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A B S T R A C T   

Potential evapotranspiration (PET) is a crucial component of the hydrological cycle and energy 
balance. Although the Penman-Monteith (PM) model is the most widely used method to estimate 
daily PET, it requires temperature, relative humidity, solar radiation, and wind speed. In 
Thailand, the number of potential weather stations to provide the required data is limited, which 
resulted in the absence of some input variables in many locations. The objective of this study is to 
develop the revised potential evapotranspiration (RPET) model to estimate daily PET using 
Global Navigation Satellite System-derived Precipitable Water Vapor (GNSS-PWV) and temper-
ature data. The multiple linear regression analysis was used to develop and validate the RPET 
model. The performance of the RPET model along with the Global Land Evaporation Amsterdam 
Model (GLEAM v3.2 b) and the European Centre for Medium-Range Weather Forecasts 
Reanalysis-5 (ERA5-Land) products was investigated using the PM model. The results revealed 
that the RPET model showed a strong correlation with the PM model (r = 0.85, RMSE = 0.97 mm 
day− 1, RSR = 0.53, NSE = 0.72) under limited meteorological inputs. The RPET model perfor-
mance was superior when compared to GLEAM and ERA5-Land (r = 0.80, RMSE = 1.06 mm 
day− 1). Therefore, the proposed model is greatly suitable for daily PET estimation with only 
required GNSS-PWV and temperature data, and this can be implemented for drought assessment 
and water resources management.   

1. Introduction 

Evapotranspiration (ET) is one of the essential components of the water cycle, which is the combination of two processes such as 
evaporation and transpiration [1,2]. Evaporation is converting water into water vapor and remove from the evaporating surface. 
Moreover, transpiration includes the vaporization of water in plant tissues and the vapor removal to the atmosphere. Potential 
evapotranspiration (PET) is the process of water loss from the surface with good water status in the soil profile, which is affected by 
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temperature, humidity, wind, and solar radiation. It has great supporting information for comprehending climate change because it 
affects both surface runoff and water storage in the catchment. When the rates of evapotranspiration are extremely high and similar to 
the amount of precipitation, it can lead to a deficiency of water for crops [3]. Additionally, PET is also applied in water management 
and crop production [4], improving irrigation scheduling [5], and drought monitoring [6–8]. Thus, the estimation of PET is a crucial 
process for application in various research works. 

To estimate PET, several studies have investigated PET estimation using different techniques such as the eddy covariance method 
[9,10], the Penman-Monteith model [11] and satellite remote sensing [12]. The eddy covariance (EC) method is used to study energy, 
carbon dioxide and water vapor fluxes on the regional scale, which employ to estimate the PET with high temporal resolution and great 
precision. However, the instruments used for this measurement are costly and only installed in selected few locations. Thus, it is limited 
spatially, and restricted in some areas with complex terrain [13,14]. Moreover, the instrument failure and poor maintenance of the EC 
approach also resulted in missing data in long-term observations [15]. Because of these issues, the Penman-Monteith (PM) model is 
recommended as a standard and reliable method by the Food and Agriculture Organization (FAO). Although the PM model commonly 
used meteorological data, it has revealed weaknesses in the spatial coverage and required several meteorological parameters [2]. 
Satellite remote sensing has been utilized to estimate the PET in large areas by several researchers [16–20]. However, it has been 
limited by cloud cover during the wet season, moderate accuracy, and relatively low spatial and temporal resolutions [21–25]. For 
example, the MODIS Global Evapotranspiration is based on the PM equation and provided the MOD16 global evapotranspiration (ET), 
latent heat flux (LE), potential ET (PET) and potential LE (PLE) datasets in extensive areas. However, these MOD16 products have some 
drawbacks such as cloud cover, and low spatial resolution (500 m spatial resolution) [26,27]. 

The PM model is the most widely used approach, which is used to estimate the PET for water resources management [28,29], crop 
modeling [30], and drought assessment [31,32]. However, it required various meteorological parameters such as temperature, hu-
midity, radiation, and wind speed. In some cases, the lack of input parameters limits the use of the PM model because of the 
non-availability of data in many locations, particularly solar radiation, and wind speed [33]. For instance, the PET showed over-
estimation in Canada when the solar radiation data was unavailable with RMSE between 0.8 and 1.1 mm day− 1 [34]. In Thailand, this 
method has also been applied to evaluate PET. For instance, the spatial and temporal distributions of PET were analyzed to monitor 
drought conditions and study climate change at the regional level [35–37]. However, it remains the main limitation for obtaining all 
required parameters due to the number of potential weather stations restriction. In particular, solar radiation data are restricted in 
some weather stations. Therefore, this shortcoming needs to be addressed mainly in constrained meteorological data. 

Global Navigation Satellite System (GNSS) is the technology that uses signals from satellites to find locations on Earth’s surface 
[38]. Because of the development of GNSS, the GNSS network has operated to permanently acquire the GNSS signals continuously with 
high precision, known as Continuously Operating Reference Station or GNSS CORS [39]. GNSS CORS has been analyzed to retrieve the 
precipitable water vapor (PWV) by tropospheric delay in the GNSS signal [40–43]. This delay is one of the important error sources for 
GNSS positioning, e.g. satellite and receiver clock errors, which require the GNSS processing techniques to eliminate these errors [38]. 
There are basically two approaches to estimate high precision position of GNSS such as baseline positioning and Precise Point Posi-
tioning (PPP) [44]. In this research, the PPP method was selected to achieve the centimeter level positioning accuracy with required 
precise orbit and clock data [45,46]. The International GNSS Service (IGS) is responsible for providing the precise orbit and clock 
products [47]. Precipitable Water Vapor (PWV) is the vertically integrated amount of water vapor, and it is a key factor of the at-
mosphere that affects the global water cycle. GNSS-derived PWV (GNSS-PWV) has been widely applied in climate research and water 
vapor determination. In addition, it is an alternative technology that is efficiently utilized to obtain water vapor with continuous data 
and high temporal resolutions in all-weather. Furthermore, it has been applied in various research works such as hydrological 
application [48], forecasting precipitation [49–51], monitoring and estimating snow evaporation [52], predicting flash floods [53], 
assessing the PET [54,55] and evaluating the drought index [56]. In Thailand, the previous studies found the study of spatial and 
temporal variability and the validation of PWV value from GNSS observations [57–59]. The vertical distribution of water vapor and its 
spatiotemporal distribution is important in hydrological and climatological studies. However, the ground based PWV receivers are 
limited in most parts of the world. This makes challenging to apply GNSS-PWV on water balance research and related applications. 

Recently, the GNSS-derived PWV has been applied to improve the PET acquisition approach for calculating the drought monitoring 
index such as standardized precipitation evapotranspiration index (SPEI) [54–56]. Previous studies proposed models to enhance the 
accuracy of PET using the Thornthwaite (TH) and PM models difference and temperature data, e.g. revised TH (RTH) model, the 
site-based RTH (S-RTH) model, a novel ETp model over China (C-RTH) model, the high-precision PET (HPET) model and 
diurnal-provided PET values (DTH-PET). Additionally, these models were developed to overcome the accuracy of PET derived from the 
TH model and the requirement of various meteorological parameters of the PM model. However, the mentioned models were shown 
highly accurate values at specific locations. Such procedures have required evaluation in different geographic locations to fit the model 
coefficients. Consequently, this study highlights the benefit of the developed model in fitting the coefficients of the model and 
overcoming the limitations of current models to cope with the meteorological data constraint. This study aims to develop the revised 
potential evapotranspiration (RPET) model using GNSS-PWV and temperature data. The GNSS-PWV was evaluated in the one full year 
of hourly GNSS-PWV in 2020. These results were used to develop the model to estimate the PET using GNSS-PWV and temperature. 
Furthermore, the relationship among PET, PWV and temperature was analyzed to obtain the new model coefficients and evaluated the 
model performance for estimating the PET in other stations with limited meteorological data. 
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2. Materials and methods 

2.1. Study area 

The study area is located in the northeast region of Thailand (14–19 ◦N latitude, 101–106◦E longitude), a plateau from the 
northwest to the eastward. This region covers an area of 168,845 km2 that consists of 20 provinces such as Amnat Charoen, Bueng Kan, 
Buri Rum, Chaiyaphum, Kalasin, Khon Kaen, Loei, Maha Sarakham, Mukdahan, Nakhon Phanom, Nakhon Ratchasima, Nong Bua Lam 
Phu, Nong Khai, Roi Et, Sakon Nakhon, Sisaket, Surin, Ubon Ratchathani, Udon Thani and Yasothon (Fig. 1). The elevation ranges 
between 74 and 1800 m, and the prominent soil texture is sandy soil and distributed saline soils with extremely low soil fertility [60]. 
Moreover, the climate of this region is tropical. The region experiences dry weather from November to April due to the northeast 
monsoon and higher rainfall from May to October caused by the southwest monsoon. The annual precipitation is uneven from 1250 to 
2500 mm, with an average rainfall of about 1384 mm during the rainy season [61]. The annual average temperature is approximately 
26.8 ◦C [62]. The potential evapotranspiration in this region ranges between 1 and 6 mm day− 1 [63] or 1200 to 1250 mm year− 1 [35]. 
Regarding these conditions, the northeast region of Thailand was selected as the case study. Furthermore, the positions and details of 
GNSS CORS and meteorological stations used in this study were also shown in Fig. 1 and Table 1. 

2.2. Data descriptions 

In this study, the datasets of GNSS CORS and meteorological parameters of Northeastern Thailand were collected in 2020 as shown 
in Table 2. The GNSS observations were obtained from 17 permanent GNSS CORS stations of the Royal Thai Survey Development 
(RTSD), which include the original RINEX (Receiver-Independent Exchange) files with 30-s interval data. Moreover, the meteoro-
logical datasets were collected from the Hydro-Informatics Institute (HII) and the Thai Meteorological Department (TMD). Surface 
pressure, temperature and relative humidity were obtained from HII, and the sunshine duration and wind speed were collected from 
TMD. These data have been checked rigorously before the analysis. Therefore, there are six GNSS CORS of RSTD, six weather stations 
of HII and four weather stations of TMD selected from nearby GNSS CORS stations and sufficient data for model development and 
performance evaluation. 

2.3. Methodology 

Fig. 2 showed the overall methodology for the estimation of daily potential evapotranspiration. This research was divided into 
three parts. First, The GNSS observations and meteorological data were analyzed in the Precise Point Positioning (PPP) mode to obtain 

Fig. 1. Study area.  
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the Precipitable Water Vapor (PWV). Second, six weather stations of HII and four weather stations of TMD were selected to estimate 
daily PET as reference data using the PM model because of the limitation of solar radiation data in some weather stations. Finally, the 
multiple linear regression analysis was used to develop and validate the revised potential evapotranspiration (RPET) model. After that, 
the daily PET was calculated for the 11 different stations of the region using the RPET model. The model performance was also 
evaluated by comparing it to the other existing datasets. 

2.3.1. Estimation of GNSS-based precipitable water vapor 
The GNSS CORS and weather stations were selected for analyzing the PWV with a distance between them less than 20 km as shown 

in Fig. 1. In this research, the GNSS CORS were processed in Precise Point Positioning (PPP) approach to estimate Zenith Total Delay 
(ZTD) using goGPS v1.0 in MATLAB software. The goGPS-MATLAB is an advanced software for processing GNSS observations [64,65], 
which uses the PPP processing to remove the errors and provide an exact position [57,66]. The PPP method were applied to estimate 
the ZTD parameter because of the highly accurate orbit and clock products provided by the International GNSS Service (IGS) [45,47]. 
Table 3 showed the configuration for goGPS-MATLAB software in this study [67,68]. 

The Zenith Hydrostatic Delay (ZHD) was calculated by the Saastamoinen model [69] as Equation (1). 

ZHD= 2.2768×Ps / (1 − 0.00266 cos(2 ∅ ) − 0.00000028H) (1)  

where Ps is the pressure temperature (millibar), ∅ is the station latitude (radius), and H is the height of the station above sea level 
(meter). After that, the Zenith Wet Delay (ZWD) is calculated by subtracting ZTD and ZHD (ZWD = ZTD – ZHD). In addition, the ZWD is 
converted into PWV at 30s intervals by the conversion factor [40,70] as Equations (2) and (3). 

PWV= π × ZWD (2)  

π = 106 / (ρw×Rv[(k3 / Tm)] + k′2) (3)  

where π is the conversion factor computed by the mean of temperature (Tm) in Kelvin unit, the density of liquid water (ρw, 999.97 kg 
m− 3) and the constant of water vapor (Rv, 461.525 J kg K− 1). The k3 and k′2 are the physical constant with values of 3739 k2 mbar− 1 

and 22.1 k2 mbar− 1, respectively. Tm was calculated by the surface temperature (Ts) in Kelvin unit: Tm = 70.2+ 0.72× (Ts +

273.15), which is specified in the tropical zone [40,57,67]. Ts is the surface temperature (◦C) obtained from the meteorological 
stations. Moreover, meteorological data required the conversion of GMT (UTC+7) to the UTC time zone before the analysis. After the 
PWV was analyzed, the PWV data were averaged to obtain the hourly mean PWV and then converted the UTC into local time (UTC+7) 

Table 1 
List of GNSS and meteorological stations with geographic location information.  

Station codes Provinces GNSS CORS stations Coordinates Altitude (m) Weather stations code Coordinates 

1 Amnat Charoen DACR 15.944, 104.632 153 BNYM 15.862, 104.516 
2 Buriram DBRM 14.555, 102.932 185 BSKJ 14.396, 102.847 
3 Chaiyaphum PCPM 16.083, 101.803 231 NNKO 16.199, 101.932 
4 Kalasin AKSN 16.798, 104.045 173 NAKU 16.798, 104.045 
5 Khon Kaen TKK1 16.838, 102.913 382 KPEM 16.748, 102.923 
6 Khon Kaen TKK2 15.895, 102.649 197 BNPI 16.117, 102.707 
7 Loei DLEI 17.421, 101.933 282 NNPT 17.321, 102.025 
8 Loei LLEI 16.885, 101.885 237 PHKD 16.877, 101.861 
9 Mukdahan LMDH 16.547, 104.726 121 KAHN 16.497, 104.669 
10 Nakhon Phanom DNPM 16.955, 104.451 134 DMKH 17.079, 104.326 
11 Nakhon Ratchasima ENMA 14.597, 102.002 205 UDMS 14.538, 101.969 
12 Nakhon Ratchasima LNMA 15.348, 102.742 122 NGCH 15.279, 102.639 
13 Nong Bua Lamphu LNBP 17.224, 102.425 209 VLGE32 17.147, 102.332 
14 Nong Khai LNKI 17.880, 102.742 145 PTWY 17.877, 102.727 
15 Sakon Nakhon DSNK 17.305, 103.839 156 BBUA 17.373, 103.984 
16 Sisaket DSSK 15.176, 104.156 135 BNLG 15.122, 104.241 
17 Sisaket TSSK 15.105, 104.569 119 MKTR 15.105, 104.569  

Table 2 
Detailed information of the datasets used in this study.  

Name Source Format Spatial coverage Temporal resolution Temporal coverage 

GNSS CORS RTSD Point 17 stations 30-s 2020 
Surface pressure, Temperature, Relative humidity HII Point 17 stations Hourly 2020 
Sunshine duration, Wind speed TMD Point 4 stations Daily 2020 
PET GLEAM Grid 0.25◦ Daily 2020 
PET ERA5 Grid 0.1◦ Hourly 2020 

List of abbreviations. ERA5 is the European Centre for Medium-Range Weather Forecasts Reanalysis-5. GLEAM is the Global Land Evaporation 
Amsterdam Model. HII is the Hydro-Informatics Institute. RTSD is the Royal Thai Survey Development. TMD is the Thai Meteorological Department. 
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for model development. 

2.3.2. Potential evapotranspiration estimation by Penman-Monteith model 
Potential evapotranspiration (PET) was calculated based on the Penman-Monteith (PM) model by CROPWAT 8.0 for windows. 

CROPWAT 8.0 software is a computer program for calculating crop water requirements and irrigation requirements based on soil, 
climate, and crop data. Therefore, this software is selected to calculate the PET as reference data based on the PM model. The PM model 
requires five meteorological parameters such as maximum air temperature (◦C), minimum air temperature (◦C), relative humidity (%), 
sunshine duration (hours), and wind speed (m s− 1). The maximum air temperature, minimum air temperature, and relative humidity 
were collected from six HII weather stations (BBUA, BNPI, DMKH, KPEM, NAKU and NNPT) at hourly intervals. These data have then 
averaged the value from 6:00 to 12:00 h to represent the daily value matching the overpass time of Landsat-8 images. In addition, the 

Fig. 2. Overall methodology.  

Table 3 
The configuration parameters for goGPS.  

Parameters Feature/Models 

GNSS Observations GPS: L1&L2, GLONASS: G1&G2 
Sampling interval 30-s 
Antenna correction (ATX) I14.ATX 
Ocean loading FES2004 model 
Orbits and satellite clocks ESOC final products 
Ionospheric correction Ionospheric-free combination 
Tropospheric modeling Saastamoinen model from meteorological data 
Tropospheric mapping function GMF (Global Mapping Function) + MacMillan 
Satellite elevation cut-off 10◦
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daily wind speed and sunshine duration belonging to four TMD meteorological stations (353201, 356301, 381201 and 381301) were 
also used to calculate the PET. The PM model can be calculated the daily PET as Equation (4) [2,29]. 

PET= [0.408Δ(Rn − G)+ γ(900 /T+ 273)u2 (es − ea)] / [Δ+ γ(1+ 0.34u2)] (4)  

where Rn is net radiation at the crop surface (MJ m− 2 day− 1), G is soil heat flux density (MJ m− 2 day− 1), γ is the psychometric constant 
(kPa ◦C− 1), T is the air temperature at 2 m height (◦C), u2 is the average wind speed at 2-m height (m s− 1), es is saturated vapor pressure 
(kPa), ea is the actual vapor pressure (kPa), (es – ea) is saturated vapor pressure deficit (kPa), and Δ is a slope vapor pressure curve (kPa 
◦C− 1). 

2.3.3. Model development and performance evaluation 
In this study, the new model for the estimation of PET is developed by GNSS-PWV and temperature. GNSS-PWV is similar to surface 

evapotranspiration, and temperature is a key parameter affecting the PET [54,56]. Six GNSS CORS stations and nearby weather 
stations were selected to estimate the PET (n = 2035). These data were divided into two groups for model development and per-
formance evaluation. After that, the functional relationship among PET, PWV and temperature was analyzed to fit the model co-
efficients by 673 data (1/3) using multiple linear regression. Consequently, this paper proposed a revised potential evapotranspiration 
(RPET) model as Equation (5).  

RPET = f(PWV,T) = b0 + b1 × PWV + b2 × T                                                                                                                            (5) 

where b0, b1 and b2 are the model coefficients, which can be estimated using multiple linear regression. PWV is the daily mean PWV 
(mm). T is the daily mean temperature (◦C), and RPET is the daily potential evapotranspiration. 

The performance of the proposed RPET model was evaluated using the 1362 other PET, PWV and temperature data (2/3). Per-
formance evaluation is analyzed to know the reliability of the proposed model. The correlation coefficient (r), the root mean square 
error (RMSE), the RMSE-observations of the standard deviation ratio (RSR) and the Nash-Sutcliffe efficiency (NSE) were selected as 
statistical indicators to evaluate the strength of relationship and model performance in this study [71,72] as Equations (6)–(9). 

r= n
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NSE= 1 −
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i − Ysim
i

)2

/
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i=1

(
Yobs

i − Ymean)2 (9)  

where Yobs
i ,Ysim

i , and Ymean are the observed PET, the simulated PET, and the mean of observed PET data, respectively, and n is the total 
number of observations. 

Fig. 3. Daily precipitable water vapor at different GNSS CORS stations of Northeastern Thailand in 2020.  
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After the proposed RPET model had evaluated the performance, the estimation of PET was calculated for 11 other GNSS CORS 
stations with local meteorological data. These could apply the RPET model using GNSS-PWV and the temperature data. Finally, the 
outputs showed the daily PET of the 17 GNSS CORS stations in 2020 in the case study of Northeastern Thailand. Furthermore, the 
performance evaluation of the predicted RPET and other existing satellite data was studied to fit in context with the others proposed at 
different spatial scales and formulations. The Global Land Evaporation Amsterdam Model (GLEAM v3.2 b) and the European Centre for 
Medium-Range Weather Forecasts Reanalysis-5 (ERA5-Land) products were selected because of well performance in estimating the 
gridded PET [73]. Both products are gridded PET datasets, which are used to estimate the daily PET with spatial resolutions of 0.25◦ for 
GLEAM and 0.1◦ for ERA5-Land. Moreover, the Priestly-Taylor (PT) and Penman-Monteith (PM) approaches are used to estimate the 
PET of the GLEAM and ERA5-Land, respectively. The PET data of GLEAM (v3.2 b) was downloaded from the website (https://www. 
gleam.eu/) with daily temporal resolution, and the PET data of ERA5-Land was derived from the website with hourly temporal res-
olution (https://data.bris.ac.uk/data/dataset/qb8ujazzda0s2aykkv0oq0ctp). In this paper, the specific locations of three GNSS CORS 
stations (DSSK, LMDH, and TSSK) were used to extract the corresponding satellite pixels. The comparison of the different datasets with 
the daily PET estimated by PM model was evaluated the performance of the proposed model. In addition, the evaluation was conducted 
based on the correlation coefficient (r) and the estimated error (RMSE). 

3. Results 

3.1. PWV characteristics 

Fig. 3 showed the GNSS-derived PWV between January and December 2020 from 17 stations in Northeastern Thailand. The time 
series of GNSS-PWV were averaged at the daily interval. The results showed that the PWV varied from 4.2 to 68.5 mm for 2020. The 
overall mean daily PWV was 42.9 mm day− 1. The PWV showed fluctuating values throughout the year. The maximum PWV peaked in 
mid-May to mid-October (rainy season), and the minimum PWV occurred from mid-October to mid-May (winter and summer seasons). 
In addition, the PWV data were missing in some periods, which could be caused by the absence of GNSS observations and meteo-
rological parameters. Therefore, the missing data were not used in the model development. Furthermore, the daily PWV at the TKK1 
and DSNK stations were found to have relatively low PWV values (average PWV = 35.4 mm) compared to other stations. This is 
influenced by the elevation of the station location. The average PWV values decrease when the altitude rises [67]. However, the mean 
daily PWV was high (average PWV = 45.2 mm) at the LMDH, LNMA and TSSK stations with altitude decreases (less than 130 m). In 
addition, the other stations were shown relatively high PWV with 43.6 mm of average PWV, which include the AKSN, DACR, DBRM, 
DLEI, DNPM, DSSK, ENMA, LLEI, LNBP, LNKI, PCPM and TKK2 stations. Moreover, GNSS-PWV and surface evapotranspiration are 
related. Thus, GNSS-PWV is utilized for the estimation of PET. GNSS-PWV of six GNSS CORS stations were selected for developing the 
model and performance evaluation because of the sufficient data in these stations. In addition, the PWV of 11 different stations were 
used to estimate the PET of 11 other stations. 

3.2. Revised potential evapotranspiration (RPET) model development and performance evaluation 

When some meteorological variables were missing because of the limited number of potential weather stations for daily PET 
estimation, the revised potential ET (RPET) model was developed in this study and evaluated the model performance. Six GNSS CORS 
of RSTD, six weather stations of HII and four weather stations of TMD were chosen from nearby GNSS CORS stations for model 
development. The PWV and temperature used in this study were shown in Fig. 4. The PWV varied at each individual station, which 
showed the ranges between 2.9 and 67.5 mm for PWV and 16.0–38.7 ◦C for temperature. The mean PWV and temperature was 40.1 
mm and 27.5 ◦C, respectively. The relationship between PET, PWV and temperature was investigated at six GNSS CORS stations as 
depicted in Fig. 5a and b. It could be observed that a negative correlation between PWV and PET (r = − 0.35), and a positive correlation 
between temperature and PET (r = 0.58). It was noted, however, that the contribution of PWV to PET was relatively small compared to 
that of temperature. Nevertheless, the PWV should not be overlooked in the estimation of PET, as it may play a role in determining the 
relative influence of the two variables. Therefore, multiple linear regression was used to analyze the model coefficients by the daily 

Fig. 4. Box plots of the PWV and temperature data at six selected stations for model development.  
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PET based on PM model, PWV and temperature data. The revised potential evapotranspiration (RPET) model is proposed in this paper 
with R2 = 0.83 as the following equation: RPET = − 4.345 – 0.099 × PWV + 0.498 × T, where PWV is the mean precipitable water 
vapor during 6:00 to 12:00 h (mm) and T is the mean temperature during 6:00 to 12:00 h (◦C). The RPET model, which is used to 
estimate PET in a specific region, may not be applicable or accurate in other geographic locations. Therefore, it is important to modify 
the PET estimation model when considering different regions. 

Apart from the model development, the performance of the proposed RPET model was evaluated using other PET, PWV and 
temperature data (two-thirds). The time-series of the observed PM model and predicted RPET model for daily PET were plotted against 

Fig. 5. Relationship between (a) PWV and PET and (b) temperature and PET at six GNSS CORS stations of Northeastern Thailand in 2020.  

Fig. 6. Comparison of observed PM model and predicted RPET model time-series for daily PET at different GNSS CORS stations: (a) AKSN, (b) DLEI, 
(c) DNPM, (d) DSNK, (e) TKK1, and (f) TKK2. 
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the day of the year (DOY) at different GNSS CORS stations (Fig. 6a–f). The results revealed that the relationship between PET derived 
from the RPET and the PM models showed a strong correlation (r = 0.85) and good accuracy with RSR = 0.53 and NSE = 0.72. In 
addition, the statistical result found that the error of the RPET model was 0.97 mm day− 1 as shown in Fig. 7 and Table 4. Therefore, the 
results confirmed that the proposed RPET model showed satisfactory performance and had great potential for estimating the daily PET 
of other regional stations. 

3.3. Daily potential evapotranspiration estimation by RPET model 

Fig. 8 showed the variation of daily PET from 17 GNSS CORS stations in Northeastern Thailand in 2020. Daily PET was evaluated 
from two methods. GNSS-PWV of six GNSS CORS stations were derived from the PM model (AKSN, DLEI, DNPM, DSNK, TKK1 and 
TKK2), whereas the PWV of 11 other GNSS CORS stations were estimated from the RPET model (DACR, DBRM, DSSK, ENMA, LLEI, 
LMDH, LNBP, LNKI, LNMA, PCPM and TSSK). The variation trends of daily PET from the RPET model showed similarities to the PM 
model. Therefore, the RPET model developed in this study was greatly suitable for estimating daily PET. The PET showed fluctuation 
throughout the year, which was affected by the seasonal variation [74] and elevation of GNSS CORS station locations [75,76]. These 
components directly affected the environmental and biological factors for PET estimation such as net radiation, vapor pressure deficit, 
surface conductance, leaf area index, air temperature and soil water content [77]. The maximum daily PET was 13.2 mm day− 1, found 
in July at the TKK1 station. The minimum daily PET was 0.3 mm day− 1, which occurred in March at the LMDH station. In addition, the 
overall mean daily PET was 5.4 mm day− 1. The PET showed gradually increased from January to the highest value in April (summer) 
and then decreased to the lowest value in December (winter). Such results of PET were also similar to the findings of Vudhivanich and 
Zheng [35,63]. 

To investigate the performance of the RPET model, the daily PET of three datasets (RPET model, GLEAM, and ERA5-Land) was 
compared as the input of the PM model at different GNSS CORS stations as shown in Fig. 9a–c. The results demonstrated that the PET 
values estimated by the RPET model showed relatively corresponding to the PM model, GLEAM and ERA5-Land. The PET values were 
high during the summer and winter seasons and low in the rainy season. However, both GLEAM and ERA5-Land products showed an 
underestimation of PET values in all stations. Fig. 10 showed the scatter plot of the three datasets against the PM model. The RPET 
model estimated PET was closer to the PM model than the other datasets. In addition, it had good performance with r = 0.80 and RMSE 
1.06 mm day− 1 (n = 1008, Fig. 10a) and performed greater than the ERA5-Land products (r = 0.74, RMSE = 1.73, n = 1008) and the 
GLEAM dataset (r = 0.69, RMSE = 2.57, n = 1008). However, the ERA5-Land products perform better than the GLEAM dataset in term 
of r and RMSE values as shown in Fig. 10b and c. 

4. Discussions 

In this study, the revised PET (RPET) model is proposed to overcome the PET estimation in the case of lacking meteorological data 
in some weather stations. The RPET model is evaluated by GNSS-based PWV and temperature since both parameters are closely related 
to surface evapotranspiration [54,56]. Therefore, the GNSS-PWV were evaluated as the initial value for the RPET model and then 
confirmed the variation trends by comparing the other studies in different years. The average PWV was high in mid-May to 
mid-October (rainy season) and low in mid-October to mid-May (summer and winter seasons); a similar finding was reported by 
Meunram and Satirapod [57], and Buntoung et al. [78]. Meunram and Satirapod reported that the amount of PWV increased between 
the day of year 100–150 because of the effect of transforming the season from the northeast monsoon season to the southwest monsoon 
season. However, a low amount of PWV was shown in the summer and winter seasons (dry season) due to the influence of the northeast 
monsoon that resulted in the cool and dry weather [57]. 

In the PET estimation model, GNSS-PWV has been applied rapidly for PET estimation and drought monitoring. Several researchers 
developed models for estimating PET and drought monitoring. Zhao et al. proposed the revised Thornwaite (RTH) and a high-precision 
PET (HPET) models using the PWV and temperature data for calculating the PET and improving the drought monitoring index over the 

Fig. 7. Scatter plot of daily PET derived from the PM and RPET model.  
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Loess Plateau of China [55,56]. In addition, Ma et al. developed the site-based revised Thornwaite (S-RTH) model and an RTH model 
over China (C-RTH) with high spatial resolution over the whole of China [54]. The mentioned models used the PET difference or ET 
residual as reference data to develop the models. The PET difference was calculated by subtraction of the TH and PM models to 
overcome the low precision of the Thornwaite (TH) model and the several input parameters of the Penman-Monteith (PM) model 
[54–56]. These previous models have shown satisfactory performance for estimating monthly PET difference in China with the average 
root mean square (RMS) of 12.3 mm for the RTH model, 10.7 mm for the S-RTH model and 8.0 mm for the HPET model. However, the 
previous models were proposed in the specific GNSS CORS stations and related to the height of each GNSS CORS station. As a result, the 
PET estimation model should be improved when the geographical locations are changed [55]. This study proposed a new approach 
named the revised potential evapotranspiration (RPET) model to estimate daily PET for tropical regions using GNSS-PWV and tem-
perature, which is a similar approach to the prior studies. The previous finding relied on the PET difference to develop the models, 
while this study utilized only the PET derived from the PM model as reference data to address the issue of missing meteorological 
parameters. The study found a moderate positive correlation between PET and temperature and a weak correlation between PET and 
GNSS-PWV. However, the use of both GNSS-PWV and temperature showed good performance for estimating daily PET with the RMSE 
of 1.06 mm day− 1 when compared to the PM model. 

To evaluate the RPET model performance in comparison to the others proposed at multiple scales and formulations, the predicted 
RPET and other available satellite data were compared. Although both GLEAM and ERA-5 Land datasets could estimate the gridded 
PET with high temporal resolution and moderate accuracy, these gridded PET datasets may not ensure reliability to represent the 
specific geographical locations. The influences of heterogeneity on the PET grid data and the restrictions of geography, climate and 
satellite inversion algorithms could be the main cause of the uncertainty in the gridded PET estimation [79,80]. Therefore, a grid-based 
model should be developed using the proposed RPET model as ground-based GNSS observations-driven method for improving the 
accuracy of gridded PET datasets in the regional scale. 

5. Conclusion 

In this research, the daily potential evapotranspiration (PET) was estimated through Precipitable Water Vapor (PWV) derived from 
the GNSS CORS in the case study of the northeast region of Thailand. The PWV values were obtained by analyzing GNSS CORS, which 
was evaluated by surface pressure, temperature, and humidity. The PET was assessed and considered as reference data using the PM 
model by humidity, temperature, wind speed and solar radiation in some meteorological stations with sufficient data. The revised PET 
(RPET) model was developed to fit the model coefficients by the PWV, PET and temperature data using multiple linear regression 
analysis. The performance of the proposed model was evaluated using statistical indicators and then calculated the daily PET of other 
stations by the RPET model. The results reveal that the RPET model was satisfactory for estimating the daily PET with an error of 0.97 
mm day− 1. The PM model-based daily PET showed similar trends compared with the estimated PET by the RPET model. These results 
indicated that the proposed RPET model has the potential to evaluate the daily PET with high temporal resolution in all weather 
conditions. This technique can overcome the meteorological data constraint in some weather stations [34,81,82]. Moreover, it 

Table 4 
Model performance of the RPET model.   

Number of Sample (n) r RMSE (mm d− 1) RSR NSE 

Value 1362 0.85 0.97 0.53 0.72 
Performance – strong – good good  

Fig. 8. Daily potential evapotranspiration of 17 GNSS CORS stations in Northeastern Thailand.  
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performs very well using only the GNSS-PWV and temperature data when compared to the PM method with the correlation coefficient 
higher than 0.85. However, such a model can be utilized for specific GNSS CORS stations. The application of this model for spatial PET 
is recommended. In a further study, the grid-based PET can be analyzed to obtain high spatial and temporal resolutions by the 
interpolation and extrapolation techniques [80,83]. Additionally, it is possible to apply the presented model in various research areas 
such as climate research, agricultural water management, irrigation scheduling and drought assessment. The study on agricultural 
drought indices can be performed based on the proposed model for improving the accuracy and spatial-temporal resolutions of drought 
monitoring. Furthermore, more datasets of GNSS-PWV and meteorological data are required to develop near real-time applications for 
flood and drought monitoring [53,84]. Therefore, the developed model is a potential alternative approach to estimate the daily PET 
and beneficial to climate and agricultural research works for alleviating the adverse impacts by global warming and extreme weather 
events. 
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