

tome analysis to assess the differential expression of
pre-defined gene sets that share common biological func-
tions. They exhibited stronger statistical power than the
individual gene analysis, and have revealed many novel
gene sets with ‘subtle but coordinated’ expression
patterns (3–5). Given that the basic goal of GWA
studies is to prioritize the biological networks or processes
associated with the trait of interest, it may be reasonable
to consider the pre-defined gene sets or pathways as the
units of an association analysis. Indeed, by analyzing
SNPs on the gene set level, GSA was able to reveal
many coordinated association patterns that might be lost
by the individual marker analysis.
Several case–control studies employed GSA methods.

Wang et al. (6) devised a GSEA framework for SNP
arrays. They assigned the most highly associated SNP
(best SNP) to each gene to summarize the association of
multiple SNPs in each gene. Using the method, they suc-
cessfully identified the Parkinson’s disease susceptibility
pathways. Wang et al. (7) applied the same methods
which implicated the molecular mechanism of autism
beyond individual genes. Chen et al. (8) employed a
gene set score weighted by the network connectivity in
KEGG pathways, and analyzed five complex disease
data sets. Lesnick et al. (9) showed the significance of
the joint effect of weak variants within a candidate
pathway for a brain disorder which may predispose to
Parkinson’s disease. Askland et al. (10) using their
pathway-based analysis tool, prioritized the ion channel
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gene set as a strong candidate that contributes to the sus-
ceptibility of bipolar disorder.
We present a general approach that enables the appli-

cation of some state-of-the-art GSA methods in GWA
studies. Because our approach uses the P-values of each
marker, it is applicable to both case–control and quanti-
tative trait studies. We then offer a JAVA-based
stand-alone software, called GSA-SNP, that actualizes
the methods. We provide an analysis example for adult
heights in a Korean population

MATERIALS AND METHODS

The GWA analysis software such as PLINK (11) produces
a list of P-values for each SNP either case–control or
quantitative trait study. We present three different GSA
methods that make use of the P-values for GWA analysis.

Common procedure

We take ‘–log’ on each P-value. Because we will use the
‘k-th best P’ (k=1, 2, 3, 4 or 5) in each gene, this will give
a more symmetric distribution to the gene scores. Each
SNP is assigned to a gene whose extents with some
padding encompass the SNP. We considered ±20K
more bps in the neighborhood of each gene. We chose
the second best SNP in each gene as a default option to
summarize the information of multiple SNPs instead of
the best SNP (6). Random associations can make a SNP
highly significant by chance, and can be more problematic
in a quantitative trait study where GWA analysis soft-
wares such as PLINK apply a linear regression to approxi-
mate the significance of each SNP. Using the second best
P-values, we expect to evade many spurious associations.
Such an effect is demonstrated in the Supplementary Data.
Larger k may yield more conservative predictions, but
may reduce the power. Therefore, in general, we recom-
mend using both the best and the second best P-values and
compare the biological relevance of the predictions.
We compile the gene sets to be analyzed. When the

P-values of each gene set are computed, we apply the
Benjamini–Hochberg multiple testing correction (12).

Z-statistic method

We employ the Z-statistic method (13). Each gene set (GS)
is assessed by the Z-statistic:

Z GSð Þ ¼
�X�m0

�=
ffiffiffi
n
p ,

where �X is the average of the gene scores
[� log kth best Pð Þ] in a gene set, m0 and � are the mean
and the standard deviation of all the gene scores, n is the
number of genes in the gene set.
In transcriptome analyses, though simple and sensitive,

the Z-statistic method exhibited two drawbacks. First, it
assumes that each gene set is a collection of independent
samples. This causes some false positives, because many
biologically determined gene sets have co-expression
patterns. Second, some gene sets may have bi-directional
expression changes to maintain homeostasis, but

Z-statistic cannot detect such bi-directional patterns
because they cancel each other. These problems,
however, may be ameliorated in the GWA analysis
context. First, the correlations of the gene scores are
mostly determined by the linkage disequilibrium (LD);
hence the gene scores in a gene set can be at most partially
correlated if some of the genes are located within an LD
block which is not often the case. Second, only one direc-
tion of the scores is meaningful: low P-values, equivalently
high � logðPÞ scores. If a gene set is associated, we would
observe some high gene scores in the set, but the scores of
other members are expected to be randomly distributed
rather than concentrated at a low score which prevents
significant offsets.

Restandardized GSA

We considered two sample-permutation based GSA
methods. One is the recently developed restandardization
method (14), and the other is GSEA (15) given in the next
section. The restandardized GSA has several advantages
over existing methods on such as power and reproducibil-
ity combined with the maxmean set statistic. Another ad-
vantage is that we can compute the P-values accurately
from a relatively small number of sample permutations
(50–100) if we use the pooled set scores. This saves
much computational costs in GWA analysis. See the
Supplementary Data for how to compute the P-values of
the restandardization GSA (pooled version). We used the
maxmean statistic for the gene set score which is defined as
follows:

s zð Þ ¼ sð+Þ, sð�Þ
� �

, sð+Þ ¼ max z,0ð Þ, sð�Þ ¼ �min z,0ð Þ,

Smax ¼ max �s
+ð Þ
S , �s

�ð Þ

S

� �
:

However, only the positive parts are meaningful in
GWA analysis; hence we use the non-negative mean �s

ð+Þ
S

in practice for the gene set score.

GSEA

GSEA (15) is of the most widely used class of GSA
method and its R code is developed for the case–control
studies (16). Our method is based on the P-values of each
SNP; hence is also applicable to quantitative trait studies.
We employed the maxmean (non-negative mean) set
statistic, which has shown favorable properties over the
Kolmogorove–Smirnov type statistic in statistical
and computational perspectives (14). We also used the
Z-statistic for the set score. While the original GSEA
used the normalized set scores (denoted NES) that
divides each set score by the mean of the randomized
ones, we applied the Z-normalization using the mean
and standard deviation of the randomized set scores (6).

GSA-SNP SOFTWARE

We developed a JAVA-based stand-alone software, called
GSA-SNP, that implements the three GSA methods
described above. The detailed user’s manual for the
software is available at our web page.
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Input and processing methods

Two kinds of input data are required: marker association
(typically P-values) and gene sets.

Marker association data. (i) The list of P-values for each
SNP which is typically obtained from the computation of
a GWA anlaysis software such as PLINK. The SNP ID
should be dbSNP RefSNP rs numbers. The P-values rep-
resent the association levels of each SNP with the given
phenotype. For this single column input values, the
Z-statistic method (13) is provided. (ii) The program
also reads the lists (50–1000 columns) of randomized
P-values each column of which can be obtained by
permuting the sample labels of SNP arrays and running
a GWA analysis software. These randomized P-values
should be attached aside the list of original P-values.
For this type of dataset, three widely used GSA methods
are available: the Z-statistic method, the restandardized
GSA with the maxmean statistic (14), and the GSEA
based on maxmean or Z-statistic (14,15). (iii) The
program also accepts haplotype association data. The
input in this case replaces the SNP ID by chromosomal
extents, i.e. the combination of chromosome number,
chromosomal start and end points. Each SNP is
assigned to the genes whose extents with some padding
encompass the SNP. For a given haplotype, the
overlapping genes are identified and P-values are assigned
to each gene. For this type of dataset, the Z-statistic
method is applied. The gene IDs (gene symbol) instead
of the SNP IDs can also be used when the user wants to
apply another method to summarize the association of
SNPs in a gene.

Gene set data. We provide the Gene Ontology gene sets
for a default analysis. Therefore, the user need not upload
gene sets if (s)he wants to use the Gene Ontology gene sets.
Otherwise, the user is required to upload their own gene
set data in a tab-separated value format. The gmt format
of MSigDB is acceptable (http://www.broadinstitute
.org/gsea/msigdb/); hence the user can make use of the
rich source of gene sets from MSigDB in our software.

Options

If the user uploads the marker association data, the
program detects the data type and automatically shows
relevant methods and parameter options. If the SNP
data are uploaded, the user can choose the padding size
for genes among 0, ±10 000 or ±20 000. The user can also
choose the kth best P, k=1, 2,. . ., 5 to summarize the
SNPs for each gene. The padding of ±20 000, and the
second best P are the default options. For an input of a
gene list, there is no parameter to choose. For a haplotype
input, the user is requested to choose the minimum
overlap size between haplotype intervals and genes. The
user can also determine the range of gene set sizes and the
cutoff for q-values.

Output

The list of significantly associated gene sets with P-values,
corrected P-values, and their members that are sorted in

the descending order of their association strength. The
results are given both on the program window and as a
csv file. If the user clicks a gene symbol in the csv file, the
web-browser will show its information on GeneCards�

(17) (http://www.genecards.org).

Comparison with previous software tools

As the power of GSA in GWA analysis was being
conceived, several software tools were developed
recently. Holden et al. (16) devised a GSEA method for
case–control arrays using R. They used all the SNPs in a
gene instead of selecting the best SNP (6). O’Dushlaine
et al. (18) developed PERL codes, called SRT, that
generate simulated P-values from randomized phenotypes
using the PLINK program and perform a sample-
randomizing GSA. In this program, they first select a
list of significant SNPs from a cutoff threshold and
compute the ratio of the significant SNPs in each
pathway (gene set). These two methods allow multiple
SNPs in a gene to contribute to the set score, which may
increase the power of the methods. However, it is possible
that significant SNPs in a haplotype block are
concentrated in one or two genes of the pathway, which
may overly amplify the contribution of a gene. On the
other hand, Wang et al.’s method (6) and GSA-SNP
choose the kth best P-value to summarize the information
of each gene. Therefore, contributions by multiple genes
are more emphasized in this approach. Besides, the best
P-value is not merely the information of a single SNP
because it is determined by comparing the significance of
all the SNPs in a gene. One possible concern with using the
best P is whether it is from a random association or not.
This is why we considered the kth best P-value: the kth
P-value can be significant only if all the first k P-values are
simultaneously significant which is possible for true posi-
tives, but is very difficult to happen by chance.
Because SRT does not pool the set scores of different

gene sets, it takes much time to attain a high level of sig-
nificance. Medina et al. (19) developed a web server, called
GeSBAP, that provides a SNP (marker)-randomizing
GSA method. It also takes much time for uploading and
computing for an SNP input. GSA-SNP provides a fast
computation. Several minutes are sufficient on a PC if the
input data are properly prepared. It is equipped with an
easy GUI that automatically displays relevant options and
methods according to the input data types. Because
GSA-SNP takes P-values as input data, it is applicable
to both case–control and quantitative trait studies. This
advantage is also shared with other P-value based
methods, SRT and GeSBAP, but GSA-SNP provides
three widely used GSA methods if the simulated
P-values are prepared. How to choose a GSA method
may depend on the preference of the user for each GSA
approach, but a general guidance is given in
Supplementary Data.
The most time-consuming part for our

sample-randomizing methods (restandardized GSA and
GSEA) will be to prepare the simulated P-values using a
GWA analysis software. Because our methods pool the
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randomized scores of different gene sets, about a hundred
simulations of P-values will be sufficient.

Analysis example

We evaluated the performance of GSA-SNP using a
large-scale GWA study dataset, previously reported by
the Korea Association Resource (KARE) project (20).
The dataset comprised the genotypes of two population-
based cohorts recruited in Korea (8842 unrelated individ-
uals), measured using Affymetrix Genome-Wide Human
SNP Array 5.0 (352 228 SNPs after QC). Cho et al. (20)
reported the results of GWA analyses of eight quantitative
traits in the dataset. Among the traits, we focused on
height due to the following reasons. Adult human height
is a polygenic trait with a highly heritable component (21)
and several GWA studies have been reported on this trait
(22–27). The comparison of the previous GWA studies
shows that the height association signals in a Korean
population are weaker than those of European popula-
tions: some of the strong association signals in the
European populations were also caught in the Korean
population, but other signals were lost below the threshold
cutoff (see the Supplementary Data). Therefore, it would
be interesting to see whether gene-set analysis of the
single-marker analyses of Korean dataset would capture
biological processes similar to the ones reported by the
European studies.
Before applying a GSA, the KARE genotype data were

supplemented by imputing SNP genotypes based on the
genotypes of the JPT+CHB panel of the International
HapMap Phase II (The International HapMap
Consortium, 2005). Details of SNP imputation and filter-
ing have been published elsewhere (28) and were
summarized in the Supplementary Data. We used this
imputed dataset as the input of GSA-SNP. We show the
analysis result by the Z-statistic method. A total of 12
Gene Ontology gene sets having corrected P< 0.05 were
tabulated. The resulting screen shot is shown in Figure 1.
For each of those 12 gene sets, we gathered the P-values of
the member genes and compared their distributions with

that of all the genes together. As shown in Figure 2, rela-
tively smaller P-values were enriched in the distributions
of these 12 gene sets compared to the background distri-
bution. It should be noted that the first quartiles of the
gene sets were around 10�2, which implies GSA-SNP suc-
cessfully identified moderate but consistent association
patterns that were not dominated by only a few strong
association signals.

Many of the gene sets we identified made good biologic-
al senses. For example, the GO term ‘skeletal develop-
ment’ was identified by Gudbjartsson et al. (26) in their
GO-based GWA analysis of European adult heights.
Similarly, Weedon et al. (25) reported ‘extracellular
matrix’ as one of the key biological functions implicated
in height regulation. Since collagens are the most
abundant proteins in the extracellular matrix, the term
‘collagen’ may be understood in the context of ‘extracel-
lular matrix’. Although ‘glutamate receptor activity’ has
not been implicated through GWA studies to our know-
ledge, one member of that gene set, GRIA1, was
implicated near a loci associated with height in Croatian
population (27). Endogenous activation of metabotropic
glutamate receptors is known to modulate GABAnergic
transmission of gonadotropin-releasing hormone (GnRH)
neurons (29). Moreover, treatment with a GnRH agonist
in short adolescents increased adult height (30). These
imply that glutamate receptors might affect adult height
in man. The top ranking genes in ‘anion cation symporter
activity’ were SLC17A family members, vesicular glutam-
ate transporters (31). Other GO terms such as ‘transmem-
brane receptor protein phosphatase activity’, ‘golgi stack’
and ‘phosphoric ester hydrolase activity’, were not sup-
ported in our literature survey and may deserve further
investigation.

CONCLUSION

Here, we proposed a P-value based approach that enabled
the application of three widely used GSA methods in both
case–control and quantitative trait studies. We also sug-
gested using the kth best P to summarize the association

Figure 1. The computation result for height in a Korean population using the Z-statistic method. The genes in each gene set are sorted in the
decreasing order of GWA significance.
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of SNPs in a gene to remove randomly associated signals.
However, we also provide the option for the best P-value
(k=1) in our software such that the user can perform the
analyses for different k’s, and compare the relevance of the
results.

As a stand-alone JAVA program, GSA-SNP provides a
fast and secure computation as well as an easy-to-use
GUI. Unlike other tools, GSA-SNP provides three
powerful GSA methods for GWA analysis. Because it
employs methods that pool the randomized set scores, it
provides a high level of significance from a relatively small
number of simulated analyses.

We expect the demand of GSA in GWA analysis will be
increasing rapidly in the near future as has been in the
transcriptome analyses, and the GSA-SNP provides a
useful tool. GSA methods and tools will be further
investigated and optimized in the context of GWA
analysis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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