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O-GlcNAcylation of TAB1 modulates
TAK1-mediated cytokine release

Since Advance Online Publication, Fig. 2G has been corrected to show the correct (ETD) fragmentation spectrum that
was used to map the TAB1 O-GlcNAc site and as referred to in the figure legend.
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Transforming growth factor (TGF)-b-activated kinase 1

(TAK1) is a key serine/threonine protein kinase that med-

iates signals transduced by pro-inflammatory cytokines

such as transforming growth factor-b, tumour necrosis

factor (TNF), interleukin-1 (IL-1) and wnt family ligands.

TAK1 is found in complex with binding partners TAB1–3,

phosphorylation and ubiquitination of which has been

found to regulate TAK1 activity. In this study, we show

that TAB1 is modified with N-acetylglucosamine

(O-GlcNAc) on a single site, Ser395. With the help of a

novel O-GlcNAc site-specific antibody, we demonstrate that

O-GlcNAcylation of TAB1 is induced by IL-1 and osmotic

stress, known inducers of the TAK1 signalling cascade. By

reintroducing wild-type or an O-GlcNAc-deficient mutant

TAB1 (S395A) into Tab1�/� mouse embryonic fibroblasts,

we determined that O-GlcNAcylation of TAB1 is required for

full TAK1 activation upon stimulation with IL-1/osmotic

stress, for downstream activation of nuclear factor jB and

finally production of IL-6 and TNFa. This is one of the first

examples of a single O-GlcNAc site on a signalling protein

modulating a key innate immunity signalling pathway.
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Introduction

Transforming growth factor (TGF)-b-activated kinase 1

(TAK1), also known as mitogen-activated protein kinase

kinase kinase 7 (MAP3K7), is a member of the mitogen-

activated protein kinase (MAPK) family (Yamaguchi et al,

1995). TAK1 has a key role in the production of tumour

necrosis factor (TNF)a and other inflammatory mediators by

activating several MAPKs, such as p38a MAPK, c-Jun N-

terminal kinases (JNK1/JNK2), ERK1/2 and the transcription

factor nuclear factor kB (NFkB) (Wang et al, 2001; Sato et al,

2005; Shim et al, 2005) via the signalling pathways shown in

Figure 1A. TAK1 is essential in several cytokine-mediated

innate immunity signal transduction cascades, including the

TNFa, interleukin-1 (IL-1) and TGF-b pathways, as well as

signalling downstream of Toll-like receptors and NOD1/2

(Shibuya et al, 1996; Ninomiya-Tsuji et al, 1999; Hasegawa

et al, 2008) (Figure 1A). In these pathways, various

pro-inflammatory cytokines and endotoxins trigger TAK1

activity, leading to its autophosphorylation and subsequent

recruitment to the IkB kinase (IKK) complex, ultimately

resulting in activation of the transcription factor NFkB

(Adhikari et al, 2007) (Figure 1A). The native forms of

TAK1 comprise the catalytic kinase subunit in complex with

a regulatory subunit TAB1 (TAK1-binding protein 1, a pseu-

dophosphatase; Conner et al, 2006) (Figure 1B), and either of

two homologous proteins, TAB2 or TAB3 (Shibuya et al,

1996; Ishitani et al, 2003; Cheung et al, 2004). The activation

of TAK1 by lipopolysaccharide (LPS) or IL-1 is triggered by

the Lys63-linked poly-ubiquitination of TNF receptor-asso-

ciated factor 6 (TRAF6), which binds to the C-terminal

zinc-finger motifs of TAB2 and TAB3, stimulating autopho-

sphorylation and activation of TAK1 (Wang et al, 2001).
TAK1 activity is also subject to regulation by a feedback

loop in which p38a MAPK suppresses the activation of TAK1

by phosphorylation of TAB1 at Ser423 and Thr431 (Cheung

et al, 2003). Disruption of the Tab1 gene in mice is embryonic

lethal with several developmental phenotypes, including

cardiovascular and lung dysmorphogenesis (Komatsu et al,

2002). Studies with Tab1-deficient mouse embryonic fibro-

blasts (Tab1�/� MEFs) suggest that TAB1 plays several roles

in the regulation of the TAK1 complex, namely to recruit p38a
MAPK to the TAK1 complex for the phosphorylation of TAB3,

to suppress the dephosphorylation of TAB3, and to induce

TAK1 catalytic activity (Mendoza et al, 2008). TAB1 is a

crucial mediator in TAK1 signalling as Tab1�/� MEFs do

not activate TAK1 in response to IL-1 and TNFa (Mendoza

et al, 2008). MEKK3 is maintained in an inactive state by

interaction with TAK1 in unstimulated cells, preventing basal

NFkB signalling. Pro-inflammatory activation of TAK1 leads

to disruption of MEKK3–TAK1 complexes via TAB1, allowing

both TAK1 and MEKK3 to transduce biochemical signals (Di

et al, 2008).

Protein glycosylation with N-acetylglucosamine (O-GlcNAcyla-

tion) is an abundant post-translational modification of ser-

ines/threonines occurring on nuclear and cytoplasmic pro-

teins (reviewed in Love and Hanover, 2005; Hart et al, 2007).

As with phosphorylation, modification by O-GlcNAc is dy-
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namic (Kreppel et al, 1997; Comer and Hart, 2000; Zachara

and Hart, 2002), giving rise to functionally distinct protein

species and there is evidence to suggest that O-GlcNAc may

show interplay with protein phosphorylation (Zeidan and

Hart, 2010). O-GlcNAcylation is implicated in virtually all

cellular processes examined, for instance gene expression

(Comer and Hart, 1999), protein turnover (Hart et al, 2007),

and also in regulating cellular responses to insulin (Vosseller

et al, 2002; Copeland et al, 2008), cell-cycle control (Slawson

et al, 2005), stress protection (Zachara et al, 2004) and

calcium cycling (Clark et al, 2003). The enzymes responsible

for the attachment (O-GlcNAc transferase, OGT) and removal

(O-GlcNAcase, OGA) of this sugar moiety have been found in

the nucleus and the cytoplasm of cells. The genes encoding

these enzymatic activities have been cloned and character-

ized (Kreppel et al, 1997; Lubas and Hanover, 2000; Gao et al,

2001). The N-terminus of OGT contains multiple tetratrico-

peptide repeats thought to mediate protein–protein interac-

tions that are critical for substrate recognition (Kreppel and

Hart, 1999; Lubas and Hanover, 2000; Clark et al, 2003).

Inactivation of the OGT gene in mouse cells has shown that

OGT is required for embryonic stem cell viability and mouse

ontogeny (Shafi et al, 2000). In addition, dysfunctional

protein O-GlcNAcylation/phosphorylation appears to have a

role in the pathology of type II diabetes (Hanover et al, 1999)

and Alzheimer’s disease (Griffith and Schmitz, 1995;
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Figure 1 Stimulation and activation of the TAK1 pathway and TAB1 domain structure. (A) TAK1 is a key player in the cascades of cellular
responses evoked by changes in the environment, as its activity is regulated by growth factors, pro-inflammatory cytokines and pathogen-
derived molecules. TAK1 activity is modulated via its binding partners TAB1 and TAB2/3, phosphorylating (denoted by P) and activating a
number of other important protein kinases; the p38a MAPK, c-jun N-terminal kinase (JNK) through MKK (MAPK kinase) and IKK complex.
Extracellular signal-regulated kinase (ERK1/2) and p38a MAPK exert their effects at the post-translational level on transcription factors (TFs),
whereas IKKb controls the transcription of genes encoding inflammatory mediators by regulating cellular localization of NFkB. Transcriptional
responses initiated by these pathways are of fundamental importance for the whole organism as they determine cell fate and protect cells from
pathogens and changes in osmolarity. This study shows that TAB1, a key regulator of TAK1, is also O-GlcNAcylated (denoted by G).
(B) Schematic diagram of the full-length TAB1 domain structure (amino acids, 1–504). TAB1 consisted of a PP2C-like pseudophosphatase
domain, a p38a-binding domain, and TAK1-binding domain. TAB1 is phosphorylated by p38a MAPK at Ser423 (S423) and Thr431 (T431) and
by both ERK1/2 and JNK1/2 at Ser438 (S438). This study shows that Ser395 (gS395) is the single O-GlcNAc site on the TAB1 protein.
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Hanover et al, 1999). Recent evidence supports a central role

for O-GlcNAc modification in the regulation of immune cells,

particularly in the activation processes of T and B-lympho-

cytes and possible increased nuclear translocation and activ-

ity of nuclear factor of activated T cells and NFkB (Golks and

Guerini, 2008).

Here we demonstrate that O-GlcNAcylation of a single

residue (Ser395) on TAB1 modulates TAK1 activation in

response to IL-1 stimulation or osmotic stress. TAB1

O-GlcNAcylation induces a substantial increase in TAK1 auto-

phosphorylation and activation, phosphorylation of IKK,

translocation of NFkB and ultimately cytokine production.

Results

TAB1 is O-GlcNAcylated on Ser395

Many cytoplasmic and nuclear proteins such as transcription

factors, RNA polymerase II, oncoproteins, nuclear pore pro-

teins, viral proteins, and tumour suppressor proteins have

been found to be modified by O-GlcNAc at serine and

threonine residues (Hart et al, 2007; Lazarus et al, 2009).

During reanalysis of a previously reported phosphosite map-

ping study of TAB1 (Cheung et al, 2003), a peptide with an

increase in mass of 203 was observed, suggesting possible

O-GlcNAc modification. To investigate whether TAB1 is an

O-GlcNAc modified protein, full-length TAB1 was produced

recombinantly in Escherichia coli and was O-GlcNAcylated

in vitro using recombinant human O-GlcNAc transferase

(hOGT). This resulted in a TAB1 protein species that was

recognized by the anti-O-GlcNAc antibody CTD110.6

(Figure 2A). This was further confirmed using an alternative

method for O-GlcNAc detection, involving chemoenzymatic

labelling of the O-GlcNAc residue. Here, the O-GlcNAc moiety

on the protein is labelled with UDP-GalNAz using a mutant

galactosyltransferase GalT1 Y289L (mGalT1) with an azide

derivative of UDP-GalNAc (UDP-GalNAz) as donor substrate,

followed by labelling with biotin alkyne (Khidekel et al,

2003). After in vitro O-GlcNAcylation, TAB1 was subjected

to mGalT1 labelling and then detected by probing with

streptavidin-conjugated HRP (Figure 2B).

To confirm TAB1 as a bona fide OGT substrate with

dynamic O-GlcNAc modification in vivo, we studied TAB1

O-GlcNAcylation in human embryonic kidney 293 (HEK293)

cells overexpressing the IL-1 receptor (IL-1R cells) treated

with/without the potent and specific OGA inhibitor

GlcNAcstatin (Dorfmueller et al, 2006). TAB1 was immuno-

precipitated from lysates and probed with the anti-O-GlcNAc

antibody CTD110.6 (Figure 2C). TAB1 possesses a basal level

of O-GlcNAcylation when grown in Dulbecco’s modified

Eagle’s medium (DMEM) media containing 25 mM glucose

(high glucose DMEM), increased by treatment with

GlcNAcstatin (Figure 2C). To further confirm the O-GlcNAc

signal on TAB1, TAB1 immunoprecipitated from IL-1R cells

was treated with CpOGA (Rao et al, 2006), a promiscuous

bacterial OGA, which removed O-GlcNAc from TAB1 without

alteration in protein levels (Figure 2D). The O-GlcNAc signal

on TAB1 could also be blocked by competition with free

GlcNAc when the CTD110.6 antibody was pre-incubated with

500 mM N-acetylglucosamine (Figure 2D).

To identify the site(s) of TAB1 O-GlcNAcylation,

recombinant O-GlcNAcylated TAB1 was analysed by mass

spectrometry. In an initial experiment, O-GlcNAcylated

TAB1 was trypsin digested and analysed by liquid chro-

matography-mass spectrometry (LC-MS). A single peptide

VYPVSVPYSSAQSTSK (amino acids 387–402) was identified

as carrying an additional molecular weight of 203. Two

parallel approaches were then employed to identify the

O-GlcNAcylation site(s) in this peptide. First, amino acids

that could be putative targets for O-GlcNAcylation (part of

PVS motif, similarity to target sequences of proline-directed

kinases (Hart et al, 1996) were mutated to alanine. A TAB1

triple mutant (S391A/S395A/S396A) or the individual TAB1

mutants S391A, S395A and S396A were expressed as GST-

tagged proteins in IL-1R cells treated with GlcNAcstatin. After

48 h, these GST fusion proteins were pulled down and blotted

for O-GlcNAc. The triple mutant as well as the single S395A

TAB1 mutant showed complete absence of an O-GlcNAc

signal (Figure 2E), suggesting that S395 is the single

O-GlcNAc site on TAB1. In a parallel approach, the TAB1

O-GlcNAc site was studied by collision-induced dissociation

(CID) and electron transfer dissociation (ETD) liquid chro-

matography (LC) tandem mass spectrometry (MS/MS) ex-

periments. TAB1 was O-GlcNAcylated in vitro, trypsin

digested, and analysed by LC-MS/MS. The tryptic peptide

VYPVSVPYSSAQSTSK (Mwcalc¼ 1901.9 Da) containing a

HexNAc (þ 203.1 Da) was detected after 25.5 min as

[MþHexNAcþ 2H]2þ m/z 951.904. While the CID spectrum

(Figure 2F) did not fully define the site of modification, the

ETD spectrum contained the critical fragment ions to unam-

biguously define S395 as the only O-GlcNAc modified site on

TAB1 (Figure 2G).

O-GlcNAcylation of TAB1 is inducible

As shown previously (Figure 2C), levels of O-GlcNAc on

TAB1 appear to be increased in the presence of the potent

OGA inhibitor GlcNAcstatin. We next investigated stress-

induced changes in the O-GlcNAc levels of TAB1 in wild-

type (WT) MEFs. To enable these experiments, we attempted

to generate a site-specific TAB1 S395 O-GlcNAc antibody.

Although several attempts have been made to generate such

site-specific O-GlcNAc antibodies recently, most of these still

recognize a range of O-GlcNAc proteins (Teo et al, 2010). The

only site-specific O-GlcNAc antibodies known to date are

gThr58 on c-Myc (Kamemura et al, 2002) and gSer1011 on

IRS1, gSer347 on CKII (Teo et al, 2010) and gSer400 on

Tau (Yuzwa et al, 2010). Using a classical approach, we

synthesized the TAB1-derived glycopeptide CVSVPYS

(O-GlcNAc)SAQSTSKTS, exploiting the additional N-terminal

cysteine for coupling to KLH. Serum generated from rabbits

immunized with this antigen contained antibodies that were

capable of recognizing O-GlcNAcylated TAB1, but not the O-

GlcNAc-deficient TAB1 S395A mutant or the TAB1 triple

mutant (S391A/S395A/S396A) (Figure 3A). Interestingly,

while hyperglycaemic conditions resulted in an increase in

global O-GlcNAc levels and also increased O-GlcNAcylation

of TAB1 in MEFs, stimulation with IL-1 and NaCl, known to

specifically activate the TAK1 signalling pathway (Ninomiya-

Tsuji et al, 1999; Wang et al, 2001; Cheung et al, 2003;

Huangfu et al, 2006), did not raise global O-GlcNAc levels

to the same extent but still increased O-GlcNAcylation of WT

TAB1 (Figure 3B and C). This suggested that the O-

GlcNAcylation levels on TAB1 are modulated by stimuli that

are known to activate TAK1 signalling, and could perhaps

also affect signalling downstream of TAK1.
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O-GlcNAc modification of TAB1 modulates TAK1

activation

To investigate the effects of O-GlcNAcylation of TAB1 on

activation of the TAK1 kinase and downstream signalling,

we reintroduced WT TAB1 and the O-GlcNAc-deficient S395A

mutant into Tab1�/� MEFs. In untransfected Tab1�/� MEFs,

or the cells transfected with empty plasmid, there was no

detectable IL-1a-induced TAK1 activity in agreement with
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LDS, subjected to SDS–PAGE and probed with horseradish peroxidase-conjugated streptavidin (Extravidin-HRP). (C) In vivo O-GlcNAcylation of
TAB1 was detected by immunoprecipitating the endogenous TAB1 from IL-1R cells (treated with or without GlcNAcstatin—1mM) using an antibody
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O-GlcNAc signal on TAB1. Lower panel shows the corresponding Ponceau-stained membrane before western blotting. (E) WT TAB1, the S391A/
S395A/S396A TAB1 triple mutant and the S391A, S395A and S396A TAB1 single mutants were transfected into IL-1R cells. After 24 h, the cells were
treated with 1mM of GlcNAcstatin for 16 h and the GSt–TAB1 was pulled out using glutathione-sepharose beads. The samples were denatured in LDS,
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control. (F, G) LC-MS/MS CID (F) and ETD (G) site mapping of the TAB1 O-GlcNAc modification site. In vitro O-GlcNAcylated TAB1 was digested
with trypsin and subjected to LC–MS. The tryptic peptide VYPVSVPYSSAQSTSK (Mwcalc¼ 1901.9 Da) containing a HexNAc (þ 203.1 Da) was
detected after 25.5 min as [MþHexNAcþ 2H]2þ m/z 951.904. The observed fragment ions are indicated, in case of the ETD experiment allowing
definition of S395 as the site of O-GlcNAc modification. Figure source data can be found in Supplementary data.
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earlier studies (Mendoza et al, 2008), whereas the cells

transfected with WT TAB1 showed significant recovery of

TAK1 autophosphorylation and activation (Supplementary

Figure S1A and B). To establish an optimal reconstituted

TAK1–TAB1 system, the Tab1�/� MEFs were transfected

with varying amounts of TAB1 plasmid (pEBG GST–TAB1)

(Supplementary Figure S1C and D). Reconstituting Tab1�/�

MEFs with 5mg of the TAB1 plasmid resulted in restoration

of TAK1 activity similar to that of Tab1þ /þ MEFs, with TAB1

protein levels similar to endogenous TAB1 levels

(Supplementary Figure S1E and F).

To investigate the effect of TAB1 O-GlcNAcylation on TAK1

activity, reconstituted Tab1�/� MEFs were stimulated with

IL-1a for 5 or 15 min, the TAK1 complexes pulled down and

analysed for kinase activity and activatory autophosphoryla-

tion. When transfected with WT TAB1, IL-1a treatment in-

creased TAB1 O-GlcNAcylation and stimulated TAK1 activity,

as evidenced by phosphorylation of T187 in the activation loop

of TAK1 (Figure 4A and B). Strikingly, both TAK1 kinase

activity and T187 autophosphorylation were reduced with

the O-GlcNAc-deficient TAB1 S395A mutant (Figure 4A and

B). To rule out the possibility TAK1 is itself O-GlcNAcylated,

thus regulating kinase activity, TAK1 O-GlcNAcylation was

investigated. GST–TAK1 and GST–TAB1 were co-expressed in

IL-1R cells maintained in 1 g/l glucose DMEM (low glucose

DMEM). Cells were either treated with GlcNAcstatin or stimu-

lated with IL-1b or NaCl before GST pulldowns and probing for

O-GlcNAcylation. As expected, TAB1 was O-GlcNAcylated in

the presence of higher glucose conditions or on stimulation

with IL-1 or NaCl, whereas TAK1 was not, suggesting that

under physiological conditions as well as in stimulated condi-

tions TAK1 is not O-GlcNAc modified (Supplementary Figure

S2). Furthermore, the AK1–TAB1 complex remains intact in

these experiments (Supplementary Figure S2).

Lo
w g

luc
os

e

High
 g

luc
os

e

GlcN
Acs

ta
tin

IL
-1

α
NaC

l

Lo
w g

luc
os

e

High
 g

luc
os

e

IL
-1

α
NaC

l

O-GlcNAc

β-Actin

GlcN
Acs

ta
tin

B C

TAB1

TAB1 gS395 *

W
T

S39
5A

S39
1A

/S
39

5A
/S

39
6A

TAB1 gS395

GST–TAB1

TAB1

A

– + – + – + GlcNAcstatin

Figure 3 O-GlcNAcylation of TAB1 is modulated in response to IL-1 or NaCl stimulation. (A) The TAB1-derived glycopeptide CVSVPYS(O-
GlcNAc)SAQSTSKTS, was used to generate an O-GlcNAc site-specific polyclonal antibody against O-GlcNAc S395. The specificity of the
antibody was determined using cell lysates prepared from IL-1R cells transfected with WT TAB1, S395A TAB1 and the S391A/S395A/S396A
TAB1 triple mutant and treated with or without GlcNAcstatin (1 mM). The cell lysates were denatured in LDS, subjected to SDS–PAGE and
immunoblotted with the site-specific polyclonal antibody against O-GlcNAc S395. The antibody recognized the signal in WT samples only with
increased signal intensity when O-GlcNAcylation of TAB1 is increased by GlcNAcstatin treatment. (B) Tab1þ /þ MEFs cells were (i) maintained
in hyperglycaemic conditions (25 mM glucose) or (ii) treated with GlcNAcstatin (1 mM) or (iii) subjected to stress by treatment with IL-1a
(10 ng/ml) or 100 mM of NaCl for 6 h under low glucose conditions (5 mM). Cell extracts (30 mg protein) were denatured in LDS, subjected to
SDS–PAGE and immunoblotted with O-GlcNAc (CTD110.6) antibody and b-tubulin antibody for loading control. (C) The samples from (B) were
probed simultaneously using the site-specific TAB1 O-GlcNAc S395 antibody (gS395). Figure source data can be found in Supplementary data.
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Once activated, TAK1 translocates from the membrane

to the cytosol along with TRAF6 and its binding partners,

TAB1 and TAB2/3. TAK1 activation subsequently leads to

activation of IKK and c-Jun NH2-terminal kinase (JNK) as

well as p38a MAPK. Activated IKK phosphorylates IkB

proteins, and phosphorylated IkB proteins are degraded by

the ubiquitin-mediated proteasome pathway (Karin and Ben-

Neriah, 2000). To investigate the effects of TAB1 O-GlcNAcylation

on these downstream events, we investigated Ikba phosphoryla-

tion. In line with reduced TAK1 activation, IL-1a-stimulated

phosphorylation of Ikba Ser32 and Ser36 was reduced by up to

50% in the Tab1�/� MEFs expressing S395A TAB1 as compared

with WT TAB1 (Figure 4C and D). Phosphorylation of p38a
MAPK or ERK1 was not affected with the S395A mutant

(Supplementary Figure S3). Previous work has shown that

TAK1 activation can also be robustly induced by osmotic stress,

independent of stimulation with cytokines/LPS, leading to down-

stream activation of JNK1/2 (Inagaki et al, 2008). Indeed,

IL-1α/NaCl stimulation

A

NaCl
stimulation

T
A

K
1 

ac
tiv

ity
 m

U
/m

g 
of

 ly
sa

te

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 min 5 min 15 min

WT

S395A

WT

S395A

IL-1α
stimulation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

5 min

WT
S395A

R
el

at
iv

e 
ph

os
ph

o-
Iκ

B
α

(n
or

m
al

iz
ed

 to
 T

A
B

1)
R

el
at

iv
e 

ph
os

ph
o-

JN
K

1/
2

(n
or

m
al

iz
ed

 to
 J

N
K

1/
2)

IL-1α stimulation

0

1

1.5

2

2.5

  3

3.5
WT
S395A

5 min

NaCl stimulation

B C D

E F G

15  min

TAK1

TAB1
0     5   15   0   5   15 min
                                   NaCl

0     5   15   0    5   15 min
                                   NaCl

p-JNK1/2

   JNK1/2

TAB1

WT

TAK1 pT187

TAB1 gS395

S395AWT S395A

TAB1

TAK1

0     5   15   0   5   15 min
                                   IL-1α

p-IκBα

IκBα

TAB1

0     5   15   0   5   15 min
                                   IL-1α

WT
TAK1 pT187

TAB1 gS395

S395AWT

S395A

15 min

Figure 4 O-GlcNAcylation of TAB1 affects activation of TAK1 and phosphorylation of its downstream targets IkBa and JNK1/2. (A) IL-1a or
NaCl-induced activation of TAK1 in WTand S395ATAB1 transfected Tab1�/�MEFs. At 36 h post-transfection, MEFs were serum starved for 6 h,
and then stimulated for 5 and 15 min with 10 ng/ml IL-1a or 0.5 M NaCl. The TAK1 complexes were pulled down from the cell extracts (1 mg of
protein extract) using glutathione-sepharose beads, and TAK1 activity assays were performed (as described in the Materials and methods
section) in addition to immunoblotting as described below in (B). The data are expressed as the relative increase in TAK1 activity of the IL-1/
NaCl-stimulated samples compared with the basal activity of the unstimulated control samples. Error bars denote standard deviation,
determined from three independent experiments. (B) In parallel to the experiments in (A), TAK1 complexes were denatured in LDS, subjected
to SDS–PAGE and immunoblotted with a phospho-specific antibody that recognizes TAK1 autophosphorylation at Thr187 (pT187) and with a
further antibody that recognizes all forms of TAK1. O-GlcNAcylation of TAB1 was detected with the site-specific O-GlcNAc antibody (gS395)
versus a total TAB1 antibody control (TAB1). (C) In all, 30mg of the cell lysates from the samples obtained as in (A) was immunoblotted for
phosphorylated Ikba p-Ikba and total Ikba. (D) Densitometry for IkBa phosphorylation after normalization against total TAB1 levels. The data
shown are the average of three independent experiments with error bars denoting standard deviation. (E) WTand S395ATAB1 were transfected
in Tab1�/� MEFs. At 36 h post-transfection, MEFs were serum starved for 6 h, and then stimulated for 5 or 15 min with 0.5 M NaCl. The TAK1
complexes were pulled down from the cell extracts (1 mg of protein extract) using glutathione-sepharose beads and taken for kinase assays (A)
in addition to immunoblotting. For immunoblotting, the samples were denatured in LDS, subjected to SDS–PAGE and immunoblotted with a
phospho-specific antibody that recognizes TAK1 autophosphorylation at Thr187 (pT187) and with a further antibody that recognizes all forms
of TAK1. O-GlcNAcylation of TAB1 was detected with the site-specific O-GlcNAc antibody (gS395) versus a total TAB1 antibody control (TAB1).
(F) In all, 30mg of the cell lysates from the samples obtained as in (E) was immunoblotted for phosphorylated JNK1/2 (p-JNK1/2) and total
JNK1/2. (G) Densitometry for JNK1/2 phosphorylation after normalization for total JNK1/2. The data shown are the average of minimum of
three independent experiments with error bars denoting standard deviation. Figure source data can be found in Supplementary data.
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osmotic stress (induced with 0.5M NaCl) also induces phosphor-

ylation of TAK1 T187, and in parallel O-GlcNAcylation of TAB1

S395, in the Tab1�/� MEFs complemented with WT TAB1

(Figure 4A and E). This effect was reduced with the O-GlcNAc-

deficient TAB1 S395A mutant (Figure 4A and E), which also

translated into reduced phosphorylation of JNK1/2 on Thr183

and Tyr185 (Figure 4F and G).

O-GlcNAcylation of TAB1 modulates NFjB activation

and IL-1a-stimulated cytokine release

In the canonical NFkB activation pathway, upon phosphor-

ylation by IKKb, Ikba and IkBb, the cytoplasmic inhibitors of

NFkB, are marked for ubiquitination and subsequent

proteosomal degradation (DiDonato et al, 1996; Ghosh and

Karin, 2002). The degradation of IkBa and IkBb allows

translocation of NFkB to the nucleus, leading to transcription

of a plethora of genes including those encoding various

cytokines (Li and Verma, 2002; Hayden and Ghosh, 2008).

Using a reporter assay, we studied the role of O-GlcNAc

on TAK1/TAB1-mediated activation of NFkB in response to

IL-1a stimulation in Tab1�/� MEFs overexpressing WT or

S395A TAB1 (Figure 5). While a robust level of NFkB activa-

tion was observed with WT TAB1, S395A TAB1 showed a

significant reduction in NFkB activation (Figure 5A), in line

with the observed reduction in phosphorylation of IkBa
(Figure 4C). To evaluate whether the observed reduction in

NFkB activity of the TAB1 S395A mutant resulted in effects

on cytokine production, levels of IL-6 and TNFa cytokines

were measured in the cell culture medium at different time

points after IL-1a stimulation. IL-6 secretion was reduced by

50% after 8 h and 40% after 24 h in samples from the cells

transfected with the S395A TAB1 mutant, as compared with

the WT TAB1 control (Figure 5B). Similarly, TNFa produc-

tion, 8 and 16 h after IL-1a stimulation, was significantly

reduced with the O-GlcNAc-deficient TAB1 mutant

(Figure 5C).

O-GlcNAcylation of TAB1 modulates regulatory

phosphorylation

TAB1 possesses three characterized phosphorylation sites

(S423, T431 and S438) that are modified under various

stimuli and are involved in TAK1 activation (Mendoza et al,

2008) (Figure 1A and B). p38a MAPK phosphorylates S423

and T431 whereas ERK1/2 and JNK1/2 phosphorylate S438

(Mendoza et al, 2008), although the specific roles of the

individual phosphorylation sites have not yet been defined.

The regulatory TAB1 O-GlcNAc site described here does not

correspond to a known phosphorylation site; however, it is in

proximity to the phosphorylation sites and the C-terminal

region of TAB1 that is required for interaction with TAK1

(Ono et al, 2001) (Figure 1B). To investigate possible effects

of O-GlcNAcylation of TAB1 on phosphorylation at S423,

T431 and S438, Tab1�/� MEFs transiently transfected with

TAB1 (WT and S395A) were stimulated with sodium chloride

in the presence or absence of GlcNAcstatin. When stimulated

with NaCl, phosphorylation of S438 was observed to increase

in both WT and S395A TAB1 mutant when compared with

control. However, in the presence of both NaCl and

GlcNAstatin, there is a further increase in phosphorylation

of S438 in WT, but this further increase was not seen in the

S395A mutant. This suggests that O-GlcNAc at S395 may

regulate TAB1 phosphorylation at S438.
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Figure 5 TAB1 O-GlcNAcylation affects NFkB-dependent gene tran-
scription and cytokine production. (A) Tab1�/� MEFs were co-
transfected with either WT TAB1, S395A TAB1 or empty plasmid
and plasmids encoding the 3�kB luciferase reporter construct;
and pRL-TK. After 24 h of transfection, the cells were stimulated
with 10 ng/ml of IL-1a for 24 h before lysing with Passive
Lysis Buffer (Promega). NFkB-dependent luciferase reporter gene
expression was measured and normalized for transfection efficiency
using Renilla luciferase as the internal control. The data are
presented as background-corrected mean values±s.e.m. from
three to four independent experiments. (*) denotes Po0.05 for
significant differences between mutant and WT TAB1. (B, C) Tab1�/�

MEFs were transfected with WT or S395A TAB1 plasmid and 24 h
post-transfection stimulated with 10 ng/ml IL-1a for 8–24 h. The
media was collected and the quantification of (B) IL-6 and (C) TNFa
was performed by ELISA. The data are presented as background-
corrected mean values±s.e.m. from three to four independent
experiments. (*) denotes Po0.05 for significant differences between
mutant and WT TAB1.
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WT TAB1 showed increased phosphorylation of S438

in the presence of both GlcNAcstatin and NaCl as compared

with the S395A mutant, while there was no change on

S423 or T431 phosphorylation (Figure 6). S438 is phosphory-

lated by ERK1/2 and JNK1/2, and TAB1 has a role in

stress response and activation of JNK1/2 pathway (Inagaki

et al, 2008). The reduced phosphorylation at S438 on S395A

TAB1 as compared with that of WT TAB1 could be related to

the reduced activation of JNK1/2 as observed earlier,

although its not yet clear how TAB1 O-GlcNAcylation may

regulate JNK1/2 activity towards the TAB1 S438 phosphor-

ylation site.

Discussion

TAK1 is a key regulator of NFkB activity and cytokine

production in response to stimulation with LPS and

cytokines. Over the past decade, a large number of studies

have shown that TAK1 activity is extensively regulated by

phosphorylation, ubiquitination, and binding to the regula-

tory binding partners TAB1–3 (Sakurai et al, 2000; Wang et al,

2001; Ishitani et al, 2003; Ea et al, 2004; Singhirunnusorn

et al, 2005). The data presented here show that TAB1

possesses a single, inducible O-GlcNAc site, Ser395 that is

responsive to IL-1 and NaCl, known activators of the TAK1

pathway. By reintroducing WT TAB1 or an O-GlcNAc-

deficient mutant in Tab1�/� MEFs, we were able to delineate

the role of O-GlcNAcylation of TAB1. With IL-1 stimulation,

TAB1 O-GlcNAcylation enhances Ikba phosphorylation,

which in turn regulates NFkB activation. We show here that

O-GlcNAcylation of TAB1 is required for full activation of

TAK1 on Thr187 and that there is a direct correlation between

O-GlcNAcylation of TAB1, autophosphorylation of TAK1

Thr187, activation of NFkB and, ultimately, production of

IL-6 and TNFa.
Recent studies have shown effects of hyperglycaemia on

the transcriptional activity of NFkB and also on IKkb, key

regulators of innate immunity pathways. Both IKKb and

NFkB are also O-GlcNAc modified proteins (Yang et al,

2008; Kawauchi et al, 2009). Taken together with the data

presented here, this suggests that the innate immune

response is not only regulated by phosphorylation and ubi-

quitination but also by O-GlcNAcylation. Further work will

be required to understand how O-GlcNAcylation of TAB1 is

induced/regulated, and also to unravel the molecular details

of O-GlcNAc-dependent TAK1 activation by TAB1.

Materials and methods

Materials
GlcNAcstatin was obtained from GlycoBioChem (Dundee, UK). Mouse
IL-6 and TNFa Elisa kits were purchased from Peprotech, UK. Human
IL-1b was from Sigma, murine IL-1a was from Peprotech and
glutathione-sepharose was from GE Healthcare. Luciferase reporter
assay kit was from Promega. Click-iTTM O-GlcNAc Enzymatic Labeling
System and Click-iT Biotin Glycoprotein Detection Kit were from
Invitrogen. Dynabeadss Protein G was from Invitrogen.

DNA cloning
Full-length TAB1 was cloned and inserted into pGEX6P1 for
recombinant protein production in E. coli and pEBG6P for transfection
in mammalian cells, as described previously (Cheung et al, 2004).
Mutations for putative O-GlcNAc sites on TAB1 (S391A, S395A and
S396A) were created following the Quick Change method (Stratagene)
using KOD Hot start Polymerase (Novagen). Recombinant OGT was
produced as described previously (Clarke et al, 2008). GST–TAK1 was
obtained from the Division of Signal Transduction Therapy DSTT in
Dundee. CpOGA was produced as described previously (Rao et al,
2006). For NFkB reporter assays, DNA encoding a ConA basal
promoter incorporating three copies of the NFkB DNA response
element (termed ‘3� kB luciferase reporter construct’) was provided
by Professor Ron Hay, College of Life Sciences, University of Dundee
(Rodriguez et al, 1999). The pRL-TK vector driving Renilla luciferase
expression was from Promega.

Antibodies
The antibodies that recognize TAK1 phosphorylated at Thr187, total
TAB1, TAB1 phosphorylated at Ser423 and TAB1 phosphorylated
at Ser438 were used as described previously (Cheung et al, 2003).
Antibodies recognizing the active phosphorylated forms of ERK1/2,
JNK1/2, p38a MAPK and total ERK1/2, JNK1/2 were from Cell
Signalling Technologies. ExtrAvidins-Peroxidase was from Sigma.
For immunoblotting with the phospho-specific antibodies for TAK1
and TAB1, the antibodies were incubated at 3mg/ml in the presence
of 30mg/ml of the unphosphorylated peptide immunogen to
neutralize any antibodies that recognize the unphosphorylated
form of the protein. The anti-O-GlcNAc antibody CTD110.6 was
purchased from Abcam. Secondary antibodies conjugated to
horseradish peroxidase were from Pierce.

Generation of O-GlcNAc-specific antibody against S395 on TAB1
The O-GlcNAc peptide CVSVPYS(O-GlcNAc)SAQSTSKTS, correspond-
ing to residues 389–403 of TAB1, was synthesized on a Liberty
microwave-assisted peptide synthesizer (CEM) using MBHA Rink-
amide low load resin (Novabiochem) with standard protocols of Fmoc
SPS chemistry. The QS dipeptide was introduced as pseudoproline to
suppress formation of truncated sequences detected in pilot experi-
ments. 4Ac-GlcNAcSerFmoc was synthesized in-house following a
published procedure (Saha and Schmidt, 1997). After high peformance
liquid chromatograpy (HPLC) purification of the peptide, it was
conjugated to keyhole limpet haemocyanin and injected into rabbits.
Antibodies from the serum were first precipitated with ammonium
sulphate followed by a one-step purification by passing the resuspended
antibody over a non-GlcNAcylated peptide column. The flowthrough
from the column was collected and used for immunoblotting.

In vitro O-GlcNAc assay
In vitro o-GlcNAcylation of TAB1 (1 mM) was performed in 20ml
assay volumes containing 100 nM of OGT, reaction buffer (50 mM
Tris–HCl, pH 7.5, 1 mM DTT, 12.5 mM MgCl2), and 1 mM UDP-
GlcNAc. The reactions were incubated for 90 min at 371C, stopped
by adding 4� SDS–PAGE sample buffer, resolved on SDS–PAGE,
transferred to PVDF and probed with appropriate antibodies.

WT S395A

TAB1

– –+
– – – –+ +

+ + + NaCl
GlcNacstatin

TAB1 pS438

TAB1 pT431

TAB1 pS423

TAB1 gS395

Figure 6 Interplay between TAB1 O-GlcNAcylation and phosphor-
ylation. Tab1�/� MEFs were transfected with WT or S395A TAB1
plasmids. At 36 h post-transfection, MEFs were serum starved for
6 h with or without GlcNAcstatin (1mM) and then stimulated for
15 min with 0.5 M NaCl. Aliquots of cell extract (30mg protein) were
denatured in LDS, subjected to SDS–PAGE and immunoblotted with
antibodies that recognize TAB1 phosphorylated at Ser423 (pS423),
Thr431 (pT431) and Ser438 (pS438) and for O-GlcNAcylation at
Ser395 (gS395). Data presented are representative of results
obtained from three independent experiments. Figure source data
can be found in Supplementary data.
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Enzymatic labelling of O-GlcNAc sites
GST–TAB1 was bound to glutathione-sepharose beads and was
O-GlcNAcylated in vitro. The beads were washed with 10 mM
HEPES (pH 7.9) and resuspended in reaction buffer (1% SDS,
20 mM HEPES) then 2 ml of GalT1 Y289L (Invitrogen) and 2ml of
0.5 mM UDP-GalNAz (Invitrogen) were added in a final reaction
volume of 50 ml. The reaction was performed overnight at 41C. The
beads were washed twice with reaction buffer to remove excess
UDP-GalNAz. The samples were then reacted with biotin alkyne
(Invitrogen) according to the manufacturer’s instructions. The
proteins were resolved by SDS–PAGE and transferred to PVDF. The
blot was incubated with ExtrAvidin-Peroxidase and biotinylated
TAB1 was visualized by ECL reaction.

O-GlcNAc site mapping of TAB1
For site mapping analysis of digested TAB1 protein, an Ultimate
3000RSLC nano-HPLC system (Dionex) with a 3D high capacity ion
trap mass spectrometer with ETD capability (amaZon ETD; Bruker
Daltonics) were used to perform HPLC electrospray MS/MS (ESI-MS/
MS). Digested TAB1 samples were reconstituted in 0.1% formic acid,
injected and concentrated onto a Dionex PepMap C18 nano-trap
column, after a wash step with (2% acetonitrile, 0.1% formic acid (v/
v)) peptides were resolved by a Dionex Acclaim PepMap C18 reverse
phase column (75mm i.d. � 15 cm� 2mm) over a 25-min linear
gradient from 4% to 50% buffer B (80% acetonitrile and 0.08% formic
acid in Milli-Q water (v/v)), followed by another 2 min to 90% buffer
B. The column was then washed by holding the 90% buffer B for
10min before returning to initial conditions of 96% buffer A (0.1%
formic acid in Milli-Q water (v/v)). A typical tandem mass spectro-
metric (MS/MS) cycle (Alternating CID/ETD) in amaZon ETD happens
in the following order: (A) 1MS full-range scan and precursor ion
selection. (B) Accumulation of precursor ion (B10 ms) and fragmenta-
tion by CID. (C) (CID-MS/MS spectrum recorded) accumulation of the
same precursor ion (B5ms), which is allowed to mix and react with
fluoranthene (50–100 ms; variable) for ETD fragmentation, and ETD-
MS/MS spectrum acquired. Steps (B) and (C) are repeated auto-
matically for each precursor ion. In this study, precursor ion selection
was set up to five ions per cycle, excluding singly charged ions, with a
dynamic exclusion time of 0.5min for both CID and ETD. Helium gas
was used as collision gas (60–200%), collision energy sweep with
amplitude 1.0 parameters was used for CID fragmentation. For ETD
experiments, the maximum output of ETD reagent ion (202 m/z) was
achieved with the following nCI source tuned parameters: reagent ion
charge control target (ICC) 500000, maximum emission current 4mA
and ionization energy of 75 eV, reactant remove cutoff p210m/z
without supplemental energy activation.

Raw MS data were processed using software packages BioTool
3.2 SR1 and DataAnalysis 4.0 (Bruker Daltonic GMBH). In parallel,
two database searches were performed for CID and ETD using
Mascot v2.3 (Matrix Science Ltd), database used IPI-human
20110731 (91 522 sequences; 36 630 302 residues) with the following
Mascot MS/MS ion search parameters: peptide charges considered
2þ , 3þ and 4þ ions, peptide tolerance and fragment tolerance
was set to ±0.5 Da, # of 13C¼ 1, two missed cleavages allowed,
trypsin as proteolysis enzyme, ESI-TRAP (for CID) and ETD-TRAP
(for ETD) for instrument type. Carbamidomethyl (C) was used as
fixed modification, where Deamidated (NQ), Oxidation (M),
Phospho (ST) and HexNAc (ST) (þ 203.0794 Da) were set as
variable modifications.

Cell culture, stimulation and lysis
IL-1R cells HEK293 (cells stably expressing the IL-1 receptor) and
immortalized Tab1-deficient MEFs (Tab1�/� MEFs) were provided by
Professor Philip Cohen, MRC Unit, University of Dundee. Cells were
cultured in DMEM with 1 or 4.5mg/ml glucose, containing 10% (v/v)
heat inactivated fetal calf serum (FCS), and 2 mM L-glutamine. Prior to
stimulation with human IL-1b in IL-1R cells or murine IL-1a in mouse
cells, the medium was removed and replaced with DMEM from which
FCS had been omitted. IL-1R cells were serum deprived for 16 h and
MEFs for 6 h. GlcNAcstatin (1mM) was added to cells during serum
starvation, if required. For osmotic shock, cells were treated with
either 0.25 or 0.5M of NaCl by adding it into DMEM for 15 min before
harvesting the cells.

Cells were lysed in ice-cold lysis buffer (50 mM Tris–HCl pH 7.5,
1 mM sodium orthovanadate 1 mM EDTA, 10 mM sodium b-
glycerophosphate, 1 mM EGTA, 50 mM sodium fluoride, 5 mM
sodium pyrophosphate, 1% (v/v) Triton X-100, 0.27 M sucrose,

0.1% (v/v) 2-mercaptoethanol, 0.1 mM PMSF, 1 mM benzamidine
and 5mM leupeptin). Lysates were centrifuged at 13 000 g for 15 min
at 41C and the supernatants were used immediately or snap frozen
in liquid nitrogen and stored in aliquots at �801C until use. Protein
concentrations were determined using the Bradford assay.

Immunoprecipitation and OGA treatment of TAB1
To immunoprecipitate endogenous TAB1, 1 mg of cell lysate was
incubated for 2 h at 41C with 10 mg of anti-TAB1 antibody coupled
with 10ml of Dynabeads Protein G. The immunoprecipitates were
washed twice with 1 ml of lysis buffer containing 0.25 M NaCl,
followed by two washes with 1 ml of 50 mM Tris/HCl, pH 7.5,
50 mM NaCl and 0.1 % (v/v) 2-mercaptoethanol and subjected to
SDS–PAGE followed by western blotting.

For OGA treatment on immunoprecipitated O-GlcNAcylated
TAB1, 3 mg of lysate was used for immunoprecipitation. The
samples were divided in three equal volumes. One set of samples
was treated with CpOGA (1mM) for 30 min at room temperature,
while the other two sets were left untreated at room temperature.
The samples were subjected to SDS–PAGE and western blotting
with CTD110.6 antibody. The third set of samples was incubated
with CTD110.6 antibody, which was pre-incubated with 500 mM
N-acetylglucosamine for 1 h.

Cell transfections
IL-1R cells were transfected at 40–50% confluence using poly-
ethyleneimine using DNA encoding GST (glutathione transferase)–
TAB1, whereas MEFs were transfected at a density of 3�106 cells,
with the Amaxa MEF2 kit according to the manufacturer’s
instructions.

NFjB reporter gene assay
For the measurement of NFkB-dependent luciferase gene expression,
Tab1�/� MEFs (3�106) were co-transfected with either 3mg of WT
TAB1, S395A TAB1 or empty pEBG6 plasmid; 0.5mg of DNA encoding
the 3�kB luciferase reporter construct; and 0.5mg pRL-TK and plated
3�105 cells per well. After 24 h, the cells were stimulated with 10 ng/
ml of IL-1a for 24h and then the cells were lysed in Passive Lysis
Buffer (Promega). The luciferase activity was then measured using a
Dual-Luciferase Reporter Assay System (Promega) as per the
manufacturer’s instructions. Firefly luciferase activity was normalized
by Renilla luciferase activity for each transfection.

TAK1 activity assays
TAK1 present in TAB1 immunoprecipitates was assayed by its ability
to activate MKK6, as judged by the activation of SAPK2a/p38a. The
active SAPK2a/p38a generated in this first stage of assay was then
quantitated in a second assay by measuring phosphorylation of myelin
basic protein (Cheung et al, 2003). The TAK1 complexes were pulled
down from 1 mg of cell lysate obtained from TAB1 reconstituted MEFs.
The cell lysates were incubated for 2 h at 41C with 20ml of glutathione-
sepharose beads per sample. The beads were washed twice with 1ml
of lysis buffer containing 0.25 M NaCl, followed by two washes with
high salt wash buffer (1 ml of 50mM Tris–HCl pH 7.5, 0.5 M NaCl and
0.1% (v/v) 2-mercaptoethanol). In all, 25% of the TAK1 complex
bound to the beads was used to measure TAK1 activity. The remaining
75% of the TAK1 complex was taken for immunoblotting using
appropriate antibodies as described earlier.

Cytokine secretion assay
For measuring TNFa and IL-6 secretion into the medium, 3�106

MEFs were transfected with the WTor S395ATAB1 and were seeded
in 24-well plates at density of 3�105 cells/well. At 24 h after
transfection, the cells were stimulated with IL-1a for different
lengths of time. The media were collected and after brief
centrifugation, 100ml of clear media was used for cytokine ELISA
as per the protocol from Peprotech.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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