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Abstract

Cellular proteins often have multiple and diverse functions. This is illustrated with protein

Spir-1 that is an actin nucleator, but, as shown here, also functions to enhance innate

immune signalling downstream of RNA sensing by RIG-I/MDA-5. In human and mouse cells

lacking Spir-1, IRF3 and NF-κB-dependent gene activation is impaired, whereas Spir-1

overexpression enhanced IRF3 activation. Furthermore, the infectious virus titres and sizes

of plaques formed by two viruses that are sensed by RIG-I, vaccinia virus (VACV) and Zika

virus, are increased in Spir-1 KO cells. These observations demonstrate the biological

importance of Spir-1 in the response to virus infection. Like cellular proteins, viral proteins

also have multiple and diverse functions. Here, we also show that VACV virulence factor K7

binds directly to Spir-1 and that a diphenylalanine motif of Spir-1 is needed for this interac-

tion and for Spir-1-mediated enhancement of IRF3 activation. Thus, Spir-1 is a new virus

restriction factor and is targeted directly by an immunomodulatory viral protein that

enhances virus virulence and diminishes the host antiviral responses.

Author summary

Infection of cells by viruses is sensed by host molecules called pattern recognition recep-

tors (PRRs) that activate signalling pathways leading to an anti-viral response. In turn,

viruses express proteins that negate these host responses to mediate escape from the anti-

viral response. Here, we report that protein K7 from a large DNA virus called vaccinia

virus (VACV), binds to a host cell protein called Spir-1. Spir-1 is known to regulate the

assembly of actin filaments inside cells, but here we show that Spir-1 also functions to acti-

vate the host response to virus infection and to limit the replication and spread of both

RNA and DNA viruses. Thus, this study has uncovered new functions of cellular protein

Spir-1 as an activator of innate immunity and as a restriction factor for diverse viruses.

Further, it shows that Spir-1 is targeted by a virus protein during infection.
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Introduction

The host innate immune response to viral infection begins with the sensing of pathogen-asso-

ciated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), such as Toll-like

receptors and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) [1,2]. The sensing

of virus macromolecules, such as viral DNA or RNA, by PRRs triggers signalling cascades that

culminate in the activation of the transcriptional factors interferon regulatory factor (IRF) 3,

activator protein (AP) 1 and nuclear factor kappa B (NF-κB) [3]. These transcriptional factors

translocate to the nucleus where they induce the transcription of genes encoding interferons

(IFN), cytokines and chemokines. Once secreted from the cell, IFNs, cytokines and chemo-

kines promote inflammation to restrict virus replication and control the infection. IFNs bind

to their receptors on the surface of infected or non-infected cells, and trigger signal transduc-

tion via the JAK-STAT pathway leading to expression of interferon-stimulated genes (ISGs)

that induce an antiviral state [4].

During the co-evolution with their hosts, viruses have evolved strategies to evade, suppress

or exploit the host response to infection by targeting multiple steps of the host immune

response [5]. Vaccinia virus (VACV), the prototypical orthopoxvirus, is well known as the live

vaccine used to eradicate smallpox [6]. VACV has a large dsDNA genome of approximately

190 kbp [7], replicates in the cytoplasm [8] and encodes scores of proteins that antagonise

innate immunity [9]. Interestingly, some cellular pathways, such as those leading to activation

of IRF3 or NF-κB, or the JAK-STAT pathway downstream of IFNs binding to their receptors,

are targeted by multiple different VACV proteins. Moreover, some of these viral antagonists

are multifunctional and inhibit more than one host innate immune pathway [9].

VACV protein K7 is one such antagonist of innate immunity. K7 is a small, intracellular

protein that is non-essential for virus replication in cell culture, yet contributes to virulence in

both intradermal and intranasal mouse models of infection [10]. Functionally, K7 was

reported to suppress NF-κB activation by binding to interleukin-1 receptor-associated kinase-

like 2 (IRAK2) and tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6) [11].

K7 also inhibits IRF3 activation and binds to the DEAD-box RNA helicase 3 (DDX3) [11].

Another study reported that K7 affected regulation of histone methylation during VACV

infection, by an unknown mechanism [12]. Two unbiased proteomic searches identified cellu-

lar binding partners of K7 [13,14], suggesting that K7 may have additional functions. The iden-

tification of cellular proteins targeted by viral proteins has been a useful approach to identify

cellular factors that function in the recognition and restriction of virus infections [15,16]. In

this study, by investigating the interaction between K7 and the cellular protein Spir-1 [14], we

identified new functions for Spir-1 as an activator of innate immunity and as a restriction fac-

tor for both DNA and RNA viruses.

The protein spire homolog 1 (Spir-1, also known as SPIRE1) was first described to affect

Drosophila embryogenesis [17]. Spir-1 has actin-binding domains [18] through which it nucle-

ates actin filaments, an activity shared with the Arp2/3 complex and the formins [19]. Spir-1 is

organised in multiple functional domains. The N-terminal region contains the kinase non-cat-

alytic C-lobe domain (KIND), which mediates Spir-1 interaction with other proteins, such as

the formins [20]. Spir-1 and the formins cooperate during actin nucleation [21–29]. The

KIND domain is followed by four actin-binding Wiskott-Andrich syndrome protein homol-

ogy domain 2 (WH2) domains that are responsible for actin nucleation [19,30,31]. The C-ter-

minal region of Spir-1 contains a globular tail domain-binding motif (GTBM), which is

responsible for binding to myosin V [32]. Next, there is a Spir-box (SB) domain that is con-

served within the Spir protein family. Due to its similarity to a helical region of the rabphilin-

3A protein that interacts with the GTPase Rab3A, it is thought that the Spir-box domain is
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involved in the association of Spir-1 and Rab-GTPases [24,33–35]. Following the SB domain,

there is a modified FYVE zinc finger domain that interacts with negatively-charged lipids in

membranes. The membrane targeting specificity is mediated via the interaction of Spir-1 with

other membrane-bound proteins such as the Rab-GTPases [29].

In adult mice, Spir-1 is expressed preferentially in neuronal and hematopoietic cells [36,37]

and in humans the brain also has high Spir-1 expression [38]. In general, Spir-1 is involved in

several actin-dependent cellular functions such as vesicle trafficking [24,34,35,39], DNA repair

[40], mitochondrial division [41], and development of germ cells [17,23,42] but a role in innate

immunity has not been described. Interestingly, a genome-wide association study found a sin-

gle nucleotide polymorphism in Spir-1 that correlated with a different antibody response to

smallpox vaccination [43].

Here, Spir-1 is shown to promote innate immune signalling downstream of dsRNA sensing.

In particular, Spir-1 contributes to IRF3 activation via a diphenylalanine motif that is also nec-

essary for the direct interaction of Spir-1 with VACV virulence factor K7. Using gain-of-func-

tion and loss-of-function cell lines, Spir-1 is shown to diminish VACV and ZIKV replication

and/or spread and is therefore a virus restriction factor.

Results

Vaccinia virus protein K7 co-precipitates with the C-terminal region of

Spir-1

A previous proteomic study identified Spir-1 as a cellular interacting partner of VACV protein

K7 although this interaction was not validated [14]. Mammals have two Spire genes, Spire1
and Spire2 that encode closely related proteins (overall 42% identity and 58% similarity in

humans), especially within the WH2 and Spir-box domains [37,44]. The Uniprot database for

human Spir-1 (Q08AE8) describes five Spir-1 isoforms, and splicing before the GTBM (Exon

9) and SB (Exon 13) domains has been demonstrated [45]. Among Spir-1 isoforms, isoform 2

does not contain Exon 9 or Exon 13, is the most abundant form in the brain and small intes-

tine tissues [45] and is the form studied here. To confirm if K7 co-precipitates with Spir-1,

HEK293T cells were transfected with plasmids encoding Myc-tagged human Spir-1, Spir-2, β-

TrCP, or Myc-GFP, together with plasmids expressing FLAG-tagged, codon-optimised K7 or

another Bcl-2-like VACV protein, A49 [46]. Immunoprecipitation with anti-Myc or anti-

FLAG affinity resins showed that K7 was co-precipitated by Myc-Spir-1 (Fig 1A), but not by

Myc-Spir-2, Myc-β-TrCP or Myc-GFP. In contrast, A49 interacted with β-TrCP as reported

[47], but not with the other proteins. Reciprocally, FLAG-K7 co-precipitated Spir-1 (Fig 1B),

but not the other Myc-tagged proteins, whilst β-TrCP only interacted with A49.

To investigate if the actin-binding domains of Spir-1 were needed for interaction with K7,

two Myc-tagged truncations of Spir-1 were generated: an N-terminal region (amino acid resi-

dues 1–390), containing the four actin-binding WH2 domains and the KIND domain; and a

C-terminal region, containing the SB and FYVE domains (amino acid residues 391–742, Fig

1C). These truncations, Spir-1 and Spir-2 were co-expressed with FLAG-K7 and Myc-tagged

immunoprecipitation showed that the C terminus of Spir-1 was sufficient for interaction with

K7, whereas the actin-binding domains were dispensable (Fig 1D, middle panel). The recipro-

cal IP gave the same conclusion and FLAG-K7 co-precipitated full-length Spir-1 and its C-ter-

minal region (Fig 1D, right panel). As controls, the N-terminal region co-precipitated

endogenous actin via its WH2 domains, and the C-terminal region interacted with 14-3-3,

another binding partner of Spir-1 [48,49].

To determine if Spir-1 and K7 interacted at endogenous levels, cells were either mock-

infected or infected with VACV expressing HA-tagged K7 (vHA-K7) [10] or B14 (vHA-B14)
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[50]. HA-immunoprecipitation confirmed that K7 interacts with endogenous Spir-1, whilst

B14 does not (Fig 1E). As reported, K7 also co-precipitated DDX3 [11], and B14 interacted

with IKKβ [51]. Altogether, these results indicate that Spir-1, but not Spir-2, interacts with K7

via its C-terminal region and independent of its actin-binding domains.

Ectopic Spir-1 increases IRF3-dependent gene expression

Since the interaction of Spir-1 with K7 is independent of its actin-binding domains, and K7 is

a VACV immunomodulator and virulence factor, we hypothesised that Spir-1 might have an

unknown function in antiviral immunity. To test this, the impact of Spir-1 on innate immune

signalling pathways was assessed by luciferase reporter gene assays. First, cells were transfected

with a reporter plasmid in which the expression of firefly luciferase is driven by the IFNβ pro-

moter. IFNβ expression was induced by Sendai virus (SeV) infection, which is sensed by RIG-I

[52]. Myc-Spir-1 expression alone did not affect IFNβ-dependent gene activation, however,

Fig 1. Spir-1 co-immunoprecipitates VACV protein K7 via its C-terminal region. HEK293T cells were transfected (A, B, and D) with Myc-

tagged and FLAG-tagged plasmids overnight. Cell lysates were immunoprecipitated using either Myc (A and D–right panel) or FLAG affinity

resins (B and D–middle panel) and analysed by SDS-PAGE and immunoblotting. (C) Schematic representations of hSpir-1 isoform 2 full-

length (top) and its C- and N-terminal truncations. (E) HEK293T cells were either mock-infected or infected at 5 or 10 PFU/cell with vHA-K7

or vHA-B14 for 4 h. Lysates were immunoprecipitated using HA-affinity resin and analysed by SDS-PAGE and immunoblotting. In (A), (B),

(D) and (E) the positions of molecular mass markers in kDa are shown on the left. Each experiment was done 3 times and representative

results are shown.

https://doi.org/10.1371/journal.ppat.1010277.g001
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Spir-1 augmented activation induced by SeV infection (Fig 2A). In contrast, Myc-tagged GFP

had no effect, and VACV protein C6 was inhibitory as described [53]. Spir-1 did not affect

activation of ISRE-dependent gene expression downstream of type I IFN, whereas C6, but not

N1, was inhibitory [54] (Fig 2B). Similarly, Spir-1 did not affect NF-κB activation in response

to TNF-α, whilst B14 inhibited it [51] and VACV protein N2 had no effect [55] (Fig 2C). Fur-

ther analysis using an IRF3-specific reporter plasmid (ISG56.1 or IFIT1 promoter) showed

Spir-1 caused a dose-dependent increase in IRF3 activation induced by the CARD domain of

RIG-I (Fig 2D and 2E). As controls, VACV protein N2 inhibited IRF3 activation as described

(55) while A49, an NF-κB inhibitor [47], did not. Unlike Spir-1, Spir-2 did not enhance IRF3

activation whereas DDX3 did, as described [11] (Fig 2E).

To map at which stage in the IRF3 pathway Spir-1 was acting, further ISG56.1 reporter

assays were performed in which the pathway was stimulated by expression of its different com-

ponents. Spir-1 activated the IRF3 pathway in a dose-response manner when MAVS (mito-

chondrial antiviral-signalling protein) was used as stimulant (Fig 2F), but not when

downstream components such as TBK1 (Fig 2G), IKKε (S1A Fig) or the constitutively active

IRF3-5D (Fig 2H) were expressed. These findings indicate Spir-1 enhances IRF3 activation at

or downstream of MAVS and upstream of IKKε or TBK1. This result suggests that Spir-1

might also affect other pathways induced downstream of MAVS, such as NF-κB. To test this,

NF-κB activation was assessed by reporter gene assay following RIG-I CARD stimulation in

the presence of different doses of Spir-1. The lowest Spir-1 dose enhanced RIG-I/MAVS/NF-

κB activation but a dose-dependent increase was not observed and higher Spir-1 doses dimin-

ished activation (S1B Fig). When combining this result with the absence of enhancement of

TNF-α-induced NF-κB by Spir-1, we decided to focus on the clearer enhancement of IRF3

activation by Spir-1 (Fig 2E), as a proxy for innate immune activation. Next, N- and C-termi-

nal fragments of Spir-1 were tested following stimulation by RIG-I CARD. Neither half of

Spir-1 activated the IRF3 pathway fully, although the C-terminal region had greater activity

than the N-terminal region, suggesting both halves are important (Fig 2I).

Spir-1 interaction with K7 is direct, independent of DDX3, and requires a

diphenylalanine motif

K7 interacts directly with DDX3 [56,57], an adaptor protein in the IRF3 pathway [58,59]. To

investigate whether K7 binding to Spir-1 was via DDX3, cells stably expressing an inducible

shRNA targeting DDX3 (shDDX3) [59] were used. Knockdown, rather than knockout, of

DDX3 was utilised because DDX3 encodes an essential protein [60]. Cells expressing a non-

silencing control (NSC) shRNA were used in parallel. DDX3 knockdown was induced by incu-

bation with doxycycline (DOX) for 48 h as described [59], prior to transfection with either

FLAG-tagged K7 or A49 for 24 h. Viral proteins were immunoprecipitated via their FLAG tag,

followed by immunoblotting for endogenous Spir-1. DDX3 levels were reduced greatly in

shDDX3 cells following DOX treatment, but not in control cells (Fig 3A). Despite this, Spir-1

co-precipitation by K7 was unaffected (Fig 3A). A49 did not co-precipitate either DDX3 or

Spir-1 (Fig 3A). Next, the shDDX3 cells were used to determine if DDX3 contributed to Spir-

1-induced IRF3 activation. After DDX3 knockdown, there was no significant difference in

IRF3 stimulation by Spir-1 (Fig 3B). Notably, K7 inhibited IRF3 activation when DDX3 was

knocked down, showing K7 had another IRF3 inhibitory mechanism independent of DDX3

(Fig 3B). Moreover, the presence of K7 reversed the activation of the pathway by Spir-1 (Fig

3B). In summary, Spir-1 interaction with K7 and its function in the IRF3 pathway are indepen-

dent of DDX3.
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Fig 2. Ectopic expression of Spir-1 increases IRF3-dependent gene expression induced by other stimuli, at or

downstream of MAVS. HEK293T cells were transfected with IFNβ (A), ISRE (B) and NF-κB (C) firefly luciferase

reporter plasmids, together with TK-renilla luciferase and 40 ng of the plasmids for expression of the indicated

proteins. After overnight transfection, cells were stimulated with SeV for 24 h (A), IFNα (B) or TNF-α (C) for 8 h.

(D-I) HEK293T cells were transfected with the ISG56.1 firefly luciferase reporter plasmid, TK-renilla luciferase and

plasmids for expression of the indicated proteins. Cells were also co-transfected with EV as the non-stimulated (NS)

controls or with the 5 ng of CARD-domain of RIG-I (D, E and I), 40 ng of MAVS (F), 40 ng of TBK-1 (G) and 5 ng of

IRF3-5D (H) plasmids to activate the IRF3 pathway. EV was added to samples when necessary to keep the final

amount of DNA transfected as 40 ng in all samples. Cell lysates were prepared and luciferase expression was measured

and normalised to renilla luciferase. Data shown are representative of three independent experiments. Each

independent experiment was done with a minimal of three wells for each condition and the statical analysis was done

within a single experiment. Data are expressed as the mean (± SD) fold induction of the firefly luciferase activity

normalised to renilla values for the stimulated versus non-stimulated samples. Immunoblots underneath each graph

show the expression levels of the different proteins. The positions of molecular mass markers in kDa are shown on the

right and the antibodies used are shown on the left. ns = not significant; �P< 0.05; ��P< 0.01, ����P< 0.0001.

https://doi.org/10.1371/journal.ppat.1010277.g002
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Fig 3. Spir-1 and DDX3 share a conserved diphenylalanine motif that is required for IRF3 activation and direct

binding to K7. (A) DDX3 knockdown was induced in HEK293T cells stably transfected with pTRIPZ-shDDX3 (or a

NSC pTRIPZ vector) through incubation with doxycycline for 48 h. Twenty-four h after doxycycline addition, cells

were transfected with FLAG-tagged plasmids overnight. Cell lysates were immunoprecipitated using FLAG-affinity

resin and analysed by SDS-PAGE and immunoblotting. (B) DDX3 knockdown was induced in HEK293T shDDX3

cells as in (A) and cells were then transfected with ISG56.1-firefly luciferase reporter, TK-renilla luciferase, plasmids

for expression of the indicated proteins together with the CARD-domain of RIG-I. Cell lysates were prepared and

analysed as in Fig 2. Immunoblots underneath the graph show the expression levels of the different proteins. (C)

Alignment of amino acid residues of Spir-1 and DDX3 showing the conserved diphenylalanine motif. (D) HEK293T

cells were transfected overnight with Myc-tagged Spir-1 wild type, GFP or Spir-1 mutant FFAA together with

FLAG-K7. Cell lysates were immunoprecipitated using either Myc (middle panel) or FLAG-affinity resins (right panel)

and analysed by SDS-PAGE and immunoblotting. (E) HEK293T cells were transfected with ISG56.1 firefly luciferase

reporter, TK-renilla luciferase, plasmids for expression of the indicated proteins together with the CARD-domain of

RIG-I or EV as the NS control. Cell lysates were prepared and analysed as in (B). The panel underneath the graph

shows immunoblots for the expression level of Spir-1 and GAPDH. (F and G) Myc or FLAG-tagged proteins were

synthesized by in vitro transcription/translation. Samples were immunoprecipitated using FLAG- (F) or Myc-affinity

resins (G) and analysed by SDS-PAGE and immunoblotting. For all immunoblots, the positions of molecular mass

markers in kDa are shown on the left and the antibodies used on the right. ns = not significant; �P<0.05,
����P< 0.0001. HC/LC: IgG heavy chain or light chain, respectively.

https://doi.org/10.1371/journal.ppat.1010277.g003
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Since both DDX3 and Spir-1 bind to K7 and activate IRF3, their amino acid sequences

were compared. The structure of K7 bound to a DDX3 peptide and subsequent structure-

based mutagenesis showed that a diphenylalanine (FF) motif in DDX3 is essential for binding

K7 and for IRF3 activation [57]. An alignment of the C terminus of Spir-1 and the minimal

ten amino acid peptide from DDX3 (residues 81–90) needed for binding K7, showed a similar

FF motif in Spir-1 (Fig 3C). To determine if this was important for Spir-1 binding to K7, the

phenylalanines were mutated to alanines (FFAA) and the mutant was expressed in cells

together with FLAG-tagged K7. Wild-type (WT) Myc-Spir-1 and Myc-GFP were also

expressed. Anti-Myc or anti-FLAG immunoprecipitation showed that the FFAA mutation

impaired Spir-1 interaction with K7 (Fig 3D), although it still precipitated both actin and 14-3-

3, indicating normal folding. Notably, the FFAA mutant no longer activated IRF3 (Fig 3E).

To determine if the K7 interaction with Spir-1 was direct, these proteins were expressed by

in vitro transcription and translation and immunoprecipitated alongside Myc-tagged TAB2

and FLAG-tagged VACV protein F12 [61] as controls. Both Spir-1 and DDX3 interacted

directly with K7, whereas Spir-1 did not interact with F12, and K7 did not interact with TAB2

(Fig 3F and 3G). Taken together, this demonstrated that Spir-1 binds directly to K7 and shares

with DDX3 a conserved diphenylalanine motif, which is required for its function in the IRF3

pathway.

K7 uses the same amino acid residues to target both Spir-1 and DDX3

K7 binds to the DDX3 peptide through a hydrophobic pocket within a negatively-charged face

[56,57]. Thus, interactions between K7 and the DDX3 peptide involve hydrophobic contacts,

hydrogen bonds and electrostatic interactions, of which electrostatic contacts between R88 of

DDX3 with both D28 and D31 of K7 are notable. D31 also forms a hydrogen bond with DDX3

S83 [57]. Using this information, K7 mutants were generated in an attempt to distinguish

between K7 binding to Spir-1 and DDX3. K7 D28 and D31 were changed singly or together to

alanine (D28A, D31A) and expressed alongside WT K7 or GFP, and together with Myc-tagged

Spir-1 and HA-tagged DDX3. Immunoprecipitation showed that K7 D28A still bound both

Spir-1 and DDX3, whilst K7 D31A had impaired binding to both proteins, especially DDX3

(Fig 4A). Furthermore, the double mutant (DDAA) had further reduced binding to Spir-1 and

no detectable binding to DDX3 (Fig 4A). Importantly, all mutants still interacted with COPε
(Fig 4A), another K7 binding partner [13], suggesting normal K7 folding. Co-precipitation of

endogenous Spir-1 with FLAG-tagged K7 and mutants gave similar conclusions (Fig 4B).

Notably, the K7 D31A mutant inhibited IRF3 activation poorly compared to the WT or D28A

(Fig 4C). Altogether, these data indicate that K7 requires D31 for interacting with both DDX3

and Spir-1 and via each interaction it inhibits the IRF3 pathway.

Innate immune responses are reduced in the absence of Spir-1

To investigate Spir-1-enhanced innate immune responses further, Spir-1 knockout (KO)

HEK293T cell lines were generated by CRISPR-Cas9-mediated targeting of SPIRE1 exon 3,

which is conserved in all Spir-1 isoforms (Fig 5A). After single cell selection and clonal expan-

sion, HEK293T cell lines were confirmed to lack Spir-1 by immunoblotting (Fig 5B) and by

sequencing of both Spire-1 alleles (Fig 5A). A clone that lacked Spir-1 protein expression and

in which the Spire-1 open reading frame was disrupted by frameshift mutations in both alleles,

and that lacked WT sequence, was selected. Additionally, a vector expressing Myc-tagged

Spir-1 was used to rescue Spir-1 expression in the KO cell line following lentiviral transduc-

tion. In parallel, both WT and KO cells were transduced with a control empty vector (EV) len-

tivirus. Spir-1 WT cells transduced with EV, and Spir-1 KO cells transduced with EV or Myc-
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Spir-1 were infected with SeV to activate the IRF3 pathway, as a proxy of innate immune

responses. Supernatants were collected for ELISA and cells lysates were used for either RNA

extraction or immunoblotting, which confirmed that cells did or did not express Spir-1 (Fig

5B). The expression of Myc-Spir-1 increased in the presence of SeV, but this was not observed

for endogenous Spir-1 (Fig 5B). One possible explanation is that Myc-Spir-1 expression is

driven by the human cytomegalovirus immediate early promoter [62] that contains binding

sites for transcription factors such as NF-κB [63], which can also be activated during SeV

infection. The phosphorylation of IRF3 at S396 (p-IRF3), a hallmark of IRF3 activation [64],

increased greatly 24 h after SeV infection of WT cells (Fig 5B) but was reduced in the absence

of Spir-1 and restored in the KO cells expressing Myc-Spir-1 (Fig 5B). Moreover, after SeV

infection, Spir-1 KO cells produced lower levels of mRNAs for ISG56/IFIT1 (Fig 5C), IFNB1
(Fig 5D) and CXCL10 (Fig 5E), and secreted less CXCL-10 (Fig 5G), as measured by RT-qPCR

and ELISA, respectively. Since SeV infection can also activate NF-κB downstream of dsRNA

sensing, the expression of NFKBIA, an NF-κB-dependent gene, was also tested and found to

be reduced in the absence of Spir-1 (Fig 5F). However, the absence of Spir-1 did not change

the levels of CXCL-10 secreted in response to TNF-α, a stimulus that activates the NF-κB path-

way independently of MAVS (Fig 5H).

Immortalised mouse embryonic fibroblasts (MEFs) from mice with a terminator (gene

trap) between exons 3 and 4 of the Spire1 gene [65] were used to investigate the contribution

Fig 4. K7 residue Asp31 is important for binding to Spir-1 and DDX3 and inhibition of IRF3 activation.

HEK293T cells were transfected with FLAG-tagged GFP, K7 wild type or mutants, Myc-Spir-1 and HA-DDX3 (A) or

with only FLAG-tagged plasmids overnight (B). Cell lysates were immunoprecipitated using FLAG-affinity resin and

analysed by SDS-PAGE and immunoblotting. The positions of molecular mass markers in kDa are shown on the left

and the antibodies used on the right. (C) HEK293T cells were transfected with ISG56.1-firefly luciferase reporter, TK-

renilla luciferase, plasmids for expression of the indicated proteins together with the CARD-domain of RIG-I or EV as

the NS control. Cell lysates were prepared and analysed as in Fig 2. Statistical analyses compared the fold induction of

the mutant sample to its respective K7 wild type. The panel underneath the graph shows immunoblots for the

expression levels of the different K7 proteins and α-tubulin. The positions of molecular mass markers in kDa are

shown on the right and the antibodies used on the left. ns = not significant; ����P< 0.0001. LC: IgG light chain.

https://doi.org/10.1371/journal.ppat.1010277.g004
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of Spir-1 to innate immune activation in cells from a different mammal. After stimulation with

either poly I:C or SeV infection, MEFs were lysed for immunoblotting or RNA analysis and

supernatants were collected for ELISA. A reduction in p-IRF3 was seen in Spir-1 KO cells (Fig

6A and 6B) and this was quantified (bottom graphs in Fig 6A and 6B). The Spir-1 KO MEFs

also expressed less mRNAs for cytokines and chemokines upon stimulation with poly I:C or

SeV infection than their WT controls (Fig 6D–6I). Both IRF3- (e.g. Ifit1) and NF-κB- (e.g.

Nfkbia) dependent genes were reduced in the absence of Spir-1 upon poly I:C stimulation (Fig

6C and 6F). Likewise, secretion of IL-6 and CXCL-10 were lower from Spir-1 KO cells (Fig 6J–

6M). However, the levels of IL-6 and CXCL-10 secreted after stimulation with IL-1β were not

reduced in Spir-1 KO MEFs (Fig 6N and 6O); indeed, there was a small increase in IL-6 levels

in KO cells (Fig 6N). In summary, in both mouse and human cells lacking Spir-1 there is a

defect in IRF3 activation. Furthermore, the NF-κB pathway activation is also affected down-

stream of RIG-I/MDA5, but not following stimulation with IL-1β or TNFα.

Spir-1 is a virus restriction factor

Given that Spir-1 interacts with VACV protein K7 and enhances the activation of innate

immune pathways, which are critical for the host response to viral infection, the impact of

Spir-1 on VACV replication and spread was assessed. Spir-1 WT and KO HEK293T cells and

the derivative cell line in which Spir-1 expression was restored in the KO cells, were infected

with A5-GFP-VACV, a VACV strain expressing GFP fused to capsid protein A5 [66], and 2

days (d) later plaque diameters were measured (Fig 7A and 7B). A significant increase in

Fig 5. Spir-1 contributes to IRF3 phosphorylation and IRF3 stimulated gene expression after SeV infection in

HEK293T cells. (A) Schematic of CRISPR-Cas9-mediated knockout strategy targeting Spire1 exon 3 and single allele

sequences of HEK293T Spir-1 knockout (KO) cells. (B-G) Spir-1 knockout (KO) HEK293T cells were transduced with

empty vector (EV) or Myc-Spir-1 lentiviruses to rescue Spir-1 expression. Cells lines were either non-infected (NS) or

infected with SeV for the indicated times. Cells were then either lysed and analysed by immunoblotting (B) or

subjected to total RNA extraction followed by RT-qPCR (C-F). Supernatants were analysed by ELISA (G). (H) Spir-1

KO or wild type (WT) HEK293T cells were stimulated overnight with TNFα and supernatants were analysed by

ELISA. All experiments were done at least three times. qPCR data are shown as the mean (± SD) fold induction of

stimulated versus non-stimulated cells from two individual wells within one experiment. ELISA data are shown as the

mean (± SD) values of three individual wells within one experiment. ns = not significant, ��P< 0.01, ���P< 0.001,
����P< 0.0001.

https://doi.org/10.1371/journal.ppat.1010277.g005
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plaque size was seen in the absence of Spir-1 compared to both WT and rescued cells (Fig 7B),

suggesting that Spir-1 restricts VACV spread and/or replication. Virus growth on those cells

was also assessed. Cells were infected with 0.001 plaque-forming unit (PFU)/cell of VACV

strain WR and 2 d later the virus yield was determined by plaque assay. Spir-1 KO cells yielded

higher viral titres compared to both WT and Spir-1-complemented cells (Fig 7C). In parallel,

the growth of a VACV strain lacking the K7L gene [10] was also assessed. Despite the absence

of K7, there was still an increase in the viral titres in the Spir-1 KO cells when compared to

control cell lines (Fig 7D). This can be explained by the presence of other immunomodulatory

proteins encoded by VACV that inhibit either IRF3 or NF-κB activation [9].

Activation of the IRF3 and NF-κB pathways also restricts RNA viruses, therefore the impact

of Spir-1 in restricting Zika virus (ZIKV), a single-stranded RNA virus, was also assessed. Spir-

Fig 6. IRF3 activation is reduced in Spir-1 KO MEFs. Spir-1 WT or KO MEF cells were transfected with poly I:C (A, C-F, and

J-K) or infected with SeV (B, G-I, and L-M) for the indicated times. Cells were lysed and analysed by immunoblotting (A and

B) and blots shown are representative of three independent experiments. Phospho-IRF3 bands intensity was quantified and

normalised by the intensity of α-tubulin from three different experiments and expressed as the mean (± SD) fold induction of

stimulated versus non-stimulated cells (A and B, bottom graphs). The positions of molecular mass markers in kDa are shown

on the left and the antibodies used on the right. Cells were also subjected to total RNA extraction followed by RT-qPCR (C-I)

and supernatants were analysed by ELISA (J-M). (N and O) Spir-1 WT or KO MEF cells were stimulated with IL-1β for 8 h and

supernatants were analysed by ELISA. qPCR data are shown as the mean (± SD) fold induction of stimulated versus non-

stimulated cells from at least three individual wells within one experiment. ELISA data are shown as the mean (± SD) values

from three individual wells of cells within one experiment. All experiments were done at least three times. ns = not significant,
��P< 0.01, ���P< 0.001, ����P< 0.0001.

https://doi.org/10.1371/journal.ppat.1010277.g006

PLOS PATHOGENS Spir-1 is a virus restriction factor

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010277 February 11, 2022 11 / 25

https://doi.org/10.1371/journal.ppat.1010277.g006
https://doi.org/10.1371/journal.ppat.1010277


1 WT, KO and Spir-1-rescued HEK293T cells were infected with ZIKV-mCherry at 0.01 PFU/

cell. Three days later, the mCherry signal was visualised by live-cell imaging and showed a

greater signal in the KO cells compared to controls (Fig 7E), suggesting an increased ZIKV

replication in these cells. To address this possibility, the virus yield in the supernatant of

infected HEK293T cells was determined by plaque assay in VERO E6 cells (Fig 7F and 7G).

Cells were infected at either 0.01 PFU/cell (Fig 7F) or 2 PFU/cell (Fig 7G) and in the absence

Fig 7. Spir-1 is a cellular restriction factor for VACV and ZIKV. (A, B) Spir-1 WT or KO and Spir-1 KO

complemented HEK293T cells were infected with VACV-A5-GFP and plaque diameters were measured at 48 h p.i. (A)

Representative plaques formed in each cell line. (B) Plaques diameter measurements (n = 54). (C and D) Spir-1 WT or

KO and Spir-1 KO complemented HEK293T cells were infected with VACV WR (C) or VACVΔK7 (D) at 0.001 PFU/

cell for 48 h and the virus yield was measured in BSC-1 cells. ns = not significant, �P<0.05, ��P< 0.01, ���P< 0.001,
����P< 0.0001. (E-G) Spir-1 WT or KO and Spir-1 KO complemented HEK293T cells were infected with ZIKV-

mCherry at 0.01 PFU/cell (E-F) or at 2 PFU/cell (G) for 72 h and ZIKV-infected monolayers were imaged (E) or the

virus yield was measured in VERO E6 cells (F-G). ns = not significant, �P<0.05, ��P< 0.01, ���P< 0.001,
����P< 0.0001.

https://doi.org/10.1371/journal.ppat.1010277.g007
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of Spir-1, there was an increase in ZIKV titres compared to the WT and Spir-1 restored KO

cells. Collectively, loss of Spir-1 caused an increase in both virus plaque size and yield of infec-

tious virus, showing that Spir-1 functions as a restriction factor against both a DNA (VACV)

and an RNA (ZIKV) virus.

Discussion

During co-evolution with their hosts, viruses have evolved mechanisms to evade the host anti-

viral responses and thereby replicate and spread efficiently. Such virus proteins are numerous

and have diverse functions and, therefore, can be used to gain insight into how the host innate

immune system functions. VACV is a poxvirus and encodes scores of immunomodulatory

proteins many of which target the innate immune system. In several cases, multiple VACV

proteins engage the same pathway, but despite this, these proteins each contributes to viru-

lence indicating non-redundant functions [9]. Sometimes a single protein can inhibit multiple

pathways [9] or an open reading frame can encode multiple proteins with different functions

[67]. High-throughput proteomic approaches have been used to identify binding partners of

VACV proteins, or cellular proteins that are up or down-regulated during virus infection, and

such cellular proteins may have antiviral activity and function in innate immunity [14,16]. For

example, histone deacetylases (HDAC) 4 and 5 are each targeted for proteasomal degradation

by VACV protein C6 and function as a virus restriction factor [15,16].

Here, Spir-1 is characterised as a new cellular protein that is bound by VACV protein K7

(Fig 1), a virulence factor that inhibits NF-κB and IRF3 activation [10,11]. K7 binding to Spir-

1 was identified in a proteomic screen for binding partners of virus immunomodulatory pro-

teins [14]. Here, this interaction is confirmed, demonstrated to occur at endogenous levels

during VACV infection (Fig 1E), and shown to be direct (Fig 3F and 3G).

Spir-1 belongs to a family of proteins involved in actin organisation [44] but K7 interaction

with Spir-1 does not require its N-terminal actin-binding domain (Fig 1D). VACV induces

polymerisation of actin to facilitate virus dissemination from the cell surface and VACV

mutants unable to polymerise actin spread poorly and form small plaques [68]. However, a

mutant lacking K7 produces normal size plaques [10]. Given that K7 is an immunomodulatory

protein, we hypothesised that Spir-1 might have a function in innate immunity. In reporter

gene assays, Spir-1 over-expression did not affect JAK-STAT signalling induced by type I IFN

or NF-κB activation downstream of TNFα or IL-1β (Figs 2B, 2C, 6N and 6O). However, Spir-1

enhanced the innate immune responses downstream of dsRNA sensing (Figs 2D and S1B),

particularly IRF3-dependent gene expression (Fig 2D), which we explored further as a proxy

for the innate immune activation. Conversely, human and murine Spir-1 knockout cell lines

showed diminished IRF3 signalling, with reduced IRF3 phosphorylation and reduced tran-

scription and expression of IRF3-responsive genes (Figs 5 and 6). Importantly, rescue of Spir-1

expression in Spir-1 KO cells restored phospho-IRF3 and cytokine expression levels (Fig 5).

To map where Spir-1 influences IRF3 activation, the pathway was activated by different

agonists and the influence of Spir-1 examined. Spir-1 enhanced activation induced by SeV

infection (Figs 2A, 5 and 6), poly I:C transfection (Fig 6), and overexpression of both RIG-I

CARD (Fig 2D and 2E) and MAVS (Fig 2F), but not overexpression of TBK1, IKKε or a con-

stitutively active IRF3 (Figs 2G, 2H and S1A). SeV RNA is sensed by RIG-I [69] whilst high

molecular weight (HMW) poly I:C is sensed by MDA-5 [52,70]. This suggests Spir-1 acts at or

downstream of MAVS, the adaptor molecule recruited downstream of RIG-I and MDA5 acti-

vation [71]. The association of RIG-I/MDA5 with MAVS results in the recruitment of tumour

necrosis factor receptor-associated factors (TRAFs), such as TRAF3, leading to the phosphory-

lation of IRF3 by TBK1/IKKε. Other TRAFs, such as TRAF6, are also recruited, which in turn
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activate NF-κB via the IKK complex to promote the transcription of proinflammatory factors

[72]. Thus, the expression of NF-κB-dependent genes was also reduced in the Spir-1 KO cells

downstream of both SeV or poly I:C activation (Figs 5F and 6F). Collectively, these data sug-

gest Spir-1 functions around the level of MAVS and contributes to the overall immune activa-

tion downstream of dsRNA recognition.

K7 inhibition of IRF3 activation was attributed to direct binding to DDX3, which acts as a

multifunctional scaffolding adaptor culminating in IRF3 activation [58,59]. However, data

presented here show K7 has additional targets within the IRF3 pathway, since Spir-1 also con-

tributes to IRF3 activation and K7 is able to inhibit IRF3 activation even in the absence of

DDX3 (Fig 3B). Furthermore, DDX3 and Spir-1 act at different positions in the pathway;

DDX3 acts at the TRAF3 and TBK1/IKKε level [9,11,59,73], whilst Spir-1 acts upstream of

TBK1/IKKε (Fig 2). Interestingly, both DDX3 and Spir-1 share a diphenylalanine motif that is

responsible for both binding to K7 and their function in the IRF3 pathway (Fig 3) [57]. Fur-

thermore, the same amino acid residue in K7 (D31) is crucial for its binding to both cellular

proteins (Fig 4). This prevented assessment of the relative importance of K7 binding to each

cellular protein. K7 has also been described as an NF-κB inhibitor downstream of TLR- and

IL-1β activation [11]. However, Spir-1 does not contribute to NF-κB activation upon cytokine

stimulation (Figs 2C, 5H, 6N, and 6O). Thus, it remains to be determined how K7 can interfere

with NF-κB activation downstream of MAVS and if K7 interaction with Spir-1 can affect NF-

κB activation.

Nonetheless, Spir-1 has an important antiviral role because cells lacking Spir-1 show

enhanced VACV and ZIKV replication and/or spread (Fig 7). Comparable data for DDX3 are

lacking, and obtaining such data is complicated by DDX3 being an essential protein [60]. Both

K7 and Spir-1 localise in the cytoplasm [10,34]. Interestingly, mutations in the FYVE domain

and in the diphenylalanine motif in Spir-1 change its sub-cellular localisation from a trans-

Golgi network and post-Golgi vesicles localisation to an even cytoplasmic distribution [29,34].

Neither the N- or C-terminal halves of Spir-1 were capable of enhancing the activation the

IRF3 pathway as well as full-length protein (Fig 2I), despite comparable expression levels, sug-

gesting that both halves are important. It is possible that Spir-1 is directed to the correct loca-

tion by its C-terminal domain, whist its N-terminal domain mediates Spir-1 engagement with

other proteins to promote innate immune responses, although these have not been identified.

This might explain why the FFAA Spir-1 mutant is no longer able to enhance activation of the

IRF3 pathway. Another possibility could be that the Spir-1 binding to actin contributes to its

function in promoting antiviral responses. For instance, mitochondrially-targeted β-actin

affects IRF3 stabilisation and contributes to the activation of antiviral genes [74]. Whether

Spir-1 is involved in this remains to be established but it could explain why the N-terminal half

of Spir-1, via its actin-binding domains, contributes to IRF3 activation (Fig 2I). Regarding K7

inhibition of Spir-1 function, one possibility is that K7 may bind to the Spir-1 diphenylalanine

motif and displace other proteins or sequester it and prevent it reaching its subcellular loca-

tion. Spir-1 has several isoforms [45], and one, Spire-1C (also known as Spire1-E13), differs

from the canonical isoform by encoding an extra exon sequence (ExonC or E13), which medi-

ates its mitochondrial localisation and regulates mitochondrial division [41]. Even though this

was not the isoform used in the present study, K7 might regulate Spir-1 trafficking to the mito-

chondrion, where MAVS is anchored [75].

RIG-I and MDA5 can sense RNA virus genomes directly, but also RNA generated by infec-

tion with DNA viruses [76], leading to IRF3 and NF-κB activation. Therefore, RIG-I/MDA5--

triggered antiviral response is antagonised by several RNA and DNA viruses [71,77]. For

instance, ZIKV has been shown to be sensed by both RIG-I and MDA-5 depending on the

infected cell type (reviewed by [78]). Furthermore, it has long been known that dsRNA is
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generated during VACV infection [79–81], so it is not surprising that VACV encodes proteins

to interfere with cytosolic RNA sensing. For instance, VACV protein E3 binds to dsRNA and

prevents RIG-I-dependent sensing of RNA products generated via the transcription of AT-

rich DNA by RNA polymerase III [82,83], and the decapping enzymes D9 and D10 prevent

the accumulation of dsRNA from viral complementary RNA molecules [84]. Downstream of

RNA sensing, VACV encodes proteins to inhibit IRF3 activation, such as C6, which acts at

TBK1/IKKε activation level [53], N2, which acts downstream of IRF3 translocation to the

nucleus [55] and K7, which targets DDX3 [11]. Other VACV-encoded immunomodulatory

proteins also inhibit NF-κB downstream of RNA sensing, such as B14 and A49 [9]. Here, we

show Spir-1 contributes to IRF3 activation downstream of RIG-I/MDA5-dependent RNA

sensing, with both Spir-1 and DDX3 sharing a similar motif which binds K7. Whether Spir-1

and DDX3 diphenylalanine also contributes to NF-κB activation remains unknown.

In summary, exploring in detail the function of VACV protein K7 led to the characterisa-

tion of an additional cellular factor, Spir-1 that promotes innate immune activation and is a

virus restriction factor.

Material and methods

Cells lines

Human embryonic kidney (HEK) 293T, HEK293T NSC or shDDX3 (kind gifts from Dr. Mar-

tina Schröder, Maynooth University, Ireland), murine embryonic fibroblasts (MEFs) Spir-1

KO and WT (kindly provided by Prof. Dr. Eugen Kerkhoff—University Hospital Regensburg,

Germany), BSC-1 and VERO E6 (African Green Monkey) cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM, Gibco) supplemented with 10% heat-treated (56˚C, 1 h)

foetal bovine serum (FBS, Pan Biotech), 100 U/mL penicillin and 100 μg/mL streptomycin (P/

S, Gibco). RK13 cells were grown in minimal essential medium (MEM, Gibco) supplemented

with 10% FBS and P/S.

Viruses

VACV strain Western Reserve (WR) and derivative strains expressing GFP fused to the capsid

protein A5 (A5-GFP-VACV) [66], VACV strain lacking K7L gene (VACVΔK7) [10], VACV

expressing HA-tagged B14 [50] and VACV expressing HA-tagged K7 [10] were described.

VACV strains were grown on RK13 cells and titrated by plaque assay on BSC-1 cells. Sendai

virus (SeV) Cantell strain (Licence No. ITIMP17.0612A) was a gift from Prof. Steve Good-

bourn (St George’s Hospital Medical School, University of London). ZIKV engineered to

express a mCherry marker [85] was a kind gift from Dr. Trevor Sweeney (Department of

Pathology, University of Cambridge).

Plasmids

A plasmid encoding the Myc-tagged human Spir-1 isoform 2 and human Spir-2 [20] con-

structs were a kind gift of Prof. Dr. Eugen Kerkhoff. Spir-1 N- and C-terminal truncations

were constructed by PCR amplification from pcDNA3.1-Myc-Spir-1 and inserted into plasmid

pcDNA3.1-Myc. Codon-optimised FLAG-K7 was described [86] and Spir-1 and K7 plasmids

were used as templates for site-directed mutagenesis according to the instructions of the Quik-

Change Site-Directed Mutagenesis Kit (Agilent). All mutations were confirmed by DNA

sequencing. Myc-DDX3 and HA-DDX3 [11] were kindly provided by Dr. Martina Schröder.

The IFNβ-firefly luciferase reporter plasmid was from T. Taniguchi (University of Tokyo,

Japan), NF-κB-firefly luciferase was from R. Hofmeister (University of Regensburg, Germany)
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and ISG56.1-firefly luciferase was a gift from Ganes Sen (Cleveland Clinic, USA). ISRE-firefly

luciferase and pTK-renilla luciferase (pRL-TK) plasmids were from Promega. Vectors express-

ing MAVS, IKKε, TBK1 and IRF3-5D [53], and RIG-I-CARD domain [87] were described.

Lentivirus vector plasmid pLKO.DCMV.TetO.mcs (pLDT) [88] was a gift from Prof. Roger

Everett (University of Glasgow, UK) and was used as backbone for sub-cloning the Myc-Spir-

1. Plasmids pCMV.dR8.91 (expressing all necessary lentivirus helper functions) and pMD-G

(expressing the vesicular stomatitis virus envelope protein G) were from Dr. Heike Laman

(University of Cambridge, UK). pF3A WG plasmid was from Promega. px459 CRISPR-Cas9

plasmid was purchased from Addgene. More information about plasmids and oligonucleotide

primers used are given in S1 and S2 Tables.

Antibodies and reagents

Primary antibodies used were from the following sources: rabbit (Rb) anti-Myc (Cell Signaling,

2278), mouse (Ms) anti-Myc (Cell Signaling, 9B11), Rb anti-actin (Sigma, A2066), Ms anti-FLAG

(Sigma F1804), Rb anti-14-3-3 (Santa Cruz, sc-629), Ms anti -Spir-1 (Santa Cruz, sc-517039), Ms

anti-Spir-1 (Abcam, ab57463), Rb anti-DDX3 (Cell Signaling, 2635), Rb anti-IKKβ (Cell Signal-

ing, 2684), Rb anti-HA (Sigma, H6908), Ms anti-α-tubulin (Millipore, 05–829), Ms anti-GAPDH

(Sigma, G8795), Rb anti-IRF3 (Cell Signaling, 4962), Rb anti-IRF3 (Santa Cruz, SC-9082), Ms

anti-COPε (Santa Cruz, sc-133194), Rb anti-phospho-IRF3 Ser396 (Cell Signaling, 4947S) and Rb

polyclonal anti-C6 [53]. For dilutions used for the primary antibodies, see S3 Table. Secondary

antibodies used (1:10,000 dilution) were IRDye 680RD-conjugated goat anti-rabbit IgG or anti-

mouse IgG and IRDye 800CW-conjugated goat anti-rabbit IgG or anti-mouse IgG (LI-COR).

Reagents used in this study were: anti-c-Myc agarose from Santa Cruz Biotechnology, and

monoclonal anti-HA-agarose, clone HA-7, ANTI-FLAG M2 affinity gel and Poly-D-lysine

hydrobromide (all from Sigma Aldrich). Human IFNα, human TNF-α and mouse IL-1β were

from Peprotech, HMW poly(I:C) and puromycin were from InvivoGen, and doxycycline was

from Melford.

Reporter gene assay

HEK293T cells were seeded in 96-well plates with 1.5 × 104 cells per well. After two days, cells

were transfected with 60 ng per well of the firefly luciferase reporter plasmids (IFNβ, ISRE,

NF-κB or ISG56.1), 10 ng per well of pTK-renilla luciferase and different amounts of the

expression plasmid under test or empty vector (EV) control using polyethylenimine (PEI,

CellnTec, 2 μL per 1 μg DNA). When necessary, EV plasmid was added to the transfection so

that the final amount of DNA transfected was kept constant. In cases where stimulation was

done by transfecting another plasmid, the same amount of EV was transfected to the non-

stimulated (NS) control wells. Cells were stimulated as shown in Figs 1–7: (i) infection with

SeV for 24 h (IFNβ Luc), (ii) 10 ng/mL of TNF-α for 8 h (NF-κB Luc) or (iii) with 1000 U/mL

of IFNα for 8 h (ISRE-Luc). After stimulation, cells were washed with PBS, lysed with 100 uL/

well of passive lysis buffer (Promega) and firefly and renilla luciferase activities were measured

using a FLUOstar luminometer (BMG). The firefly luciferase activity in each sample was nor-

malised to the renilla luciferase activity and fold inductions were calculated relative to the non-

stimulated controls for each plasmid. In all cases, data shown are representative from at least

three independent experiments with at least triplicate samples analysed for each condition.

Immunoblotting

HEK293T (8 x 105) or MEFs (2 × 105) cells were seeded in 6-well plates and 24 h later cells

were stimulated by infection with SeV or transfection with 5 μg/mL of poly I:C using
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lipofectamine 2000 (Life Technologies). After stimulation, cells were washed twice with ice-

cold PBS, and scrapped into a cell lysis buffer containing 50 mM Tris-HCl pH 8, 150 mM

NaCl, 1 mM EDTA, 10% (v/v) glycerol, 1% (v/v) Triton X-100 and 0.05% (v/v) NP-40, supple-

mented with protease (cOmplete Mini, Roche) and phosphatase inhibitors (PhosSTOP,

Roche). Protein concentration was determined using a bicinchoninic acid protein assay kit

(Pierce) before being boiled at 100˚C for 5 min. Proteins were then separated by SDS-poly-

acrylamide gel electrophoresis and transferred onto a nitrocellulose Amersham Protran mem-

brane (GE Healthcare). Membranes were blocked at room temperature with either 5% (w/v)

milk or 5% (w/v) bovine serum albumin (BSA, Sigma) in PBS containing 0.1% Tween 20.

Then, membranes were incubated with a specific primary antibody diluted in blocking buffer

at 4˚C overnight. After washing, membranes were probed with LI-COR secondary antibodies

at room temperature followed by imaging using the LI-COR Odyssey imaging system, accord-

ing to the manufacturer’s instructions. Where indicated, protein bands from at least two inde-

pendent experiments were quantified by using Odyssey software (LI-COR Biosciences).

Immunoprecipitation

HEK293T cells were seeded in 10-cm dishes (3.5 × 106 cells per dish) and transfected with the

plasmids indicated in the Figs 1–7 using PEI. The following day, cells were washed twice with

PSB, lysed in immunoprecipitation (IP) lysis buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.4,

0.5% (v/v) Nonidet P-40 (NP-40) and protease (cOmplete Mini, Roche) and phosphatase

inhibitors (PhosSTOP, Roche)) and cleared by centrifugation at 21,000 g for 15 min at 4˚C.

Cleared lysates were then incubated with 20 μL of ANTI-FLAG M2 Affinity Gel (Sigma

Aldrich) or Anti-HA Agarose (Sigma Aldrich) for 2 h, or with 50 uL of Anti-c-Myc Agarose

overnight, at 4˚C. Alternatively, proteins were expressed by in vitro transcription/translation

using the TNT SP6 High-Yield Wheat Germ Protein Expression System (Promega) prior to

incubation with the affinity resins. Immunoprecipitations were washed 3 or 4 times in IP

buffer and bound proteins were eluted in Laemmli SDS-PAGE loading buffer and heated at

100˚C for 5 min. Samples were then analysed by SDS-PAGE and immunoblotting.

RT-qPCR

HEK293T (4 × 105) or MEFs (1 × 105) cells were seeded in 12-well plates. The next day, cells

were stimulated by infection with SeV or transfection with 5 μg/mL of poly I:C using lipofecta-

mine 2000 (Life Technologies). RNA was extracted using the RNeasy kit (QIAGEN) and 500

ng of each RNA sample was used to synthesise cDNA using Superscript III reverse transcrip-

tase according to the manufacturer’s protocol (Invitrogen). mRNA was quantified by real-time

PCR using a ViiA 7 Real-Time PCR System (Life Technologies), fast SYBR Green Master Mix

(Applied Biosystems) and the following primers: human CXCL10 (Fwd: GTGGCATTCAA

GGAGTACCTC, Rev: GCCTTCGATTCTGGATTCAGA), human IFNB1 (Fwd: ACATCC

CTGAGGAGATTAAGCA, Rev: GCCAGGAGGTTCTCAACAATAG), human IFIT1 (Fwd:

CCTGAAAGGCCAGAATGAGG, Rev: TCCACCTTGTCCAGGTAAGT), human NFKBIA
(Fwd: CTCCGAGACTTTCGAGGAAAT, Rev: GCCATTGTAGTTGGTAGCCTT) human

GAPDH (Fwd: ACCCAGAAGACTGTGGATGG, Rev: TTCTAGACGGCAGGTCAGGT),

mouse Ifit1 (Fwd: ACCATGGGAGAGAATGCTGAT, Rev: GCCAGGAGGTTGTGC), mouse

Il6 (Fwd: GTAGCTATGGTACTCCAGAAGAC. Rev: ACGATGATGCACTTGCAGAA),

mouse Cxcl10 (Fwd: ACTGCATCCATATCGATGAC, Rev: TTCATCGTGGCAATGATC

TC), mouse Nfkbia (Fwd: CTGCAGGCCACCAACTACAA, Rev: CAGCACCCAAAGTCAC

CAAGT) and mouse Gapdh (Fwd: ATGGTGAAGGTCGGTGTGAACGG, Rev: TTA

CTCCTTGGAGGCCATGTAGGC). Gene amplification was normalised to GAPDH
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(glyceraldehyde-3-phosphate dehydrogenase) amplification from the same sample, and the

fold induction of genes in stimulated samples was calculated relative to the unstimulated con-

trol. Experiments were performed in at least biological duplicate and conducted at least twice.

ELISA

HEK293T (4 × 105) or MEFs (1 × 105) cells were seeded in 12-well plates. The following day,

cells were stimulated by: (i) infection with SeV; (ii) transfection with 5 μg/mL of poly I:C using

lipofectamine 2000 (Life Technologies), (iii) 50 ng/mL of human TNF-α or (iv) 50 ng/mL of

mouse IL-1β. After stimulation, supernatants were assayed for human or murine CXCL-10

and IL-6 protein using Duoset enzyme-linked immunosorbent assay (ELISA) reagents (R&D

Biosystems) according to the manufacturer’s instructions.

CRISPR/Cas9-mediated genome editing

Two guide RNAs (gRNAs) were designed using online software (http://tools.genome-

engineering.org) to target SPIRE1 gene exon 3, which is shared by all Spir-1 isoforms. CRISPR/

Cas9-mediated genome editing of HEK293T cells was performed as described [89]. Briefly,

px459 CRISPR/Cas9 plasmids with or without gRNA sequence were transfected into HEK293T

using TransIT-LT1 transfection reagent (Mirus, MIR 2306). Puromycin (1 μg/mL) was added

to transfected cells and, after 48 h, puromycin-resistant cells were serially diluted to obtain indi-

vidual clones. Several clones were amplified, and a few potential knockout clones were selected

by immunoblotting and confirmed by genomic DNA sequencing at the gRNA target sites. Only

one gRNA was successful and one clonal cell line was confirmed to be knockout after PCR-

amplified genomic DNA was cloned into bacterial plasmids and multiple colonies (n = 20) were

sequenced. These all contained frameshift mutations. No wild type allele was identified.

Lentivirus transductions

Lentivirus particles for transduction were generated after transient co-transfection of

HEK293T cells seeded in 6-cm dishes. Cells were transfected with pCMV.dR8.91 and pMD-G

vectors together with either pLDT-EV or pLDT-Myc-Spir-1. After 48 h and 72 h, the superna-

tant was collected and passed through a 0.45 μm filter. Lentivirus-containing supernatant was

then used to infect HEK293T Spir-1 WT and KO cells. Transduced cells were selected with

1 μg/mL puromycin followed by clonal selection by serial dilution. Spir-1 expression was

assessed by immunoblotting.

Virus infection

Plaque size analysis were performed in HEK293T Spir-1 WT and KO cells seeded in 6-well

plates coated with poly-D-lysine (Sigma). Once confluent, cells were infected with VAC-

V-A5-GFP at 20 PFU per well for 2 d. Virus plaques diameters (n = 54) were measured using

AxioVision 4.8 software and a ZEISS Axio Vert.A1 fluorescent microscope.

Viral replication was measured by multi-step growth analyses of HEK293T Spir-1 WT and

KO cells infected with VACV-WR or VACVΔK7 at 0.001 PFU / cell or ZIKV-mCherry at 0.01

or 2 PFU/cell. For VACV, at 48 h post infection, cells were scraped in their medium and col-

lected by centrifugation at 500 g for 5 min. Cells were subjected to three rounds of freeze-thaw-

ing before the infectious viral titre was determined by plaque assay on BSC-1 cells for 3 days.

For ZIKV, at 72 h post infection, supernatants of infected cells were collected, and virus infec-

tivity was determined by plaque assay on Vero E6 cells for 5 days. ZIKV-infected monolayers

were also imaged using a Zeiss Axiovert 200M microscope. Images in Fig 7E were processed

PLOS PATHOGENS Spir-1 is a virus restriction factor

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010277 February 11, 2022 18 / 25

http://tools.genome-engineering.org/
http://tools.genome-engineering.org/
https://doi.org/10.1371/journal.ppat.1010277


using Adobe Photoshop 2020 to enhance linearly the mCherry visualisation. BSC-1 and VERO

E6 cells were then fixed with 4% paraformaldehyde (PFA) and stained with toluidine blue.

Statistical analysis

Statistical analysis was carried out using one or two-way ANOVA test where appropriate with

the Bonferroni post-test, using the GraphPad Prism statistical software (Graph-Pad Software).

Statistical significance is expressed as follows: ns = not significant, �P< 0.05, ��P < 0.01,
���P< 0.001, ����P< 0.0001.

Supporting information

S1 Fig. A. Ectopic expression of Spir-1 does not affect IRF3-dependent gene expression

induced by IKKε. HEK293T cells was transfected with the ISG56.1 firefly luciferase reporter

plasmid, TK-renilla luciferase and plasmids for expression of the indicated proteins. Cells were

also co-transfected with EV as the non-stimulated (NS) controls or with the 100 ng of IKKε
plasmid to activate the IRF3 pathway. EV was added to samples when necessary to keep the

final amount of DNA transfected as 40 ng in all samples. Cell lysates were prepared and ana-

lysed as in Fig 2. Data shown are representative of three independent experiments. Immuno-

blots underneath each graph show the expression levels of the different proteins. The positions

of molecular mass markers in kDa are shown on the right and the antibodies used are shown

on the left. ns = not significant; �P < 0.05; ��P< 0.01, ����P< 0.0001. B. Ectopic expression

of Spir-1 affects NF-κB-dependent gene expression induced by the CARD-domain of

RIG-I. HEK293T cells was transfected with the NF-κB-firefly luciferase reporter plasmid, TK-

renilla luciferase and plasmids for expression of the indicated proteins. Cells were also co-

transfected with either EV as the non-stimulated (NS) control or with the 5 ng of the CARD-

domain of RIG-I plasmid. EV was added to samples when necessary to keep the final amount

of DNA transfected as 40 ng in all samples. Cell lysates were prepared and luciferase expression

was measured and normalised to renilla luciferase. Data are expressed as the mean (± SD) fold

induction of the firefly luciferase activity normalised to renilla values for the stimulated versus

non-stimulated EV sample. Data are representative of three independent experiments and

data shown are from at least three individual wells from one representative experiment. Immu-

noblots underneath each graph show the expression levels of the different proteins. The posi-

tions of molecular mass markers in kDa are shown on the left and the antibodies used are

shown on the right. ns = not significant; ����P < 0.0001.

(TIF)

S1 Table. Plasmids used in this study. List of all plasmids used and their source.

(DOCX)

S2 Table. Oligonucleotides used in this study. Sequence information of all primers used.

(DOCX)

S3 Table. Primary antibodies used in this study. List of all the primary antibody dilutions

used.

(DOCX)

Acknowledgments
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