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Purpose
Head and neck squamous cell carcinoma (HNSCC) is a deadly disease in which precision
medicine needs to be incorporated. We aimed to implement next-generation sequencing
(NGS) in determining actionable targets to guide appropriate molecular targeted therapy in
HNSCC patients.

Materials and Methods
Ninety-three tumors and matched blood samples underwent targeted sequencing of 244
genes using the Illumina HiSeq 2500 platform with an average depth of coverage of greater
than 1,000. Clinicopathological data from patients were obtained from 17 centers in Korea,
and were analyzed in correlation with NGS data.

Results
Ninety-two of the 93 tumors were amenable to data analysis. TP53 was the most common
mutation, occurring in 47 (51%) patients, followed by CDKN2A (n=23, 25%), CCND1 (n=22,
24%), and PIK3CA (n=19, 21%). The total mutational burden was similar between human
papillomavirus (HPV)–negative vs. positive tumors, although TP53, CDKN2A and CCND1
gene alterations occurred more frequently in HPV-negative tumors. HPV-positive tumors
were significantly associated with immune signature-related genes compared to HPV-neg-
ative tumors. Mutations of NOTCH1 (p=0.027), CDKN2A (p < 0.001), and TP53 (p=0.038)
were significantly associated with poorer overall survival. FAT1 mutations were highly 
enriched in cisplatin responders, and potentially targetable alterations such as PIK3CA
E545K and CDKN2A R58X were noted in 14 patients (15%).   

Conclusion
We found several targetable genetic alterations, and our findings suggest that implemen-
tation of precision medicine in HNSCC is feasible. The predictive value of each targetable
alteration should be assessed in a future umbrella trial using matched molecular targeted
agents.  
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the
sixth most common malignancy worldwide, and is usually
curable, if diagnosed early. Unfortunately, patients often
present with advanced disease that is incurable or requires
aggressive treatment, which results in functional disability,
dismal prognosis and high mortality. Low survival outcomes
in combination with significant toxicity of current treatment
strategies emphasize the necessity for novel therapeutic
modalities. Until recently, the only targeted therapy in HNSCC
was cetuximab, a monoclonal antibody against epidermal
growth factor receptor, which has shown a response rate of
10% to 15% in the patients with recurrent or metastatic dis-
ease [1]. However, there is no validated biomarker for pre-
dicting cetuximab efficacy, which dampens the precise selec-
tion of patients. Antiprogrammed death 1 agents including
pembrolizumab and nivolumab were recently approved for
HNSCC that is refractory to platinum-based therapy. How-
ever, the presence of programmed death-ligand 1 (PD-L1)
on tumor cells did not satisfactorily predict response, with
22% of PD-L1 positive patients responding vs. 4% of PD-L1
negative patients responding [2]. Therefore, more effective
treatment strategies for personalized treatment of HNSCC
are urgently needed. 

Next-generation sequencing (NGS) of tumors has greatly
expanded our understanding of genetic profiles, and several
studies have found novel genetic alterations in HNSCC 
[3-6]. However, these studies were performed retrospectively
in surgical specimens without incorporated clinical data on
the response to therapy. Although potentially targetable 
genetic alterations such as PIK3CA, epidermal growth factor
receptor (EGFR), and fibroblast growth factor receptor
(FGFR) mutations have been identified, functional studies to
validate the roles of such mutations as biomarkers remain
scarce. 

Herein, we describe our implementation of a precision
medicine approach in 93 patients with HNSCC. This is a fea-
sibility study of “Translational biomarker-driven umbrella
project for head and neck and esophageal squamous cell car-
cinoma (TRIUMPH)” study by the Korean Cancer Study
Group (NCT03292250) (S1 Fig.). TRIUMPH is the first,
prospective, biomarker-driven umbrella trial for patients
with HNSCC, consisting of multiple targeted therapies 
including phosphoinositide 3-kinase (PI3K) inhibitor, pan-
HER inhibitor, FGFR inhibitor and CDK4/6 inhibitor. 
Patients without actionable targets are to be allocated into an
immunotherapy arm. Before the start of TRIUMPH study,
we conducted this feasibility study in which tumors and
matched blood samples were analyzed by multiplexed tar-
geted NGS assays. The objective of this study is to examine

the feasibility of implementing NGS to guide treatment in
HNSCC patients, and to find the associations between 
somatic alterations and clinical outcome. 

Materials and Methods

1. Patients and data collection

Pretreatment tumor tissues (somatic) and matched normal
DNA (germline) from prospectively recruited patients with
HNSCC were obtained between 2016 and 2017 under the 
approval of Institutional Review Board of 19 institutions in
Korea. HNSCC patients with initial stages 1-4 were included
in this study. Clinicopathological data were collected from
patient charts in accordance with an IRB-approved protocol.
Clinical information including age, sex, anatomic site of
tumor, tobacco and alcohol use, clinical stage, treatment his-
tory, and survival data were collected. 

2. Targeted sequencing of tumors

Genomic DNA was isolated from formalin-fixed paraffin-
embedded (FFPE) samples using the QIAamp DNA FFPE
Tissue Kit (Qiagen, Hilden, Germany) for the targeted 
sequencing of 244 head and neck cancer-related genes 
selected based on a literature search (S2 Table). The genomic
regions of the 244 genes were captured by the customized
SureSelectXT Target Enrichment library generation kit 
(Agilent, Santa Clara, CA), and sequenced using the Illumina
HiSeq 2500 platform with a depth of coverage > 1,000.

3. Variant calling and functional annotation

By default, base quality trimming for short reads from the
targeted sequencing was performed using Sickle [7]. Filtered
reads were mapped to the human reference genome (GRCh-
37/hg19) using Burrows-Wheeler Aligner [8]. All reads that
were mapped with < 23 mapping quality were discarded.
The aligned reads (BAM file) were further processed with
the Genome Analysis ToolKit v3.5, including MarkDuplicate,
Local Realignment, and Base Quality Score Recalibration [9].
Initial somatic mutations candidates were called by MuTect
ver. 1.17 with a default parameter [10]. Somatic insertions/
deletions (indels) were called by Varscan2 ver. 2.3.7 with 
somatic p < 0.05 [11]. From the initial call set, FoxoG artefacts
were removed using the in-house Python program ver. 3.6
to discard skewed read-orientation variants [12]. The func-
tionality of final high confidence variants was annotated with
ANNOVAR software [13], including the consequences, pre-
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dicted impacts and reported allele frequencies in population.
In particular, non-rare variants (minor allele frequency 
> 0.05) were discarded to retain only pathogenic variants. 
Finally, the clinical interpretation of targeted therapy was 
annotated using the CIVIC [14] and DoCM [15] databases.
Copy number alterations (CNAs) were called using CNVkit
[16] for targeted deep sequencing. To reduce ambiguity from
individual variations, all normal samples were pooled and
used as a control. Of the initial CNA calls, genes with  4 and
0 measured copy numbers were considered amplified and
deleted, respectively, to secure high confidence. To visualize
the overall landscape of mutations, ‘Oncoprint’ was drawn
using the R package ‘ComplexHeatmap’ of R ver. 3.4. Lol-
lipop plots were drawn for frequently mutated genes using
MAFtools to check the recurrence of genomic loci with vari-
ants.

4. Nanostring assay

Total tumor RNA was isolated using the RNeasy kit (Qia-
gen). The nCounter Analysis System (Nanostring Technolo-
gies, Seattle, WA) was used to screen for the expression of 55
immune-related genes. Counts were normalized to internal
controls and reference genes using the nSolver software ver.
3.0. We obtained gene expression data for 94 tumour sam-
ples, among them 8 with average expression levels of less
than 10 were filtered out. The NanoStringNorm package of
R was used for normalization [17]. We selected housekeep-
ing.geo.mean for normalizing the samples or RNA contents.
Differentially expressed genes between human papillo-
mavirus (HPV)–positive and HPV-negative samples were
identified by the glm.LRT function in the NanoStringDiff [18]
package of Bioconductor. A volcano plot was drawn by
using the ggplot2 package of R. The complete list of 55 
immune-related genes is shown in S3 Table.

5. Statistical methods

All statistical analysis was performed using the R, Python
Scipy package and SPSS ver. 23.0 (IBM Corp., Armonk, NY)
software. To test group-specific enrichment of genomic vari-
ants, Fisher exact test was applied to each called variant, fol-
lowed by the p-value cutoff of 0.05. Tumor mutation burden
(TMB) was measured by the number of missense mutations
per megabase (Mb) within the range of the targeted capture
region. The numbers of mutations per Mb between HPV-pos-
itive and HPV-negative groups were compared using Stu-
dent’s t-test. Progression-free survival (PFS) and overall sur-
vival (OS) were estimated using the Kaplan-Meier method;
differences between groups were compared using the log-
rank test. In groups of unbalanced sizes, the standard asymp-
totic log-rank test is often replaced by its corresponding

permutation test; alternatively, the distribution under the
null hypothesis is approximated via Monte Carlo resam-
pling. Here, we used empirical p-values from 10,000 repli-
cates by using the log-rank test function in the coin package
of R. Two-sided p-values of < 0.05 were considered signifi-
cant. 

6. Ethical statement

This study was conducted under the approval of Institu-
tional Review Board of 19 institutions in Korea. All patients
provided written informed consent for genomic testing used
for this study. 

Table 1. Baseline characteristics of all patients

HPV, human papillomavirus.

Characteristic No. (%) (n=93)
Age, median (range, yr) 59 (28-80)
Sex

Female 18 (19)
Male 75 (81)

Anatomic site
Oropharynx 26 (28)
Oral cavity 35 (38)
Hypopharynx 15 (16)
Glottic larynx 9 (10)
Supraglottic larynx 3 (3) 
Maxillary sinus 5 (5) 

Tobacco use
Never 26 (28)
Former 49 (53)
Current 18 (19)

Alcohol use
Never 34 (37)
Former 33 (35)
Current 26 (28)

Clinical stage at initial diagnosis
I-III 54 (58)
IV 39 (42)

HPV status
Positive 20 (22)
Negative 56 (60)
Unknown 17 (18)

Prior surgery 68 (73)

Cancer Res Treat. 2019;51(1):300-312
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Results

1. Clinical characteristics

A total of 93 patient tumors were included in 75 men and
18 women. Clinical data are summarized in Table 1; the 
median age of all patients was 59 years (range, 28 to 80 years)

and 39 patients (42%) had stage 4 disease at initial diagnosis.
Sixty-seven patients (72%) had smoking history and 59 
patients (63%) had alcohol history. HPV status was known
in 76 patients (82%), of whom 20 (22%) were positive. Sixty-
eight patients (73%) had received prior surgery, and among
patients who received surgery, 47 patients experienced 
recurrence: 14 (29%) with locoregional recurrence and 33
(71%) with distant metastasis. Surgery or radiotherapy was

Fig. 1.  (A) Mutational spectrum and copy number alterations in head and neck squamous cell carcinomas detected by tar-
geted sequencing. Samples with a greater than 1% incidence of genetic alterations are shown, and are stratified by human
papillomavirus (HPV) status and primary tumor anatomic site. Pos, positive; Neg, negative. (Continued to the next page)
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Fig. 1.  (Continued from the previous page) (B) A heat map of 55 differentially expressed genes with an absolute fold change 
 2 and a false discovery rate (FDR) < 0.05. (C) Volcano plot showing the distribution of the fold changes in gene expression.
Genes with an absolute fold change  2 and FDR < 0.05 are indicated in red (high expression in HPV-positive tumors com-
pared to HPV-negative tumors).
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performed for locoregional recurrence, and systemic chemo-
therapy was performed for metastatic disease. For the whole
cohort, the median PFS and OS were 12.5 months (95% con-
fidence interval [CI], 10.2 to 14.8) and 70 months (95% CI,
57.4 to 84.4), respectively, with a median follow-up of 20
months. Patients with HPV-positive oropharynx cancers

(n=16) showed a better 2-year OS rate than HPV-negative 
patients (n=10) (31% vs. 10%, respectively), although the dif-
ference was not significant owing to the small number of
cases.

Fig. 2.  Kaplan-Meier curves showing the association of single nucleotide variations and overall survival (OS) in patients.
(A) Patients with NOTCH1 somatic mutation had poorer overall survival (somatic mutation includes missense, nonsense,
splice site mutations, frame shift indels, or in-frame indels). (B) Patients with CDKN2A missense mutations had poorer OS.
(C) Patients with TP53 nonsense mutation showed poorer OS. 
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2. Overview of somatic mutations in HNSCC

A total of 2,315 somatic single nucleotide variations (SNVs)
and 19 indels were identified from the targeted sequencing
of the 92 tumors, which corresponds to a rate of 3.64 SNVs
per 1 Mb. We found that TP53 was the most frequently 
mutated gene (n=47, 51%), followed by CDKN2A (n=23,
25%), CCND1 (n=22, 24%), and PIK3CA (n=19, 21%) (Fig. 1A).
As expected, smokers displayed a significantly higher TMB
than non-smokers (4.16/Mb vs. 3.12/Mb, p=0.04) (S4 Fig.). 

3. Comparison of HPV-positive vs. HPV-negative tumours 

Of 92 patient tumors, 76 tumors (82%) had known HPV
status and we compared molecular landscape of HPV-posi-
tive and HPV-negative tumors. TMB counts were higher in

HPV-negative than HPV-positive tumors, although the dif-
ference was not significant (4.16/Mb vs. 3.12/Mb, p=0.150)
(S5 Fig.). TP53, CDKN2A, and CCND1 gene alterations were
significantly more frequent in HPV-negative tumors (Fig. 1A).
As described previously, we observed TP53 mutations among
HPV-negative tumors at higher rates than HPV-positive 
tumors (65.5% vs. 9.5%, p < 0.001). Inactivating mutations
such as CDKN2A and CDKN2B deletions (n=6), and CCND1
amplification (n=17) were exclusively identified in HPV-neg-
ative tumors. We also noted HPV-negative specific genetic
alterations in receptor tyrosine kinases (RTKs) including
EGFR, FGFR1/3, and platelet-derived growth factor receptor
A (PDGFRA), which was consistent with a previous study
[5]. PIK3CA mutations were more commonly found in HPV-
positive tumors (23.8% vs. 16.4%, p > 0.05). Comparison of
immune signatures between HPV-positive and HPV-nega-

Fig. 3.  Patients who received cisplatin-based chemotherapy were categorized into responders vs. non-responders and genetic
alterations are shown in the order of frequency. Pos, positive; Neg, negative.
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tive tumors via nanostring assay revealed that HPV-positive
tumors were significantly enriched with immune-related
genes. HPV-tumors harbored higher levels of immune acti-
vation: specifically, CD3 (p=6.010–6), CECAM1 (p=4.910–5)
and IL2R (p=6.910–5) expression (Fig. 1B and C).

4. Clinical correlation

We performed an exploratory analysis to correlate gene 
alterations (SNVs and CNAs) with survival (Fig. 2). In 90 
patients with available survival data, genomic events asso-
ciated with poorer OS were mutations in NOTCH1 (p=0.027),

CDKN2A (p < 0.001), and TP53 (p=0.038). The association 
between CDKN2A, TP53 mutations and poor OS was consis-
tent with a previous analysis of The Cancer Genome Atlas
(TCGA) database. CNAs were not associated with any gene
alterations. In contrast to a previous report [19], PIK3CA
amplification was not associated with worse OS (S6 Fig.). 

Next, we analyzed gene alterations associated with cis-
platin resistance by classifying patients who received cis-
platin-based chemotherapy into responders and non-respon-
ders. According to Response Evaluation Criteria in Solid 
Tumors (ver. 1.1), responders were patients who showed
complete response, partial response or stable disease to cis-

Fig. 4.  Gene diagrams for a selection of key mutations in potentially targetable genes PIK3CA (A), CDKN2A (B), and TP53
(C). (D) Signaling pathway deregulation is shown. HPV, human papillomavirus. (Continued to the next page)
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platin-based chemotherapy, whereas non-responders were
those with progressive disease [20]. Among 54 evaluable 
patients, 38 (70%) were responders, and 16 (30%) were non-
responders. FAT1 gene mutations (5 missense and 5 non-
sense) were highly enriched in cisplatin responders com-
pared to non-responders (p < 0.05) (Fig. 3, S7 Fig.). 

5. Targetable mutations and copy-number aberrations

We identified potentially targetable mutations in PIK3CA
and CDKN2A. An established canonical mutation, PIK3CA
E545K missense mutation were identified in five patients
(5%) (Fig. 4A), while CDKN2A R58X nonsense mutation was
identified in four patients (4%) (Fig. 4B). TP53 inactivating
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mutations (R209Q/W, R243W/Q) that cause cell cycle dereg-
ulation occurred in eight patients (5%) (Fig. 4C). 

Fig. 4D summarizes the deregulated signaling pathways.
Among RTKs, EGFR and cMET alterations were frequent,
followed by FGFR3, FGFR1, and ERBB2. Among down-
stream targets of the RTKs/RAS/PI3K pathway, PIK3CA
dominated with occasional MAPK1 and MTOR mutations.
RAS and MAPK1 alterations occurred in 12.7% and 13.1% of
patients, respectively. Alterations in tumor suppressors,
TP53 and CDKN2A were notable in HPV-negative tumors,
which were consistent with a recent report [21]. Overall, 
alterations in genes involved in cell death and PIK3CA/AKT/
MTOR pathway were predominant.  

Discussion

Our umbrella trial suggests that using NGS for determin-
ing treatment strategies for patients with HNSCC is feasible,
and that translating genomic data into clinical care is attain-
able. The most common genomic alterations (TP53, PIK3CA,
CCND1, and CDKN2A) were identified at frequencies con-
sistent with investigations of TCGA. Previous studies have
characterized mostly surgically resected HNSCC samples,
with a limited portion of HPV-positive samples. TCGA
study, which is the largest cohort to date (n=279) is com-
prised of surgically resected oral cavity or laryngeal squa-
mous cell carcinoma patients, and treatment and survival
data were limited [5]. Recently, Seiwert et al. [22] reported a
large number of HPV-positive tumors, where they included
51 (42.5%) HPV-positive patients in a total of 120 patients.
Consistent with our finding, the mutational burdens in HPV-
positive and -negative tumors were similar, while FGFR2
aberrations were exclusively identified in HPV-negative 
tumors. 

Our study emphasizes how the application of NGS may
be used as a prospective, master protocol tailored to each 
patient’s genotype. The turnaround time from patient sam-
ple collection to NGS results was within 4 weeks, which is
timely for patient enrolment. Similarly, another study recen-
tly found it feasible to incorporate NGS into the clinical care
of HNSCC patients [19]. Patients who received targeted ther-
apy matched to their genotypes achieved a higher objective
response rate than patients unmatched to therapy. However,
they used two different NGS platforms with inconsistent 
mutation rates and actionable alterations. Additionally, the
MOSCATO-01 trial showed that genomic analyses of 199 
patients with advanced cancers produced improved out-
comes with matched targeted therapy [23]. The ongoing
NCI-MATCH trial is currently assessing whether molecular

markers can predict response to targeted therapies in 
patients with advanced cancer [24] and the results are
awaited.

PI3K pathway aberrations are potential therapeutic targets
in HNSCC patients. Prior studies identified that PIK3CA
mutation or amplification was associated with various clini-
cal outcomes. One study reported that PIK3CA amplification
was associated with significantly decreased PFS, whereas
PIK3CA mutation was not [19]. Another study demonstrated
that PIK3CA mutations were correlated with poor prognosis
in HPV-negative, locally advanced HNSCC [22]. A preclini-
cal study also reported that patient-derived PIK3CA mutant
HNSCC tumor grafts are potentially sensitive to PI3K/mTOR
inhibitors [25]. In our cohort, patients with a PIK3CA hotspot
mutation (E545K) will be treated with the PI3K pathway 
inhibitor (BYL719).  

Deletion of CDKN2A or amplification of CCND1, which 
induces sustained CDK 4/6 activation, occurred at 27% and
22%, respectively, which were comparable to such cell-cycle
related gene aberrations found in other studies [5,22]. Pre-
clinical or clinical data regarding the activity of CDK 
inhibitor in HNSCC is limited, but our prospective trial may
solve which genotypes will benefit from treatment with CDK
inhibitors. 

FAT atypical cadherin 1 (FAT1) was significantly enriched
in cisplatin responders. FAT1 gene has been reported to be
associated with various types of cancer, including HNSCC
[5,26]. FAT1 gene acts as a tumor suppressor, in which loss-
of-function activates Wnt pathway and tumorigenesis [27].
Recently, FAT1 mutation was significantly associated with
better OS in HPV-negative patients from both the TCGA 
cohort and the International Cancer Genome Consortium
(ICGC) data cohort [28]. The functional impact of the FAT1
mutation identified in our study requires further investiga-
tion to determine its role as a prognostic or predictive bio-
marker. 

In our study, immune signatures were highly enriched in
HPV-positive tumors, consistent with a previous finding that
HPV-positive tumors have a distinct immune phenotype,
characterized by more immune cell infiltration and higher
levels of CD8+ T-cell activation [29]. As ongoing checkpoint
inhibitor trials (NCT02105636, NCT01848834) showed prom-
ising preliminary activities in HNSCC patients, improved
outcome in HPV-positive patients may be related to their 
immunophenotype [30,31]. 

The accuracy and fidelity of genomic analysis are critical;
therefore, false-positive or false-negative genomic variants
should be carefully avoided. To that end, several technical
issues were noted in our study. First, the often inevitable low
tumour cellularity in samples, owing to normal cell contam-
ination, has a negative effect on the accuracy of calling of
SNVs and CNVs [32]. We found that, among 92 samples, 14
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(15%) and five (5%) obtained via core needle biopsy and 
excision, respectively, showed low tumor cellularity (~30%).
As CNV analysis is directly affected by reduced cellularity,
CNVs with ambiguous analysis scores may require confir-
mation using alternative methods. Second, sequencing arte-
facts can appear in every step of the NGS pipeline, which
complicates the differentiation between true vs. false vari-
ants. We observed an abnormally excessive number of low-
level somatic mutations in a few samples (mutation-rate/Mb
> 100), which could only be removed using an oxoG filtering
program [12]. Such false variants can distort the overall dis-
tribution of somatic mutations and their relative burdens,
and should be specially inspected via advanced bioinformat-
ics analyses. Third, whole-exome or targeted sequencing for
identifying CNVs remain secondary options, as more sensi-
tive methods such as whole-genome sequencing or special-
ized array-based methods are widely unavailable. As tar-
geted sequencing based CNV analysis generally performs
better in a larger cohort, size and sustainability of clinical tri-
als should be considered when they are designed. Moreover,
active participation of genome analysis experts is highly rec-
ommended to manage such technical issues.   

In conclusion, our large-scale targeted sequencing of HNS-
CC patient samples identified potentially targetable alter-
ations. Further prospective validation of NGS based mole-
cularly targeted treatment is highly warranted. 
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