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Background: Hepatocellular carcinoma (HCC) is a type of primary liver tumor with
poor prognosis and high mortality, and its molecular mechanism remains incompletely
understood. This study aimed to use bioinformatics technology to identify differentially
expressed genes (DEGs) in HCC pathogenesis, hoping to identify novel biomarkers or
potential therapeutic targets for HCC research.

Methods: The bioinformatics analysis of our research mostly involved the following two
datasets: Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA).
First, we screened DEGs based on the R packages (limma and edgeR). Using the
DAVID database, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses of DEGs were carried out. Next, the protein-
protein interaction (PPI) network of the DEGs was built in the STRING database. Then,
hub genes were screened through the cytoHubba plug-in, followed by verification
using the GEPIA and Oncomine databases. We demonstrated differences in levels
of the protein in hub genes using the Human Protein Atlas (HPA) database. Finally,
the hub genes prognostic values were analyzed by the GEPIA database. Additionally,
using the Comparative Toxicogenomics Database (CTD), we constructed the drug-gene
interaction network.

Results: We ended up with 763 DEGs, including 247 upregulated and 516
downregulated DEGs, that were mainly enriched in the epoxygenase P450
pathway, oxidation-reduction process, and metabolism-related pathways. Through the
constructed PPI network, it can be concluded that the P53 signaling pathway and
the cell cycle are the most obvious in module analysis. From the PPI, we filtered out
eight hub genes, and these genes were significantly upregulated in HCC samples,
findings consistent with the expression validation results. Additionally, survival analysis
showed that high level gene expression of CDC20, CDK1, MAD2L1, BUB1, BUB1B,
CCNB1, and CCNA2 were connected with the poor overall survival of HCC patients.
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Toxicogenomics analysis showed that only topotecan, oxaliplatin, and azathioprine
could reduce the gene expression levels of all seven hub genes.

Conclusion: The present study screened out the key genes and pathways that were
related to HCC pathogenesis, which could provide new insight for the future molecularly
targeted therapy and prognosis evaluation of HCC.

Keywords: hepatocellular carcinoma, bioinformatics, differentially expressed genes, survival, biomarker, GEO,
TCGA

INTRODUCTION

Accounting for 75-85% of all primary liver cancer, hepatocellular
carcinoma (HCC) is the main histological classification of liver
cancer, which is the fourth most frequent cause of cancer-related
death globally (Harris et al., 2019; Yang J.D. et al., 2019). The
liver is the second most common cancer-prone organ, after the
lungs, as was shown by the recent cancer study in China (Fu
and Wang, 2018). On the whole, the estimated morbidity of
HCC per 100,000 world standard population is 40.0 in males
and 15.3 in females (Zhu et al., 2016). Major risk factors for
HCC include genetic predisposition, epigenetic variation, chronic
hepatitis B infection, hepatitis C virus infection, smoking, obesity,
aflatoxin exposure, and diabetes (Puszyk et al., 2013; Baecker
et al., 2018). Transplantation is the most useful way to treat HCC;
however, after the transplantation process, the tumor recurrence
and metastasis rates are high (Au and Chok, 2018; Aufhauser
et al., 2018). More than 70% of patients at advanced stage
are not suitable for transplantation, whether due to the tumor
burden or liver dysfunction (Wang et al., 2019). Therefore, it is
urgent to recognize new biomarkers that can act as molecular
targets for therapy, and predictors of the prognosis of HCC.
With the development of times and technological progress,
microarray and high-throughput sequencing technologies have
matured and become more reliable, and public databases are
improving, such as the Gene Expression Omnibus (GEO)1

and the Cancer Genome Atlas (TCGA)2. The advancement
of microarray (Yang X. et al., 2018) and high throughput
sequencing technologies (Weinstein et al., 2013) has provided
a highly efficient tools to explore key genetic or epigenetic
changes in disease to identify biological markers that can be
applied to disease diagnosis, therapy, and prognosis (Weinstein
et al., 2013; Wang et al., 2018; Yang X. et al., 2018; Li et al.,
2019). Additionally, the application of integrated bioinformatics
methods in cancer research can solve the problem of different
results due to errors caused by different technical platforms
or small sample size, thus finding much valuable biological
information (Liu X. et al., 2018; Deng et al., 2019; Yan et al., 2019;
Yang K. et al., 2019).

In this research, by analyzing and distinguishing genes in
human HCC samples and normal hepatocyte samples using
TCGA and GEO datasets, we firstly screened out differentially
expressed genes (DEGs). Then, GO and KEGG pathway
enrichment analyses were applied in the further exploration of

1https://www.ncbi.nlm.nih.gov/geo/
2http://tcga-data.nci.nih.gov

the main biological functions, which regulated by the DEGs. After
that, the final step is to utilize a protein–protein interaction (PPI)
network, survival analyses and drug-gene interaction network
analyses to ascertain crucial genes and pathways which affecting
the pathogenic mechanism and prognosis of HCC patients.

MATERIALS AND METHODS

Gene Expression Datasets
The microarray gene expression dataset of GSE121248, which
comprises 70 hepatocellular carcinoma samples and 37 normal
liver samples, was obtained from the GEO website and exploited
as discovery dataset to identify DEGs. The included dataset
met the following criteria: (1) dataset included human HCC
samples and normal liver samples. (2) they contained at least ten
samples. (3) dataset was obtained from the Affymetrix Human
Genome U133 Plus 2.0 Array [HG-U133_Plus_2] microarray
platform. The raw RNA sequencing data, which comprises 374
HCC samples and 50 normal liver tissue samples, was selected
from the TCGA liver hepatocellular carcinoma (TCGA-LIHC)
dataset and used as a validation dataset.

Identification of DEGs
We used the R language to analyze the original CEL files of the
GSE121248 dataset.

The preprocessing procedures: using the “affy” R package
to RMA background correction, Log2conversion, Quantile
normalization, and Median polish algorithm summarization
(Bolstad et al., 2003; Gautier et al., 2004). Using the bioconductor
annotation package to convert microarray data probes into gene
symbol. If multiple probes were mapped to a gene symbol, take
the average value as the final expression value of the gene (Zhang
et al., 2018). Next, | log2fold change (FC)| > 1 and adjusted p
value <0.05 were used to select the DEGs between tumor and
normal tissues using the LIMMA package (Ritchie et al., 2015;
Nagy et al., 2018).

DEGs Validation Using the TCGA Dataset
The DEGs from the GSE121248 dataset were validated using the
TCGA-LIHC dataset.

The edgeR package of R software was applied to normalize
and analyze the TCGA-LIHC dataset (Robinson et al., 2010). |
log2fold change (FC)| > 1 and p-value <0.05 were considered
significant differences. The overlapping DEGs between
GSE121248 and TCGA-LIHC datasets were clustered using the

Frontiers in Genetics | www.frontiersin.org 2 March 2021 | Volume 12 | Article 571231

https://www.ncbi.nlm.nih.gov/geo/
http://tcga-data.nci.nih.gov
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-571231 March 3, 2021 Time: 20:0 # 3

Li et al. Potential Biomarkers for Hepatocellular Carcinoma

pheatmap and were retained for further study. The overlapping
DEGs were analyzed using VennDiagram and ggplot2 packages
in R software to draw Venn diagrams and volcano plots, to
visualize the identified DEGs (Chen and Boutros, 2011).

Functional Enrichment Analysis of
Overlapping DEGs
We used the Database for Annotation, Visualization and
Integrated Discovery (DAVID version 6.8)3 to elucidate potential
GO function [including biological processes (BP), molecular
functions (MF), cellular components (CC)] and signaling
pathways (KEGG) related to the overlapping DEGs (Dennis et al.,
2003; Kanehisa et al., 2017). We used threshold p-value 0.05.

Protein–Protein Interaction Network
Construction and Module Analysis
The Search Tool for the Retrieval of Interacting Genes (STRING
version 11)4 database was one of the largest online databases
of known protein-protein interactions covering the largest
number of species (Szklarczyk et al., 2017). The parameter
of interactions was set with a confidence score >0.7. The
confidence score refers to the strength of data support in terms
of the thickness of the line. Confidence score >0.7 means high
confidence. Overlapping DEGs were entered into Cytoscape
software (version 3.7.2)5 to construct and analyze PPI network
(Shannon et al., 2003). Moreover, the Cytoscape plug-in MCODE
was used to screen crucial clustering modules in the entire
network (Bader and Hogue, 2003).

Identification of Hub Genes
The Cytoscape plug-in CytoHubba was used to calculate the
protein node degree (Chin et al., 2014; Cao et al., 2018). The top
three methods [(Maximal Clique Centrality (MCC), Maximum
Neighborhood Component (MNC), and Density of Maximum
Neighborhood Component (DMNC)] were selected to provide
the analyzed results. Each method displayed their top ten genes.
A Venn diagram was generated to visualize common hub genes
based on these three methods.

Expression Analysis of Hub Genes in
Multiple Databases
The hub genes mRNA expression levels were finally validated
in two databases, Gene Expression Profiling Interactive Analysis
(GEPIA)6 (Tang et al., 2017) and Oncomine. Oncomine
(Version4.5)7 is an online database that has the comprehensive
cancer mutation spectrum, gene expression data and related
clinical information, which can be used to discover new
biomarkers or new therapeutic targets (Rhodes et al., 2004). In
addition to detecting the mRNA expression levels of the hub
genes, we also investigated the protein levels in HCC tissues and

3https://david.ncifcrf.gov/
4http://string-db.org/
5http://www.cytoscape.org/
6http://gepia.cancer-pku.cn/
7https://www.oncomine.org/

normal liver tissues using the human protein atlas database (HPA
v19)8 (Thul and Lindskog, 2018).

Survival Analysis
Gene Expression Profiling Interactive Analysis is a newly
developed online database for cancer and normal gene expression
profiling. In the current study, the overall survival of each hub
gene was analyzed using LIHC dataset in the GEPIA database.
The patients were divided into two groups (the high- and low-
expression group) according to the median expression level of
each hub gene. This division method could evaluate the difference
in overall survival probability between these two groups. We were
drawn the overall survival curves of each hub gene using the
GEPIA database, with a p-value <0.05.

Drug-Gene Interaction Network Analysis
The Comparative Toxicogenomics Database (CTD)9, an online
database providing information on the interactions between gene
products and chemotherapeutic drugs, and their relationships
to diseases) was used to construct the chemotherapeutic drug-
gene interaction network (Davis et al., 2019). The networks were
visualized by Cytoscape software 3.7.210.

RESULTS

Identification of DEGs
The gene expression dataset of GSE121248, which contains 70
LIHC samples and 37 normal liver samples, was analyzed in the
limma package using | logFC| > 1 and corrected p-value <0.05 of
R software. In total, 1,518 DEGs (557 high expression genes and
961 low expression genes) were identified between HCC tissue
samples and normal liver tissue samples. The volcano map and
heatmap of all DEGs are shown in Figures 1A,C. Additionally,
compared with normal liver tissues in the TCGA-LIHC dataset,
2,898 DEGs were obtained in LIHC tissues, comprising 1,299
upregulated genes and 1,599 downregulated genes (Figure 1B).
Furthermore, 763 overlapping DEGs (247 high expression genes
and 516 low expression genes) were identified between the
GSE121248 and TCGA-LIHC datasets using a Venn diagram
(Figure 1D). Figure 1E shows clustering analysis results of the
763 overlapping DEGs based on the TCGA-LIHC dataset.

Enrichment Analysis of Overlapping
DEGs
We conducted GO and KEGG pathway enrichment analysis to
further elucidate potential biological functions associated with
the 763 overlapping DEGs of HCC. The GO analysis results
of the DEGs were classified into molecular functions, biological
processes and cellular components. For molecular functions, the
overlapping DEGs were mainly associated with oxidoreductase
activity, monooxygenase activity, heme binding and oxygen
binding (Figure 2A). In the BP category, the epoxygenase P450

8https://www.proteinatlas.org/
9http://ctdbase.org/
10https://cytoscape.org/
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FIGURE 1 | Identification of DEGs. (A,B) show the volcano maps of DEGs for (A) GSE121248 dataset, (B) TCGA-LIHC dataset. (C) The heatmap of the top 50
DEGs in dataset GSE121248. The green color and red color in the heatmap indicate low and high expression of DEGs. (D) Venn diagrams of the DEGs between the
GSE121248 dataset and the TCGA-LIHC dataset. (E) The heatmap of the top 100 overlapping DEGs according to the value of | logFC| in TCGA-LIHC dataset. The
color in heatmaps from green to red shows the progression from down-regulation to up-regulation.
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FIGURE 2 | Enrichment analysis of the overlapping DEGs. (A–C) illustrate the GO enrichment analysis results: (A) molecular function, (B) biological process and (C)
cellular components. (D) KEGG pathway enrichment analysis results.

pathway, oxidation-reduction process, response to drug and
cell division were enriched (Figure 2B). In the CC category,
they were enriched in extracellular regions, such as extracellular
exosomes and the extracellular space (Figure 2C). The pathway
enrichment analysis results showed that overlapping DEGs
mainly participated in multiple metabolism pathways, such as
fatty acid degradation, glycine, serine and threonine metabolism,
and tryptophan metabolism (Figure 2D).

PPI Network Establishment and Module
Analysis
To further reveal the potential relationships between proteins
encoded by DEGs, a PPI network was constructed using
the STRING database. Network analysis of overlapping DEGs
revealed 526 nodes and 4,173 edges in the PPI network.
Additionally, we conducted module analysis using the MCODE
plug-in to detect crucial clustering modules. In total, 29 clusters

were obtained in MCODE, and the top three modules with
the highest scores were selected as hub modules. Module 1
contained 63 nodes and 1,752 edges with the highest score of
56.516 and was mainly enriched in cell cycle, oocyte meiosis, P53
signaling pathway and progesterone-mediated oocyte maturation
(Figure 3A). Module 2 contained 17 nodes and 80 edges with a
score of 10 and mainly participated in PPAR signaling pathway
and glycerolipid metabolism (Figure 3B). Module 3 comprised
28 nodes and 100 edges with a score of 7.407 and was mainly
implicated in Chemical carcinogenesis, Peroxisome, Metabolic
pathways and Drug metabolism cytochrome P450 (Figure 3C).

Hub Genes Selection From the PPI
Network
The Cytoscape plug-in cytoHubba including the top three
algorithms (MCC, MNC, and DMNC) was applied to select hub
genes, and the top 10 genes were selected by each of the three
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FIGURE 3 | Venn diagram and the top three clustering modules of PPI network. (A) Module 1 with an MCODE score of 56.5. The red nodes are the hub genes.
(B) Module 2 obtained a score of 10.0 from MCODE. (C) Module 3 with an MCODE score of 7.4. Edges represent the protein-protein associations. The higher the
module score, the more important the module is in the PPI network. (D) Venn diagrams of the hub genes between three methods (MNC, MCC, and DMNC).

methods. The Venn diagram identified eight overlapping hub
genes based on these three methods (Figure 3D): cell division
cycle protein 20 homolog (CDC20), cyclin-dependent kinase1
(CDK1), mitotic spindle assembly checkpoint protein MAD2A
(MAD2L1), threonine-protein kinase BUB1 (BUB1), threonine-
protein kinase BUB1 beta (BUB1B), mitotic-specific cyclin-B1
(CCNB1), mitotic-specific cyclin-B2 (CCNB2) and cyclin-A2
(CCNA2). These eight hub genes were used for further analysis.

Validation of Hub Genes in Multiple
Databases
Oncomine and GEPIA were applied to validate the differentially
expression levels of 8 hub genes between HCC tissues and
normal liver tissues in HCC. These eight hub genes were
all remarkably overexpressed in HCC samples (Figure 4).
Moreover, a summary of hub genes in multiple tumors

indicated that hub genes were significantly overexpressed in
HCC (Figure 5). Furthermore, we also investigated the protein
expression levels in HCC tissue samples and normal liver
tissue samples using the human protein atlas database. Because
the HPA dataset could not provide immunohistochemical
information on BUB1 and BUB1B, we showed the results of
the remaining six staining pairs in Figure 6. The protein
expression levels of hub genes were agreed with the mRNA
expression results, and most genes were overexpressed in
HCC tissue (Figure 7). These findings indicate that the
overexpression of these hub genes may play a critical role
in HCC mechanism.

Survival Analysis
We further used the GEPIA database to analyze the prognostic
value of these 8 hub genes in HCC patients. The survival analysis

Frontiers in Genetics | www.frontiersin.org 6 March 2021 | Volume 12 | Article 571231

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-571231 March 3, 2021 Time: 20:0 # 7

Li et al. Potential Biomarkers for Hepatocellular Carcinoma

FIGURE 4 | Validation of eight hub genes mRNA expression levels in HCC tissues vs. normal liver tissues using the GEPIA database (A–H). The red color represents
the tumor samples and the gray color represents the normal liver samples.

of patients in the GEPIA database was based on the TCGA-
LIHC data set. We used threshold p-value 0.05 and calculated
the hazards ratio based on Cox PH Model (Xu et al., 2020).
The relatively higher expression of CDC20 (HR = 2.3; P = 3.8e-
06), CDK1 (HR = 2; P = 0.00017), MAD2L1 (HR = 1.7;
P = 0.0047), BUB1 (HR = 1.8; P = 0.001), BUBIB (HR = 1.7;
P = 0.0028), CCNB1 (HR = 2; P = 0.00015), and CCNA2
(HR = 1.7; P = 0.0037) were associated with a poor prognosis
in HCC patients, while only CCNB2 (HR = 1.4; P = 0.052)
showed no statistical significance in the overall survival of
patients (Figure 6).

Drug-Gene Interaction Network Analysis
To investigate the potential information on the interactions
between hub genes and cancer chemotherapeutics drugs, we used
the CTD database to construct chemotherapeutics drug-gene
interaction network. Various drugs could influence the mRNA
expression level of seven hub genes, namely, CDC20, CDK1,
MAD2L1, CCNA2, CCNB1, BUB1, and BUB1B (Figure 8).
However, only topotecan, oxaliplatin and azathioprine could
reduce expression levels of all seven hub genes.

DISCUSSION

Hepatocellular carcinoma is a type of primary liver tumor
with poor prognosis and high mortality, and the progress in

its diagnosis and treatment has always attracted widespread
attention from researchers around the world. Because the high
recurrence and metastasis rate of HCC remains a challenge,
identifying new molecules as biological markers is urgently
needed. Integrated bioinformatics analysis, which focuses on
screening of DEGs, discovering hub node of network-based
and doing survival analysis, which has been diffusely used to
recognize latent biological markers related to cancer diagnosis,
therapy, and prognosis estimation. In recent years, increasing
researches have demonstrated that abnormal gene expression is
a factor in the tumorigenesis and development, so it is feasible
to screen differential genes as biomarkers to assist diagnosis
and treatment. In 2017, by developing an integrated approach
including GO and KEGG analysis, PPI network creation, hub
gene identification, and overall survival analysis, Li L. et al. (2017)
picked out 16 hub genes for HCC from three GEO datasets, five
of which may be playing a part in the occurrence, development,
invasion, metastasis or recurrence of HCC. In 2018, Zhang L.
et al. (2018) used bioinformatics methods to select 10 genes
from the GEO dataset GSE64041 for the identification of hub
genes and pathways of HCC. Gu et al. (2020) recognized 13
crucial genes correlated with progression and prognosis of HCC
from the TCGA-LIHC dataset by weighted gene coexpression
network analysis. Compared with previous similar studies, our
study not only integrated a large sample size of mRNA expression
data from the GEO database but also analyzed RNA sequencing
result and clinical data from the TCGA-LIHC database to screen
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FIGURE 5 | An summary of mRNA expression results of 8 hub genes in multiple tumors using the Oncomine database. The numbers in colored cells show the
quantities of datasets with high (red) or low (blue) mRNA expression of the hub genes.

out potential hub genes in HCC. And in the second place, this
study validated the DEGs through multiple databases. Finally, we
explored the relationship between seven hub genes and existing
drugs for cancer therapy, which may provide some guidance for
the molecular targeting therapy of HCC in the future.

In our research, DEGs in HCC based on the GEO expression
profile of GSE121248 (70 HCC samples and 37 normal samples)
and TCGA-LIHC RNA sequencing data (374 HCC samples
and 50 normal samples) were identified by bioinformatics
analysis. In total, 763 significantly robust DEGs, including
247 upregulated DEGs and 516 downregulated DEGs, were
identified. The enrichment analysis results of GO indicated
that the DEGs were mostly relevant to “oxidoreductase
activity, acting on paired donors,” “monooxygenase activity,”
“arachidonic acid epoxygenase activity,” “oxidation-reduction
process,” “epoxygenase P450 pathway,” “response to drug,”
“extracellular exosome,” “extracellular region,” and “cytosol.” The
analysis of KEGG pathway showed that the DEGs were mainly
concentrated in the following: “fatty acid degradation pathway,”
“metabolic pathways,” “chemical carcinogenesis pathway,” “cell
cycle pathway,” and “biosynthesis of antibiotics pathway.”

Previous studies have reported that the arachidonic acid-derived
metabolites and cytochrome P450 epoxygenase CYP2J2 possibly
play vital roles in regulating malignant tumor, stimulating
tumor cell growth, and inhibiting tumor cell apoptosis (Liu L.
et al., 2011; Xu et al., 2011; Yarla et al., 2016). Additionally,
metabolic pathways are important for cancer cell survival because
the metabolic demands of cancer cells are often expressed
as increased, and HCC shows a significant alteration in lipid
metabolism (Pope et al., 2019). Moreover, dysregulation of the
cell cycle processes and mitotic cell cycle plays a vital role in
the tumorigenesis and progression (Williams and Stoeber, 2012;
Wlodarchak and Xing, 2016). These theories are consistent with
our results in GO and KEGG enrichment analysis.

Through building PPI network and analyzing it, we identified
crucial hub genes in the PPI network, including CDC20, CDK1,
MAD2L1, BUB1, BUB1B CCNB1, CCNB2, and CCNA2. Using
Oncomine and GEPIA validation, the mRNA expression of these
eight hub genes in HCC samples was higher than normal liver
samples, the finding that was in accord with the microarray
results. Subsequently, HPA database data displayed that the
protein and mRNA expression of hub genes were consistent,
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FIGURE 6 | The OS analysis of 8 hub genes in the HCC patients using the GEPIA database. The red curve is the high expression group and the blue curve is the
low-expression group. p-value < 0.05.

and most genes were overexpressed in HCC tissue. To inquire
prognostic biological markers of HCC, we applied the GEPIA to
analyze the influence of hub genes expression level on survival
of HCC patients and found that, except CCNB2, the high level
gene expression of CDC20, CDK1, MAD2L1, BUB1, BUB1B,
CCNB1, and CCNA2 were related to HCC patients poor overall
survival. Therefore, these seven genes may be functional in HCC
occurrence and development.

It was reported that high expression of CDC20 (cell division
cycle protein 20) is associated with poor survival in astrocytoma
(Ding et al., 2017), cutaneous squamous cell carcinoma (Chu
et al., 2019) and pancreatic ductal adenocarcinoma (Dong et al.,
2019). CDC20 promotes the progression of prostate cancer by
stabilizing hypo-catenin in tumor-like dry cells (Zhang et al.,
2019). However, the expression of cell division cycle protein
20 in HCC still lacks accurate experimental data. As a part
of the Ser/Thr protein kinase family, CDK1 (cyclin-dependent
kinase 1) is a key molecule that controls the eukaryotic cell
cycle. By phosphorylating Bora, Cyclin A/cdk1 could facilitate
the phosphorylation, activation and mitotic entry of Aurora
A-dependent Plk1 (Vigneron et al., 2018). It is reported that
CDK1 overexpression has been found in colorectal cancer,
pancreatic ductal adenocarcinoma and thyroid cancer (Zhang P.
et al., 2018; Piao et al., 2019; Zheng et al., 2019). It was also
reported that CDK1 amplification rate in HCC tissues was usually
up to 46% (18/39), which was meaningfully related to poor overall
survival (p = 0.008) (Wu et al., 2018). These results were in accord
with our study findings.

As a pro-oncogene upregulated in gastric cancer, MAD2L1
(mitotic arrest deficient 2-like protein 1) can be downregulated
expression by miR-30a-3p, resulting in inhibition of the
proliferation of gastric cancer cells (Wang et al., 2019). Besides,

by restraining MAD2L1, miR-200c-5p can inhibit HCC cells
proliferation, migration and invasion (Li Y. et al., 2017),
suggesting that MAD2L1 can be used in HCC patients prognostic
evaluation and targeted therapy. As a cyclin controlling the
G1/S and G2/M phases in the cell cycle, CCNA2 (cyclin-
A2) is more expressed in CRC samples than in normal
samples. The reduction of CCNA2 gene expression would
disrupt cell cycle progression and induce apoptosis, thus
significantly inhibiting the growth of CRC cells (Gan et al.,
2018). By maintaining the expression of CCNA2 protein
and the production of arginine, arginine metabolic enzyme
argininosuccinate lyase (ASL) can promote the production of
nitric oxide synthase, thus promoting the formation of HCC
(Hung et al., 2017).

As a mitotic checkpoint serine/threonine kinase, BUB1 is
related to tumorigenesis in many cancers. shRNA silencing
inhibits the expression of BUB1 gene in glioblastoma tumor
cells, thereby reducing the proliferation and tumorigenicity
of tumor cells in vivo and in vitro (Yu et al., 2019).
Increased BUB1 expression signally facilitates cell proliferation,
while decreased BUB1 expression restrains liver cancer cells
proliferation (Zhu et al., 2020). The proliferation, migration,
and invasion of PCa cell lines can be enhanced via BUB1B
overexpression (Fu et al., 2016). Worse OS and DFS of
HCC patients can be predicted by the high expression
of BUB1B (Zhuang et al., 2018). CCNB1, an important
protein regulating the G2/M (mitotic) cell cycle, is activated
by Chk1, exerting its oncogenic role in colorectal cancer
cells growth in vivo and in vitro (Fang et al., 2014).
Abnormal FOXM1 expression can transcriptionally activate
CCNB1 expression, thereby promoting the proliferation of HCC
cells (Chai et al., 2018).
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FIGURE 7 | Immunohistochemical staining analysis of hub genes (CCNA2, CCNB1, CCNB2, CDC20, CDK1, and MAD2L1) in HCC tissues and normal liver tissues.

After exploring the potential information about the
interactions between the seven hub genes and existing
chemotherapeutic drugs, we found that various drugs could
influence the expression levels of these hub genes. However, only
topotecan, oxaliplatin and azathioprine could simultaneously
reduce the expression level all seven hub genes. And it should
be noted that further experiments are needed to support
whether HCC patients with hub gene overexpression can benefit
from hub gene inhibition or whether these key genes may be
targets of drug treatment of tumor need ulteriorly biological
experiments support.

In the current study, we have discussed that the development
of HCC is associated with the overexpression of seven hub
genes, which lead to poor overall survival, indicating that they
may be considered as potential prognostic biomarkers for HCC.
However, our study has several limitations: (1) some important
clinical information (for example, different age, tumor size, TNM
stage and grade) were not considered; (2) biological experiments

must be carried out in the future to verify the results of our
research; (3) the molecular mechanism of hub gene upregulation
remains unclear. Therefore, the verification of hub genes will be
the focus of our next work.

CONCLUSION

Adopting a series of bioinformatics analysis methods, the current
study identified 763 DEGs and seven hub genes (CDC20,
CDK1, MAD2L1, BUB1, BUB1B, CCNB1, and CCNA2) that
may be involved in hepatocellular carcinoma tumorigenesis and
progression. Additionally, multiple database analysis and survival
analysis demonstrated that these seven hub genes may regard
as a latent prognostic biomarker and the overexpression of
these seven hub genes might lead to reduced overall survival in
HCC patients. These results provide a theoretical basis for the
molecularly targeted therapy and prognosis evaluation of HCC.
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FIGURE 8 | Drug-gene interactions network with chemotherapeutic drugs and seven hub genes was constructed using the CTD database. (A–G) shows the
relationship between existing chemotherapeutic drugs and the expression levels of hub genes. (A) BUB1, (B) BUB1B, (C) CCNA2, (D) CCNB1, (E) CDC20,
(F) MAD2L1, and (G) CDK1. The red and green arrows represent that the chemotherapy drugs will increase or decrease the expression of the hub genes. The
number of arrows between hub genes and chemotherapy drugs indicates the number of references supported by previous studies.
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