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Abstract Cognitive function is an important end point of treatments in dementia clinical trials. Measuring
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cognitive function by standardized tests, however, is biased toward highly constrained environments
(such as hospitals) in selected samples. Patient-powered real-world evidence using information and
communication technology devices, including environmental and wearable sensors, may help to
overcome these limitations. This position paper describes current and novel information and commu-
nication technology devices and algorithms to monitor behavior and function in people with prodro-
mal and manifest stages of dementia continuously, and discusses clinical, technological, ethical,
regulatory, and user-centered requirements for collecting real-world evidence in future randomized
controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need
to be addressed by future smart sensor technologies. When these requirements are satisfied, these
technologies will provide access to truly user relevant outcomes and broader cohorts of participants
than currently sampled in clinical trials.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
1. Introduction

A recent systematic review based on 125 individual trials
concluded that in randomized controlled trials (RCTs) on
disease-modifying drugs for dementia, “[c]ognition should
be measured by the Mini–Mental State Examination or the
Alzheimer’s Disease Assessment Scale–Cognitive subscale
(ADAS-Cog)” [1]. However, future trials may benefit from
a more innovative approach. Established cognitive tests in
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prodromal and clinically manifest stages of neurodegenera-
tive dementing disorders, such as Alzheimer’s disease (AD),
have been criticized for their limited sensitivity and speci-
ficity, particularly with respect to the effects of interventions
on cognitive function over placebo [2,3]. Outcomes need to
capture the full range of clinically relevant phenomena,
including the fluctuation of cognitive disability and decline
in noninstrumental and instrumental activities of daily
living related to general functioning and autonomy at
home as well as in the community and consider the impact
of an intervention on the everyday life of people with
cognitive decline and caregivers. In addition, standard
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Panel 2
Real-world evidence definition and dimensions

Definition: Real-world evidence (RWE) “entails data
collection and analysis about the use, benefits and risks of
medicines that fall outside the bounds of the classic
Randomized Clinical Trial, including use of data that is
routinely collected in the daily practice of medicine, and
thus reflective of the heterogeneous patients seen in real
world practice settings.” (http://catalyst.phrma.org/real-
world-evidence-not-just-big-data).

RWE data categories according to the Network of
Excellence in Health Innovation (http://www.nehi.net/
writable/publication_files/file/rwe_issue_brief_final.pdf)

� Claims data derived from insurance reimburse-
ments

� Clinical trials data derived from the outcomes of
randomized clinical trials

� Clinical setting data derived from patient medical
records and patient care

� Pharmacy data derived from prescription orders and
fulfillments

� Patient-powered data derived directly from the pa-
tient experience

Real-world evidence on the political agenda: The Na-
tional Institutes of Health in the United States has inaugu-
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RCTs may be biased to selected cohorts of participants by
excluding people who cannot receive neuropsychological
tests due to language or motor barriers. Therefore, current
RCTs on dementia using only paper and pencil clinical
and neuropsychological scales may not entirely reveal the
effect of an intervention on cognitive challenges of daily
living for the population of people with dementia at large
[4], see Panel 1.

Recognizing these limitations, major stakeholders, such
as the Alzheimer’s Association, regulatory authorities, the
pharmaceutical industry, and the European Research Coun-
cil, have invoked more research on procedures collecting
real-world evidence (RWE) in people with dementia (see
Panel 2). This evidence implies the continuous acquisition
of quantitative information on subjects’ cognitive status
and daily living abilities outside hospitals or point-of-care
settings by information and communication technology
(ICT) solutions such as wearable sensors and distributed
(environmental, home) sensing; these data are elaborated
and visualized by smart algorithms. In some cases, these
technologies may also be able to deliver interventions to sup-
port everyday activities in people with dementia. The use of
ICT for capturing RWE data and for delivering interventions
cannot always fully be separated, as delivering situation-
aware support requires assessment of current behavior and
context as well. For sake of brevity, the current perspective
Panel 1
Two types of biases in randomized controlled trials

In-trial bias: sources of bias within the randomized
controlled trials.

� Widely studied
� Selection bias considered as a within trial problem

(see [5], http://handbook.cochrane.org/front_page.
htm), where systematic differences between base-
line characteristics of the groups that are compared
may drive biased assessment of intervention effects.

Per-trial bias: the randomized controlled trials as a
source of bias.

� By its design, randomized controlled trials may pre-
clude a relevant segment of the population from
participation in clinical intervention research based
on comorbidity, social status, education, and age.

� Research into this source of bias is more limited;
examples are:
B A study on rehydration of children with gastroin-

testinal infection pointed to the importance of the
setting of the trial [6].

B A study on cancer treatment [7] pointed out: “If,
however, the patients in a clinical trial are not
representative of the entire patient population
because of patient and physician selection biases,
the generalizability of the results to the entire
patient population may be compromised.”

rated the Precision Medicine Initiative and a series of
Open Data initiatives. On April 14, 2016, the European
Parliament voted in favor of the EU Data Protection
Regulation stating that by default all patient health data
may be opted in for research by default.
article focuses on the derivation of RWE data from pervasive
ICT devices irrespective of an eventual additional function
as a support device.

ICT solutions allow the collection of short- (e.g., short ep-
isodes in paradigmatic situations allowing the measurement
of cognitive performance during activities of daily living),
medium- (e.g., RCTs lasting several months), and long-
term (e.g., observational study lasting years) RWE tracking
the trajectories of a person’s everyday behavior and activ-
ities at home (see Fig. 1 for a schematic depiction of the
interaction between these factors). Over a long period,
RWE can be used to estimate the onset of functional decline
due to the underlying cognitive dysfunction induced by nat-
ural disease progression. Over medium-term follow-up,
RWE can serve as an end point for the evaluation of targeted
interventions.

The association between RWE measures and cognitive
status is obtained by data mining, machine learning, cogni-
tive computing, and statistical learning [8,9]. In the
validation process of RWE measures, a major issue is the
control of quality, validity, fidelity, and reliability. Other
issues are users’ and family consent of the level of privacy
and intrusion into the daily life of people with dementia,
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family members, and visitors, especially using video or
audio recordings from patients’ home or resident homes
obtained outside of dedicated testing situations. Of note,
video or audio assessment of a persons’ behavior at his or
her home can also be considered a technology solution to
capture RWE. However, such data when obtained outside
of dedicated testing situations rise issues of user privacy
and therefore would be regarded highly intrusive by many
people. Consistently, previous studies typically used such
approach only in structured and constrained conditions,
such as monitoring defined episodes of between patients or
patients with caregiver interactions [10–12] or measuring
cognitive function in memory clinics during performance
of defined cognitive tasks [13].

In this position paper we:

� summarize the available mature and promising future
ICT sensors and procedures for early detection of onset
and changes in functioning (i.e., activities of daily
living), autonomy, (i.e., instrumental activities of daily
living) and underlying cognitive functions.

� address the main technological issues to be considered
for the practical use of ICT sensors and procedures in
dementia.

� address the main ethical, acceptance, and regulatory is-
sues to be considered for the practical use of ICT sen-
sors and procedures in the planning of future RCTs and
observational longitudinal studies in dementia.

� suggest how to validate and combine ICTwith current
standard approaches based on clinical and neuropsy-
chological scales.

The article contents represent a selective (nonsystematic)
literature review and evidence-based consensus on this mat-
ter among the authors, representing domain experts of neuro-
science, clinical research, computer science, and ethics.
2. Available and forthcoming ICT technologies for RWE
in dementia research

2.1. Examples of sensor-based patient-powered RWE in
dementia research

In Panel 3, four examples illustrate how emerging
everyday ICT-sensing systems can continuously collect
RWE on cognitive and functional status of senior people.
We propose the following dimensions to characterize their
main features and outcome:

� Target: Specific cognitive or functional status
� Analysis interval: Short-term (real-time) epoch (e.g.,

instantaneous disorientation), medium (e.g., last
week’s/month’s activity trajectory) or long-term epoch
(e.g., activity trajectory over years)

� Location: a specific locale (e.g., indoor or outdoor set-
tings)

� Sensing technology: mobile devices (e.g., wearables
such as bracelet-type sensors, carried smartphone), or
sensors integrated into the subject’s living environment
(e.g., camera, environmental sensors)

To explore the full scope of current use of ICT for func-
tional outcomes in dementia (including prodromal stages),
we additionally performed a search of clinical databases (ac-
cessed in November 2017) using the string ((dementia
[MeSH term](MeSH5Medical subject headings) OR (neu-
rocognitive disorder) [MeSH term] OR (mild cognitive
impairment)[MeSH term]) AND (sensor OR actigraphy
[MeSH term] OR wearable) in PubMed, and the string ((de-
mentia OR (neurocognitive disorder) OR (mild cognitive
impairment)) AND (sensor OR actigraphy OR wearable)
in ClinicalTrials.gov, the WHO-Register International Clin-
ical Trials Registry Platform and The Cochrane Central Reg-
ister of Controlled Trials (http://onlinelibrary.wiley.com/
cochranelibrary/search). This search resulted in 233 studies
retrieved from PubMed, 46 studies from ClinicalTrials.gov,
six additional studies from the International Clinical Trials
Registry Platform database, and 42 studies from the Central
Register of Controlled Trials. Most studies did not fit the
scope of this article, as they addressed sleep abnormalities
or intervention effects on sleep (mainly related to “actigra-
phy”). Several studies addressed conditions not related to de-
mentia, did not involve any RWE or addressed biosensors to
detect changes in biofluids or electroencephalography
(mainly related to “sensors”). Several studies addressed
the detection of apathy, delirium, or agitation as an outcome.

Those studies of interest are listed in Table 1. Together
with the examples in Panel 3, this current evidence illustrates
the use of ICT devices for dementia detection. Particularly,
gait and walking features serve as valuable additional source
of context information to enhance function detection in pro-
dromal and early stages of dementia.
2.2. Changing perspective

2.2.1. The application view
Table 1 and the examples in Panel 3 indicate novel ICT-

based RWE procedures, combined with appropriate analysis
strategies, that are able to produce relevant statements about
the clinical and functional status of people with cognitive
impairments. From the application viewpoint, there are
three major uses of patient-powered RWE: (1) use of
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Panel 3
Examples of real-world evidence studies in dementia

Example 1 (wearable, indoor, short-term, clinical): A study by Kirste et al. [14] reported an effect of Alzheimer’s disease
on accelerometric motion protocols of unconstrained everyday behavior, before this effect manifested itself in established
behavior rating scales. In this study, Wearable Inertial Measurement Systems (WIMS) were used to obtain accelerometric
recordings of motion intensity in each partner of 23 dyads in their private home during 24 consecutive hours. One partner in
each dyad was diagnosed with Alzheimer’s disease (AD), without manifest behavioral symptoms according to the Cohen-
Mansfield Agitation Inventory [15] rating by proxy. They introduced a novel accelerometric motion score, based on applying
functional principal component analysis [16] to the frequency spectrum of the motion intensity signal, to capture a model of
the average activity structure among all study participants. The accelerometric motion score reached 91% cross-validated
accuracy (.96 sensitivity and .87 specificity) to separate the healthy partners from their AD patients based on the accel-
erometric motion score on 46 target subjects (23 AD, 23 healthy). In addition, sensitivity (as well as the area under the curve)
was superior when benchmarked by the Cohen-Mansfield Agitation Inventory. WIMS-based analysis was thus able to
establish a link between clinical diagnosis and measurable behavior in clinical dementia stages.

Example 2 (wearable, outdoor, short-term, functional): A study by Koldrack et al. [17] presented first results on a study
that aimed at detecting disorientation in dementia patients during wayfinding tasks. While the detection of manifest way-
finding errors—that is, choice of wrong route with respect to target—is straightforward based on global positioning system
traces, the detection of disorientation before it leads to erroneous actions is difficult. In this study, detailed data on fine-
grained motor behavior in urban wayfinding was recorded using WIMS and global positioning system for 13 people
with dementia. A set of energy- and kinematics-based features was developed with the objective to achieve real-time
detection of episodes of disorientation in the WIMS data stream. Machine learning using a cross-validated compound
feature set based on WIMS was able to detect effects of spatial disorientation (area under the curve .74), even without
correcting for knowledge where behavior change can be expected due to transition points such as road crossings.

Complementary to wearables, sensing devices that do not require any instrumentation of the user also provide potentially
relevant data:

Example 3 (video, indoor, long-term clinical 1 short-term functional): A study by Konig et al. [18] analyzed the per-
formance of everyday activities (such as “prepare medication” or “use phone”) on image processing algorithms applied to
video recordings of these activities. The researchers used an Event Monitoring System to automatically extract information
about patient’s performance (e.g., feet position, number of steps, and the activities carried out). Extracted features were used
as input for a Na€ıve Bayes classifier to classify the participants in two dimensions: (1) degree of autonomy (good, inter-
mediate, and poor) as a functional end point; and (2) cognitive status (AD dementia, mild cognitive impairment, and
healthy). The Event Monitoring System reached highly accurate autonomy and cognitive group classification benchmarked
by established clinical instruments. Such system, due to its use of video data and an experimental environment, is applicable
as an objective measure of functional level in clinical trials, but not likely to be used as home assessment.

Example 4 (dense, indoor, long-term clinical): A study by Lazarou et al. [19] investigated the use of a prototype dense
sensing system for homes to obtain continuous state monitoring of older people with dementia. The sensing technology of
the proposed system included wearable and integrated sensors to monitor sleep, object motion, presence, and utility usage.
These sensors were deployed at four different home installations of peoplewith cognitive impairment. Sensor data combined
with clinical observations were used to introduce individually targeted psychosocial interventions that led to improvement in
physical condition and sleep quality. This was a proof of concept study that addressed not the feasibility of a broader use of
such technology but showed potential effectivity that justifies further research toward feasibility and efficiency of such
systems.
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sensor-derived features of everyday activities (e.g., finding
one’s way outdoors or cooking a meal) as end points in clin-
ical trials; (2) use of ICT devices to detect long-term trajec-
tories of everyday function and underlying cognitive status,
but also of challenging behavior or behavioral impairment
(e.g., depression, anxiety, apathy, agitation, and sleep distur-
bances); and (3) long-term observation of high-frequency
behavioral features (naturally occurring or prompted by an
ICT device) to assess trajectories of everyday function and
underlying cognitive and behavioral changes.
With respect to (1), the use of standard actigraphy is well
established. However, Table 1 and Panel 3 illustrate that
wearable sensing devices beyond actigraphy are able to pro-
vide additional relevant end points in future RCTs.

With respect to (2), few studies so far have used ubiqui-
tous and unobtrusive ICT solutions to monitor long-term
behavior; one example is the determination of factors that in-
fluence time out of home in older adults using up to 1 year of
in-house sensor-based monitoring [47]. If monitored over
long periods of time, a sensor intended to control lighting



Table 1

ICT studies relating to dementia outcomes from the clinical database search

Project Project objectives Main characteristics of project

PubMed

Yuce et al. [20] Geofencing system for people with dementia Fixed restriction system for people with

dementia, no assessment of function or

cognition

van Alphen et al., and James et al. [21,22] Assessment of daily activities in people with

dementia

Aims at determining an aggregated measure of

overall activity, no assessment of function or

cognition

Cavallo et al. [23] Ambient assisted living environment to support

people with Alzheimer’s disease dementia

System to support people with dementia, no

assessment of function or cognition

Nijhof et al. [24] Home monitoring system for people with

dementia

This system includes no intelligence in the

technology device but provides access to the

patient’s behavior for a caregiver through

direct observation.

David et al., and Kuhlmei et al. [25,26] Apathy detection Assess a certain behavior to guide intervention;

this approach supports the feasibility of

function detection by wearable sensors

Etcher et al. [27] Aggression detection

Greene et al. [28] Automated detection of timed up and go test

performance

Predictor of cognitive decline, linked to a certain

test situation; serves as useful context factor

for detecting functional decline.

Hsu et al., Gietzelt et al., and Gietzelt et al.

[29–31]

Detection of gait and balance parameters by

wearable sensors, use for detecting cognitive

changes

These parameters can enter in constructing

context factors for detecting functional

decline.

Schwenk et al., Gietzelt et al., and Schwenk

et al. [32–34]

Wearable sensors for fall prediction in geriatric

frail people

Target gait and walk changes as predictors of the

physical risk of falls in frail people.

Demonstrate the feasibility of wearable sensor

application even in multimorbid senior people,

but do not address cognitive or functional end

points.

Akl et al., Suzuki et al., Hayes et al., Suzuki

et al., and Jekel et al.[35–39]

Fixed indoor instrumentation to detect signs of

cognitive impairment in instrumental

activities of daily living

This approach requires instrumentation of the

living environment by fixed sensors,

eventually confounding user’s need of privacy.

These studies showed that detection of

cognitive changes is possible in principle even

from relatively coarse assessments of

behaviors, such as arrival times at rooms. The

studies used a purely data driven approach and

reported no prediction accuracies.

Stucki, 2014#37991 [40] Web-based nonintrusive ambient system to

classify activities of daily living

This study supports the notion that function

measures are accessible to sensor-based

assessment, but has only been applied in

healthy young individuals, allowing no

inference on its use for detection changes in

function due to dementia.

Lopez-de-Ipina et al. [41] Reports features from automated speech

detection based on video data of patients with

Alzheimer’s disease and healthy controls

Highly invasive method, so far only applicable in

experimental settings. As perspective,

language is a promising future domain to be

included in detection system, provided user

privacy can be protected.

Eby et al. [42] Monitoring driving behavior by ambient sensors Very sensitive topic for users, but promising in

applications for healthy older people and the

transition to cognitive impairment. Legal

requirements for the use of such systems are

widely unclear.

Mahoney and Mahoney [43] Identifies key features necessary to consider

when making products to be worn by persons

with cognitive impairment

This study serves as valuable resource for the

needs assessment of senior people with

cognitive decline.

Kirste et al., and Bankole et al. [14,44] Wearable sensors to detect agitation and

dementia features

This study provides an accelerometric motion

score related to cognitive decline.

(Continued )
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Table 1

ICT studies relating to dementia outcomes from the clinical database search (Continued )

Project Project objectives Main characteristics of project

Clinicaltrials.gov

NCT02496312, NCT03272230,

NCT03293537, NCT01384344

Wearable and fixed sensors to detect apathy Assess a certain behavior to guide intervention;

this approach supports the feasibility of

function detection using different

environmental and/or wearable sensors,

including monitoring of motion as well as of

physiological signals such as heart rate or skin

conductance. These studies did not target the

end point of cognitive function and navigation

at a prodromal stage of dementia.

NCT03297268 Wearable and fixed sensors to detect agitation

NCT02258386, NCT02465307 Wearable and fixed sensors to detect delirium

NCT03120741 Daily activity and environmental sensing

techniques based on wandering behavior

indoors, changes in times being in bed, and

using electric devices at home to establish

behavioral models of early dementia patients

and cognitive healthy function

Primary outcomes are risk behaviors (such as

forgetting to turn water and gas off) and

behavioral disturbances (such as repetitive

behaviors, and wandering during the night).

The approach did not address prodromal or

early functional impairments.

NCT02290912 Wearable devices to detect effects of a large

number of life style interventions in middle-

aged individuals

Target not further specified, aims at healthy

middle-aged individuals.

ICTRP

JPRN-UMIN000023764 To develop machine learning algorithm to

provide objective measures for depression,

bipolar disorder, and dementia using facial

expression, body movement, voice, and daily

activity data

Data-driven approach targeting a broad range of

different conditions, involving intrusive data

types such as video data and audiotapes of

spoken language

TCTR20160916001 Effect of cognition-specific computer training

versus nonspecific computer training on the

cognitive function and health-related quality

of life in mild cognitive impairment

No use of ambient or wearable sensor systems for

function detection.

JPRN-UMIN000029785 ICT interactive system providing light, sound,

odor, and somatic stimuli to people with

dementia

Technology devices provide certain stimuli, fixed

devices, no function detection

ISRCTN25427954 Questionnaires about living with dementia, and

about willingness to use a wearable device that

collects data about activity and sleep over two

or 12 weeks

Need and acceptance assessment; provides

access to user needs and values.

CENTRAL

Schwenk et al. [45] Use of wearable sensors to monitor the effect of

gait training in people with MCI

Supports the relevance of gait parameters inMCI,

does not address functional or cognitive

outcomes.

Kaye et al. [46] Spoken work counts as MCI biomarker Needs transcripts of audiotapes of spoken

language. Underscores the relevance of

language domain, but provides no means for

protecting user privacy.

Abbreviations: CENTRAL, Central Register of Controlled Trials; ICT, information and communication technology; ICTRP, International Clinical Trials

Registry Platform; MCI, mild cognitive impairment.
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in a home automation application can at the same time
provide observation on behavior patterns of the inhabitants.
Similar outcomes can be derived from the pattern of use of
cooking devices or other electronic markers of daily activity.
Other dimensions for long-term assessment of change are
the pattern (not contents for privacy reasons) of social
communication via electronic devices [48], or levels of
physical activity [49].

Finally, with respect to (3), high-frequency behavior
detection, for example, elicited by use of electronic devices
for performing everyday activities, entertainment or playing
games, is not yet part of long-term observations of behavior
and cognition. Electronic devices have increasingly become
part of the natural environment of most people, including se-
nior people. Therefore, intra-individual change in the use of
electronic devices, either driven by the user or regularly eli-
cited by the device itself (for example through serious
games), provides potential access to a rich source of high-
frequency real-time behavioral data associated with
everyday function and underlying cognitive and mental sta-
tus. Examples for future applications are the use of naviga-
tion systems that adapt to the user’s cognitive abilities,
such as those explored in previous studies [50,51]. Over
time, the growing demand of assistance from such systems
would provide RWE inputs to assess a long-term trajectory
of functional and underlying cognitive decline. A similar
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trajectory can be derived from the pattern of solving prob-
lems in a computerized serious game [52] from a user fol-
lowed over years.

2.2.2. The user’s perspective
A classification of RWE devices and procedures from the

user’s perspective in dementia research is the distinction be-
tween active and passive systems. Active systems require
direct user’s input to the system such as a computerized
serious game with defined psychometric properties that can
probe a user’s cognitive capabilities. Regular use of such a
system draws a trajectory of cognitive performance or
prompts activities of users in everyday situations (“leave
home for a walk”, “use communication device with family
member”) and monitors the ensuing activities. In contrast,
passive systems monitor the naturalistically occurring
everyday behavior with as little interference as possible.
Active sensing is sometimes referred to as “participatory
sensing”, as it requires user participation and is easier to con-
trol in terms of privacy. Passive sensing is sometimes
referred to as “opportunistic sensing” as the devices take
initiative to seek, record, and process data [53]. A passive
system to monitor long-term trajectories of everyday activ-
ities in an older person would represent the closest approxi-
mation to RWE, albeit active systems may have the
advantages of being more easily applicable to models of
cognitive capabilities under scrutiny and having reduced
noise due to a priori defined behavior categories. The use
of such active systems for RWE has found little application
so far with few exceptions, most of which, however, were
still located in highly controlled environments [54–56].
One small study (13 cases) found a high content validity of
a cognitive game outside a controlled environment, using
the Montreal Cognitive Assessment as a reference marker
of global cognition [57]. This finding serves as an example
of a hybrid system, an active assistive device that becomes
embedded in a real-word environment.
2.3. Future work: From data-driven to model-driven
analysis

Most of the investigations presented in Section 2.1 focus
on data-driven analysis strategies. These strategies aim at
Fig. 2. Fundamental estimation targets in sensor-based analysis of everyday

behavior.
directly estimating the target value (e.g., a diagnostic label, a
clinical score, and the current activity) from the sensor data
by applying a variety of classification or regression methods;
they are directed toward key outcomes that require anomaly
detection, prediction, diagnostic classification, or decision-
making derived from features in sensor data streams (see
Fig. 2 for a schematic depiction of the inferences required
to derive estimates of behavior or function from sensor
data and related instantaneous or aggregated [intrinsic] tar-
gets). Although many of the sensors used in patient-
powered RWE observe effects of human behavior, the
data-driven analysis approach has no explicit model of
behavior—for example, no model of the causal connection
between the different actions that make up a complex activ-
ity and typical action sequences and the context factors that
influence when persons execute which actions.

However, everyday behavior is highly variable. This high
variance appears as “noise” from the viewpoint of analysis
strategy and thus restricts the accuracy of purely data driven
approaches to infer an individual’s activities and underlying
cognitive abilities from sensor data. In contrast to data-
driven analyses, model-driven concepts use knowledge
about the causal structure of behavior and the effect of
cognitive state on the possible sequence of activities. Such
knowledge, for instance, encodes that for washing hands,
the water tap needs to be turned on and that failure to do
so may indicate a lapse of memory. Previous studies
[58,59] indicated that model-driven methods may indeed
improve accuracy in the detection of human actions. For
example, in [60] a Bayesian causal model represented the
steps involved in handwashing for a person with dementia,
and these steps were modeled as being conditionally depen-
dent on the person’s overall stage of dementia. As persons
interacted with the system, the model inferred their stage
of dementia from the sequence of actions in the task. If
they required assistance at most steps, for example, the sys-
tem inferred that they suffered from severe cognitive deficits.
If they only required occasional prompts, the system inferred
mild cognitive deficits.

The main outcome of medium-term RWE procedures in
senior people is the effects of an intervention on cognition
and/or cognitive fluctuation within an RCT, while that of
long-term studies is the detection of smooth transitions
from normal cognition to mild cognitive impairment and
then dementia. These procedures are expected to benefit
from the model-based consideration of context factors
[47], and a prior knowledge on personal characteristics,
such as habitual pattern of device use or a priori level of nav-
igation ability.
3. Requirements for RWE obtained by sensor
technology

ICT-based procedures for RWE studies on intervention
effects in dementia research have to capture relevant clinical
features validly to be useful, fulfill minimum standards of
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data fidelity and robustness, ensure user privacy and data
safety, and need to incorporate user needs.

3.1. Clinical requirements

A significant clinical requirement of ICT systems
capturing patient-powered RWE is the ability to detect
smooth transitions in everyday function and underlying
cognitive abilities. As an additional source of complexity,
the trajectory of prodromal dementing disorders, particu-
larly with respect to behavioral and mental disturbances,
can fluctuate. Therefore, ICT-based features should be adap-
tive and take into account variability. Implementation of ICT
end points should ensure the compatibility of the devices
with the guidelines of regulatory agencies on the measure-
ments accepted in standard clinical care settings and clinical
trials for drug development. This scenario implies several
conditions to be established to develop health-care products
in the longer term: (1) ethical and functional requirements
from patients, caregivers, patients’ advocates, regulatory
medicines agencies, and payers of health services; (2) the
maturation and large-scale production of ICT digital moni-
toring in relation to those requirements by synergies between
ICT and pharma industries, small-medium enterprises, and
academic researchers; (3) standards for remote assessment
technology, data exchange and sharing, and analytical meth-
odology for the classification of RWE.

Today, available ICT sensors in routine applications such
as actigraphy allow coarse-grained, short-term assessments
ofmotion features that have been associatedwith globalmea-
sures of activity, circadian rhythms, sleep disturbances,
apathy, and global cognitive status (Panel 3). To date, such in-
formation is potentially useful for identifying at-risk cases
and monitoring disease progression and intervention effects.
Future ICT sensors should be able to capture more compre-
hensive and fine-grained features of activities of daily living
and functioning. Cognitive models for functioning detection
(described in Section 2.3) need to consider relevant con-
founding variables and outcomes, such as intrinsic traits
(e.g., resilience or propensity tomanage physical and psycho-
logical stress and disease, sensory deficits), intrinsic states
(e.g., motor capacity, cognitive capacity, psychological and
physical stress), and extrinsic factors (e.g., built environment,
social network or climate conditions). The outcomes and con-
founds to be captured by ICT-based sensors can be ordered
according to their relevance for the patient and his/her care-
giver as well as by their accessibility for sensor-based assess-
ment. This leads to a prioritization of variables to be included
in future RWE trials in dementia that can be further expanded
with advances in technology. In perspective, adaptive ICT-
based RWE devices may be able to learn user characteristics
and increasingly take them into account when inferring
behavior and functioning from sensor data, eventually
requiring expert based recalibration of cognitive model pa-
rameters during long-term use of such a device.
3.2. How do we ensure clinical validity of ICT sensor
measurements?

Aparticular challenge is the validation of sensormodalities
by ensuring they reflect relevant clinical features and allow
interpretation of variability in sensor data trajectories in terms
of change of functioning and underlying cognitive status.

Sensor data as RWE end points can serve three major
clinical use cases: (1) diagnostic, for early detection or pre-
diction of cognitive decline and dementia; (2) monitoring,
for capturing the impact of natural disease progression on
daily activities and underlying cognitive functions; and (3)
testing intervention effect on the trajectory of cognitive
decline and function.

Actigraphy studies have provided some insights into asso-
ciations between sensor-based motion features and underly-
ing cognitive and mental states. Using established scales, the
validity of actigraphic measures for detecting sleep distur-
bances, agitation, apathy, or global cognitive decline has
begun to be established mainly in cross-sectional analysis
(Table 1). What is required in view of the outlined key use
cases is establishing sensor-based rates of change in major
domains including cognition, sleep, apathy, and agitation.

With respect to established biomarkers of underlying pa-
thologies, such as cerebrospinal fluid amyloid, tau protein,
APOE genotype, or medial temporal lobe atrophy, ICT-
based sensor data may serve the purpose of meaningful
phenotype enhancement. Sensor-based signals of imminent
or ongoing cognitive or functional decline would identify
those people who will benefit from in-depth diagnosis using
clinical instruments and established biomarkers.

There is a major limitation in the clinical assessment of
cognitive functions in older adults. Standard clinical and
neuropsychological pencil and paper tests typically used
for the detection of change in cognitive functions and activ-
ities of the daily life (e.g., Mini–Mental State Examination
score, Alzheimer’s Disease Assessment Scale–Cognitive
subscale, clinical deterioration scale, and so forth) have
limited sensitivity. In addition, the institutional use of these
tests can enhance the beneficial effects of the placebo condi-
tions when local clinicians are particularly esteemed, pa-
tients generally have limited access to healthcare, and
raters and patients think that they will receive special bene-
fits in the case of an improvement of the subjects’ clinical
status or cognitive functions at follow-up [61].

Keeping in mind these considerations, the reference gold
standard for the validation of the new ICT sensor measure-
ments of clinical status and cognitive functions should
include not only conventional paper and pencil scales and
tests but will also need to consider standardized and unsuper-
vised process-based computerized batteries testing cognitive
functions in patients’ homes allowing as well to capture test
taking behavior and type of errors [62,63]. Currently
available examples for such potential benchmark tests for
use outside of specialized settings are summarized in Panel 4.



Panel 4
Standardized and unsupervised computerized batteries testing cognitive functions for potential application
inside and outside of specialized clinical settings

Cambridge Neuropsychological Test Automated Battery (CANTAB, www.cambridgecognition.com/cantab):
CANTAB has enabled researchers to highlight significant deficits affecting broad cognitive domains in schizophrenia

(e.g., working memory, decision-making, attention, executive functions, and visual memory suggestive of frontostriatal
dysfunctions) and dementia (e.g., especially paired Associates Learning, PAL) test [64]. Furthermore, CANTABmay ensure
a reliable and reproducible administration, which allows testing various aspects of executive functions that are expected to
underpin activities of daily living in Alzheimer’s disease patients suffering from prodromal or mild dementia stages. It also
predicted the level of dependence of the patients from caregivers [65]. CANTAB has been originally designed to be used by
clinicians and researchers but has the potential to be self-administered with the support of a caregiver. Indeed, there is
evidence of the feasibility and reliability of unsupervised self-administration of the computerized battery for testing mild
cognitive impairment in older primary care patients [66].

Novel Assessment of Nutrition and Ageing toolkit (NANA, http://www.newdynamics.group.shef.ac.uk/nana.html):
NANA aims at tracking cognitive function and other health and behavioral domains in seniors [67]. NANAwas designed

to be self-administered at subject’s home with the only support of a caregiver. The NANA cognitive tasks are sensitive to
cognitive processing speed, which is related to other cognitive functions [68] and several relevant well-being outcomes
across aging [69].

Computerized battery for cognitive assessment (Cogstate, https://cogstate.com):
Cogstate measures the speed of processing, visual attention, and visual learning and memory. Cogstate has been shown to

be effective to probe cognitive decline in seniors with no retest-related increases in scores after 1 month [70–72].
Automatic Speech Analysis for the assessment of cognitive disorders (Delta, https://ki-elements.de):
Delta is a purely speech-based tool empowered by artificial intelligence and computational linguistics technologies to

assess different neurocognitive domains such as language, learning, but also affective states such as apathy. It has been
shown to provide as accurate results as manual annotations and extract additional qualitative semantic features (i.e., word
frequencies) or quantitative acoustic features (i.e., pause lengths) from a patients’ recorded performance [73].
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3.3. Data robustness, quality requirements, and ICT
standards

The literature defines several general dimensions of data
quality valid for clinical research as well [74], including ac-
curacy, completeness, timeliness, and validity. Each of these
aspects needs to be targeted to ensure high-quality standards.
Unfortunately, information about data quality is scarce in
most of the studies on ICT-based RWE procedures. The
result of a PubMed Central search for (“data quality”[All
Fields] OR “data validity”[All Fields] OR “data robustnes-
s”[All Fields]) AND (“wearable sensors”[All Fields]
OR “actigraphy”[All Fields] OR “actigraphy”[MeSH
Terms]) AND (“remote sensing”[All Fields] OR “remote
health monitoring”[All Fields] OR “remote monitoring”[All
Fields]) revealed that most studies addressed data safety
(e.g., encryption or privacy), but not quality (see
Supplementary Material for details).

Approaches for semi-automatic verification of data qual-
ity derived from ICT-based RWE procedures are the subject
of active research. Specific problems of data quality for
wearable sensors may, for instance, arise from poor device
placement [75] and lack of a gold standard. In addition, a
low signal-to-noise ratio may blur signal structure. More-
over, data sets generated from ICT solutions for RWE collec-
tion are complex, heterogeneous, and large, posing
additional challenges of big data quality assurance [76].

Quality requirements for ICT-based RWE procedures not
only address the data themselves but also target the pro-
cesses of data collection and data use, which are often ne-
glected [74]. Dobkin [77] provides a list of technical
features that address the particular requirements of data
collection for RWE. Among others, these requirements
include reliability of sensors and data transmission.

Consolidating heterogeneous data sources and preparing
the collected data for further analysis are typically the first
delicate steps during data analysis [78]. There is currently
no consensus among stakeholders (i.e., academics, patients’
advocates, industrials, regulatory agencies, payers, and so
forth) concerning valid, automatic, or manual procedures
for validating the quality of data (i.e., sensor data complete-
ness, artifact detection and rejection, and so forth) and
extraction of markers of daily activities and cognitive func-
tions during the phases of ICT-based RWE studies in demen-
tia research, which span over the entire data lifecycle [79]
from data collection to publication.

Today, validation procedures for data collection (e.g.,
semi-automatic checks for sensor data completeness) and
data analysis [80] (e.g., semi-automatic generation of

http://www.cambridgecognition.com/cantab
http://www.newdynamics.group.shef.ac.uk/nana.html
https://cogstate.com
https://ki-elements.de
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analysis reports) are being developed on demand during all
steps of the data lifecycle whenever a problem occurs in a
trial [81]; a top-down strategy to ensure of data quality for
ICT-based RWE is still missing.

Other research domains such as bioinformatics have suc-
cessfully demonstrated the positive impact of data openness
on reproducibility [82]. Similarly, open standards for sen-
sors, data, models, ICT platforms for the storage and visual-
ization of the data, and analysis workflows have to be
established to sustainably address issues of data handling
and analysis in the context of ICT-based studies in dementia
research. The publication of data models, algorithms, and
analysis scripts allows other researchers to understand,
reuse, revise, and advance all steps of the entire data life-
cycle. As a result, this increases the reliability and validity
of ICT-based studies. However, small and medium enter-
prises and industrial partners of those ICT-based studies
may want to exploit own formats, platforms, and the com-
mercial value of the procedures validated with clinical
studies, so the temporal and modality terms of the open ac-
cess of procedures and findings should be defined in the calls
by private and public sponsors of RWE research. For
example, an intercontinental public-private alliance may
promote a shared solution for a global federation and inter-
operability of the most relevant international ICT platforms
for biomedical applications with a focus on aging and de-
mentia (Panel 5).
Panel 5
Examples of international ICT platforms for biomedic
focus on aging and dementia

An important goal of a future public-private transcontinenta
digital platform combining ready to use wearable technologies, s
home sensors to measure a valid and meaningful combination o
living to detect subtle functional deficits. Ideally, this future digit
interoperability of available ICT platforms for data and resourc
tiatives are mentioned just as an example:

� Remote Assessment of Disease and Relapse-CNS to collec
www.radar-cns.org).

� The European Medical Information Framework (http://ww
tional domains in AD patients.

� ROADMAP (http://roadmap-alzheimer.org) to obtain inpu
� ELIXIR (https://www.elixir-europe.org) to bring together

bases, software tools, training materials, cloud storage, an
� Human Brain Project to search real patient data to unde

(https://www.humanbrainproject.eu).
� AgedBrainSYSBio (http://www.agedbrainsysbio.eu) to int

tific and societal challenges of neurodegenerative diseases
� SENSECog (http://www.sense-cog.eu) to understand th

impairment, and dementia, and translate this knowledge
citizens.

� Critical Path Institute’s Coalition Against Major Diseases (
be applied to increase the efficiency of the development pr
ative disorders with impaired cognition and function.
3.4. Privacy and data safety

Data privacy is a key ethical concern with ICTwhich col-
lects personal information. To date, important privacy issues
have been raised for a range of existing ICTs aimed at
measuring aspects of memory and cognition or tracking
health variables, such as online memory tests [83], and mo-
bile applications for health tracking [84,85].

Studies on the attitudes of older adults, family members,
and caregivers toward tracking devices show that these
stakeholders weight the potential benefits, and safety bene-
fits in particular, of these devices against the risks to loose
privacy. Their acceptance of that technology depends on
the users’ values and priorities [86,87]. For example,
privacy concerns have been shown to be negatively
correlated with the intention to adopt mobile health
technologies [88]. Generally, the most important concerns
related to privacy are the transfer of personal data, lack of
awareness about how personal information is used, and stor-
age of the information [89].

In light of the potential harms of privacy breaches, tech-
nology developers and clinical trialists alike should consider
the moral complexity of using tracking or sensing devices in
potentially vulnerable populations who may experience
challenges in providing informed consent [90]. For a large
proportion of existing ICTs available on the consumer mar-
ket, the consenting process is problematic, involving overly
al applications that may be interoperated with a

l alliances may be the development and testing of an ICT
uch as smartphones and smart-watches, with mature smart-
f real-world evidence from unrestricted activities of daily
al platformmay result from the integration of standards and
e sharing for biomedical applications. The following ini-

t and share real-world evidence in mental disorders (http://

w.emif.eu) to access the data sets required to evaluate func-

t from regulators and payers.
life science resources from across Europe including data-
d supercomputers.
rstand similarities and differences among brain diseases

egrate numerous European initiatives addressing the scien-
and aging.
e combined impact of age-related hearing and vision
into clinical applications for the mental well-being of EU

https://c-path.org) to create new tools and methods that can
ocess of new treatments for AD and related neurodegener-

http://www.radar-cns.org
http://www.radar-cns.org
http://www.emif.eu
http://roadmap-alzheimer.org
https://www.elixir-europe.org
https://www.humanbrainproject.eu
http://www.agedbrainsysbio.eu
http://www.sense-cog.eu
https://c-path.org
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lengthy and complex text, and fails to provide meaningful
information and choice. As a result, most consumers do
not read terms of agreement or privacy policies of ICT-
based resources, which leads to the routinization of consent,
where the act of agreeing to the use of a technology becomes
unreflective and uninformed [91]. Moving forward, it will be
imperative to exercise transparency in the provision of RWE
ICT solutions and to carefully consider, with the help of the
dementia community, how to best preserve end-users’ auton-
omy while ensuring safety [92]. Following the concept of
citizen science, ownership of ICT-based sensor data ob-
tained outside of the framework of clinical trials require a
regulatory approach where the data remain with the user
or patient, and technical solutions are provided to allow
the user to opt-out of any reuse proposed to them. Linked
with this approach, calls of public sponsors for new ICT plat-
forms for RWE collection may ask a regulated access to ICT
and portlet algorithms by a formal procedure to speed the
validation process. After the end of the project and a reason-
able period of embargo, external researchers may present a
formal research project to the technological and scientific
committee of the granted consortium, which in turn provides
technological solutions to allow data owners to opt-out of
any data use.
3.5. Usability, adoption, and user values

Patient engagement approaches such as user-centered
design can help inform technology usability and adoption
as well as ethical concerns regarding autonomy and ability
to consent to technology use. User-centered design based
on peer research methodology requires the creation of struc-
tures that enable patients, caregivers, and other stakeholders
to act as co-researchers rather than only as research objects
or informants [93]. As stated by Span et al. [94]: “most re-
searchers acknowledge the importance of involvement of
people with dementia in the development but they differed
in how they involved people with dementia. [.] People
with dementia played mainly the role of study objects and
informants [.] rather than being co-designer”. One key
issue “concerns the negotiation of power between re-
Table 2

Important device characteristics for user acceptance in a routine care setting, inte

Device characteristics Effects on acceptance

Wearability Place and comfort of wearing the de

Additional hardware features Aesthetically appealing, water proof

Energy efficiency Energy efficient device needs lower

Data read out Simple, self-explanatory automated d

output, sensitive to change in the

Data privacy Clear data access regulation

Data safety No unauthorized access possible

Perceived benefit Device use brings direct benefit, such

Additional functional features For example, wrist worn sensor syste

Connotation of device use Device is not classified as dementia
searchers” [95]. This negotiation requires a moderated pro-
cess of communication between stakeholders.

Adoption of a technology depends critically on its accep-
tance by main users [96]. The co-design of a technological
innovation with future users is one operational approach to
ensure future acceptance. In addition, technical characteris-
tics of the system will influence its acceptance by the users
(summarized in Table 2). The basis of these dimensions is
still narrow as only few user-centered studies on acceptance
have been conducted so far. One highly innovative approach
toward acceptance of an ICT solution takes identities and
mood of user into consideration for user interaction. This in-
tegrates with strong patient engagement at the development
stage of the technology.

A growing body of literature suggests that identity and a
sense of self persists in people through late stages of demen-
tia [97,98] and their capacity to experience prolonged states
of emotion [99]. Therefore, the notion of emotion, identity,
socio-cultural civility, and normative behavior should be
considered in the design of ICT solutions that monitor a par-
ticipant’s behavior continuously in his/her environment,
both from the perspective of the patient and caregivers.
When developing technology for older adults, it is critical
to consider that each person comes from a different cultural
and socioeconomic background, has a different sense of self
and identity, and has different emotional responses. A tech-
nological solution that triggers discomfort due to an
emotional misalignment with how the user perceives oneself
will most likely be rejected. For instance, a person with de-
mentia who perceives herself not as a patient but as still func-
tional and independent will most likely not adopt a
technology that conflicts with this self-image by supervising
her behavior. One approach is to tailor the monitoring func-
tion provided by the technology, and the framing of the pre-
sentation of that technology to the individual’s identity, self,
needs, and emotional states. For this, extensive user needs
analysis and user profiling as well as the extraction of affec-
tive identities and features of the user for adapted customiza-
tion are essential steps in future development of ICT
technologies. This in turn implies a deep level of engage-
ment from end-users throughout the elaboration process.
grating and extending recommendations from [43,103]

vice, discrete and not stigmatizing

, safe (getting off possible)

frequency of recharging and leads to less off-time

ata read out increases usability and acceptance, reduces error rate, immediate

type, and intensity of patient activity

as patient safety, autonomy

m functions as a watch, provides alarm and reminding features.

product, but as a device for active living.
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For the design of ICT-based sensor devices to monitor older
adults with dementia in daily (instrumental) activities, it has
been suggested to modify the look and accessibility of the
monitoring findings to conform with the current identity of
the user and his/her emotional state [100]. This in turn has
ethical and outcome implications that require careful consid-
eration.
4. Integrating ICT technology in RWE type clinical
research

4.1. Regulatory challenges

Classical RCTs are subject to strict legal provisions. In
contrast, any stakeholder may conduct an RWE trial using
ICT data with no more regulation than adherence to patient
data confidentiality. The lack of regulation will cast doubt on
RWE results on novel interventions from the point of views
of regulators and payers of public health services. Stake-
holder interests may drive collection and analysis of data
and interpretation of outcomes. Therefore, the anticipated
growth of RWE trials using ICT calls for the implementation
of a framework that maximizes data fidelity and receives an
approval by regulators and payers. ICT sensors lend them-
selves to continuously monitor data recording quality and
surveillance of analysis strategy. From a regulatory stand-
point, the US Department of Health and Human Services
released a report emphasizing that laws protecting health in-
formation, such as the Health Insurance Portability and
Accountability Act of 1996, do not apply to health informa-
tion submitted on mobile apps, social media, or the Internet.
As such, concerted international efforts will be required to
develop responsive policies that address what McCarthy
has identified as “large gaps in policies around access, secu-
rity and privacy” of ICT-based solutions [101]. This com-
prises rules for the control of data use by other
stakeholders (such as employers or health insurances), the
policies for managing synchronized data dictionaries and
terminologies, and interoperability standards. Different to
products for the consumer market, RWEmonitoring ICT de-
vices that should serve to measure primary end points in
clinical trials would likely have to undergo medical device
certification, albeit this is not yet clearly defined by regula-
tory authorities.
4.2. Complement classical RCTs

As far back as the 11th century, the Arab philosopher Ibn
al-Haytham, known to the West as Alhazen, noted that
“experimental data and reproducibility of its results” charac-
terize sound scientific methodology. Accordingly, RCTs
serve as the gold standard of clinical intervention research.
The introduction of RWE trials using ICT outcomes may
challenge this paradigm in dementia research; the advantage
of the RWE is its ability to cover the complexity of the indi-
viduals at stake, but it brings with itself the limited ability to
reproduce findings typically acquired under constrained
conditions where reproducibility is a key criterion of an
experiment. On this basis, current results of RWE trials
have tended to generate rather than confirm a hypothesis
on a potential effect of an intervention. Traditional RCTout-
comes have a long-standing record of standards and refer-
ence values based on decades of literature and data. This is
not yet the case for RWE studies. Therefore, the next step
in RWE studies will be to calibrate their outcomes using
standard RCT end points, such as cognitive scales or bio-
markers, as established reference tests. Only after this step
has been conducted, confirmatory RWE studies will become
possible. This process has begun with guidance emerging
from regulatory agencies (https://www.fda.gov/downloads/
MedicalDevices/DeviceRegulationandGuidance/Guidance
Documents/UCM513027.pdf).

RWE studies in dementia research provide the unique op-
portunity of obtaining daily measurements, possibly reflect-
ing fluctuations of cognitive abilities and functioning and
trajectories of the disease progression over a long term
(i.e., years). On the other hand, the quality of RWE should
be carefully considered due to the obvious limitations asso-
ciated with lack of control on the participants’ mental status
and environmental conditions (e.g., intake of psychostimu-
lants or substances inducing bad performances) during the
data collection. Therefore, the results of an RWE trial should
ideally be considered complementary with results from an
RCTon the same or a similar intervention, where differences
in outcomes would be informative with respect to the gener-
alizability of the RCT findings. In addition, the characteris-
tics of a cohort participating in an RWE trial may serve as
comparator for the characteristics of a RCT addressing the
same or similar intervention, as it has been suggested in
the domain of chronic pain intervention [102].
5. Summary

We have identified basic requirements for the design and
use of presently available ICT-assisted procedures
measuring RWE to estimate functioning/autonomy (i.e.,
instrumental and noninstrumental activities of daily living)
and underlying global cognitive status in patients with pro-
dromal and manifest stages of dementia in RCTs and longi-
tudinal observational studies, as well as for enrichment of
the standard clinic-based experimental settings. ICT proced-
ures can assess these outcomes in the community and homes
of a large number of participants. The data collection may be
set on a day-to-day basis for very long periods (e.g., years),
in a near continuous manner, with the advantage of probing
variability in functioning and global cognitive status and tra-
jectories of disease progression on those relevant variables.
Indeed, those ICT solutions have the potential to enhance
clinical care and research in dementia by detecting the onset

https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM513027.pdf
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM513027.pdf
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM513027.pdf
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of cognitive decline and its concrete effects on functioning
and autonomy.

In perspective, such technology offers three major appli-
cation scenarios: (1) early identification of cognitive decline
and reduction in functioning and autonomy as a possible
manifestation of prodromal stages of dementing disorders;
(2) long-term monitoring of natural disease progression;
and (3) enhancing intervention RCTs in real-world settings
that is urgently needed in face of the insufficient effective-
ness of unimodal treatments on long-term functional decline
and quality of life of people with dementia or prodromal
stages.

From an engineering perspective, the requirements of
such technologies push the boundaries of currently available
algorithmic and hardware solutions and provide an innova-
tion engine for future health-care technologies. From the
perspective of the humanities, such technologies require
careful assessment of legal and ethical consequences and
the development of shared decision-making and data protec-
tion procedures that respect stakeholder needs and values,
from patients to payers of public health services. At the inter-
section of technology and the humanities lies the critical
issue of technology adoption. This adoption requires deeply
integrated user engagement in the development and deploy-
ment process, which brings with it ethical, industrial, and so-
cial considerations related to participation in research.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture based on PubMed, ISI Web of Knowledge and
meeting abstracts and presentations. We used a qual-
itative approach of document analysis to screen liter-
ature for key statements. These relevant citations are
appropriately cited.

2. Interpretation: The literature on patient powered real
world evidence for dementia indicated a gap between
technological concepts and their implementation in a
clinical research context. Our research suggests that
the emerging technologies can monitor continuously
participant behavior reflecting patient relevant func-
tional outcomes.

3. Future directions: We propose technologies and reg-
ulatory frameworks to capture patient relevant out-
comes and access broader clinical cohorts than
sampled in current clinical trials.
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