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Pancreatic ductal adenocarcinoma is a commonmalignant tumor with a poor prognosis. Autophagy activity changes in both cancer
cells and microenvironment and affects the progression of pancreatic ductal adenocarcinoma. The purpose of this study was to
predict the prognostic autophagy regulatory genes and their role in the regulation of autophagy in pancreatic ductal
adenocarcinoma. We draw conclusions based on gene expression data from different platforms: GSE62165 and GSE85916 from
the array platform, TCGA from the bulk RNA-seq platform, and GSE111672 from the single-cell RNA-seq platform. At first, we
detected differentially expressed genes in pancreatic ductal adenocarcinoma compared with normal pancreatic tissue based on
GSE62165. Then, we screened prognostic genes based on GSE85916 and TCGA. Furthermore, we constructed a risk signature
composed of the prognostic differentially expressed genes. Finally, we predicted the probable role of these genes in regulating
autophagy and the types of cell expressing these genes. According to our screening criteria, there were only two genes: MET and
RIPK2, selected into the development of the risk signature. However, evaluated by log-rank tests, receiver operating
characteristic curves, and calibration curves, the risk signature was worth considering its clinical application because of good
sensitivity, specificity, and stability. Besides, we predicted that both MET and RIPK2 promote autophagy in pancreatic ductal
adenocarcinoma by gene set enrichment analysis. Analysis of single-cell RNA-seq data from GSE111672 revealed that both
MET and RIPK2 were expressed in cancer cells while RIPK2 was also expressed in monocytes and neutrophils. After
comprehensive analysis, we found that both MET and RIPK2 are related to the prognosis of pancreatic ductal adenocarcinoma
and provided some associated clues for clinical application and basic experiment research.

1. Introduction

Pancreatic cancer has become one of the leading causes of
cancer mortality worldwide [1]. Pancreatic ductal adenocar-
cinoma (PDAC) is the major type of malignant pancreatic
neoplasms (more than 80%) [2], with a five-year survival
rate at about 5% and median survival time less than one
year [3, 4]. Poor prognosis results from loss of surgical
opportunities due to the advanced tumor stage at diagnosis
and high resistance to chemotherapy and radiation [5, 6].
Although clinicopathological characteristics and some bio-
markers have been used to predict patients’ prognosis,
identification of transcriptional markers and development

of novel methodology for accurate prediction of PDAC out-
come are still encouraged.

Autophagy plays an important role in both the mainte-
nance of homeostasis and the progress of tumors. In a nor-
mal organizational environment, autophagy maintains cell
homeostasis to prevent diseases by supporting mammalian
development, regulating metabolism at different nutritious
states, and disposing damaged proteins and organelles [7].
The effect of autophagy on tumor varies with the stage of
tumor. Autophagy suppresses tumor at the initial stage by
being involved in removing dysfunctional mitochondria
and redox-active aggregates of ubiquitinated proteins, dis-
posal of micronuclei, and degradation of retrotransposing
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RNAs and responses to genotoxic stress [8], suggesting prob-
able utilization of autophagy inducers as tumor preventive
agents. However, in an established tumor, autophagy pro-
motes tumor progression by allowing cancer cells to survive
under metabolic stress, supporting metabolic rearrange-
ments, and maintaining cancer stem cells [9]. Both gene
products and exogenous substances participate in the regula-
tion of autophagy in tumors, proposing related therapeutic
strategies [10, 11].

The effect of autophagy on PDAC is so complicated that
both autophagy inducers and autophagy inhibitors have the
potential to be used as drugs to treat PDAC [12]. In addition
to the influence on tumor cells, autophagy also affects PDAC
progression by changing microenvironment [13, 14]. How-
ever, there is still a lack of systematic analysis of the prognos-
tic value of autophagy regulatory genes in PDAC and their
regulatory effect on autophagy. In this study, we sifted out
two autophagy regulatory genes, MET and RIPK2, whose
high RNA expressions are both significantly related to poor
survival of PDAC patients. Then, we developed a two-gene
risk signature based on these two genes. Furthermore, we
predicted that both MET and RIPK2 promote autophagy in
PDAC and constructed a coexpression network. Finally, we
identified the types of cell expressing these genes and proved
the upregulation of MET and RIPK2 expression using
surgical specimens, providing clues for basic research and
potential targets for clinical treatment.

2. Materials and Methods

2.1. Patient Samples. The gene expression profiles by the
array of GSE62165 [15] and GSE85916 and associated clinical
data were downloaded from Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/). The gene expres-
sion RNA-seq-batch effects normalized mRNA data of the
Cancer Genome Atlas (TCGA) was downloaded from the
University of California Santa Cruz (UCSC) Xena website
(https://xenabrowser.net/datapages/) [16]. Gene expression
data of 150 PDAC samples was extracted according to the
Cancer Genome Atlas Research Network [17, 18]. The associ-
ated survival and phenotype data of pancreatic cancer were
also downloaded from the UCSC Xena website. The data of
single-cell RNA-seq (scRNA-seq) data of GSE111672 [19]
was also downloaded from GEO.

2.2. Gene Lists. The list of 319 autophagy regulatory genes
was obtained from gene set: GO_REGULATION_OF_
AUTOPHAGY (M10281) in the Molecular Signatures
Database (MSigDB, http://software.broadinstitute.org/gsea/
msigdb/index.jsp). The other five gene set files, hallmark
gene sets, and Kyoto Encyclopedia of Genes and Genomes
(KEGG) gene sets for enrichment analysis were also
obtained from MSigDB. The list of 232 human genes
and proteins involved in autophagy was obtained from
the Human Autophagy Database (HADb, http://www
.autophagy.lu/) [20].

2.3. Prognostic Analysis. The differentially expressed autoph-
agy regulatory genes and their prognostic value were ana-

lyzed by the R software. The gene expression matrixes of
GSE62165 and GSE85916 were normalized using the limma
package to eliminate batch effects, respectively [21]. Differen-
tially expressed autophagy regulatory genes in PDAC com-
pared with normal pancreatic tissues were detected in
GSE62165 by empirical Bayes statistics [22]. Using the
survival package, univariate Cox proportional hazards
regression analysis was applied to determine the association
between autophagy regulatory gene expression and overall
survival (OS) of PDAC patients based on the GSE85916
group (79 samples containing complete survival data) and
the TCGA group (149 samples containing complete survival
data), respectively (Figure 1).

The common prognostic genes of two groups were
selected to construct a risk signature using the multivariate
Cox regression model, whose formula was risk score =
ln ½hðt, XÞ/h0ðtÞ� =∑ðcoei ∗ expiÞ. Here, coei and expi were
the estimated regression coefficient of the genei and expres-
sion of genei, respectively. Similar methods were used to
construct risk signatures based on LC3-coding genes. The
risk score of every GSE85916 and TCGA sample was calcu-
lated. log-rank tests between high-risk and low-risk sub-
groups and receiver operating characteristic (ROC) curves
using the survivalROC package were applied to evaluate
and compare the predictive effectiveness of different risk sig-
natures. Risk score distributions, scatter plots, and expression
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Figure 1: Flowchart of this study.
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heat maps were plotted to intuitively display the risk signa-
ture’s ability to distinguish samples (Figure 1).

The prognostic effect of the risk signature was also com-
pared with that of clinicopathological factors using ROC
curves in the TCGA group. Presented by forest plots, multi-
variate Cox regression combining risk signature and clinico-
pathological factors was performed to detect the independent

prognostic factors. Finally, a nomogram was constructed
using the rms package to represent candidate clinical applica-
tion of the risk signature (Figure 1).

2.4. Mechanism Prediction. The functional differences of the
high-risk subgroup versus the low-risk subgroup, the high-
MET subgroup versus the low-MET subgroup, and the
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Figure 2: Detection of prognostic differentially expressed autophagy regulatory genes in PDAC. (a) Volcanic map of autophagy regulatory
genes in GSE62165. Red dots present upregulated genes while green dots present downregulated genes in PDAC. (b) Heat map of
differentially expressed autophagy regulatory genes in normal pancreatic tissue and PDAC in GSE62165. (c) Forest plot of prognostic
differentially expressed autophagy regulatory genes in the GSE85916 group. (d) Forest plot of prognostic differentially expressed
autophagy regulatory genes in the TCGA group. (e) Venn plot of prognostic differentially expressed autophagy regulatory genes from the
GSE85916 group and the TCGA group.
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high-RIPK2 subgroup versus the low-RIPK2 subgroup were
analyzed using gene set enrichment analysis (GSEA) [23].
Pearson’s product-moment correlation coefficients between
the expression of MET, RIPK2, and that of HADb genes were
calculated to predict the mechanism of howMET and RIPK2
regulate autophagy. Only the HADb genes whose correlation
coefficient with MET or RIPK2 was greater than 0.3 (p < 0:01)
in both the GSE62165 group (118 PDAC samples) and the
GSE85916 group (80 PDAC samples) were selected into
the coexpression network. The coexpression network was
visualized using the Cytoscape software (Figure 1).

2.5. Analysis of scRNA-seq Data. To identify the cells which
significantly express MET and RIPK2, scRNA-seq data of
two untreated PDAC patients from GSE111672 was analyzed
using the Seurat package and the SingleR package in the R
software. The cell numbers of patient A and patient B
included in our analysis were 12000 and 7000, respectively.
Similar steps were applied to these two separate datasets.
Firstly, the genes which were detected in less than 70 cells
and cells whose number of genes detected were less than 20
were deleted. Secondly, the count data from different batches
was normalized to eliminate batch effects. Thirdly, principal
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Figure 3: Kaplan-Meier curves and ROC curves. (a, b) Curves for risk signature constructed with MET and RIPK2 in the GSE85916
group. (c, d) Curves for risk signature constructed with MET and RIPK2 in the TCGA group. (e, f) Curves for risk signature constructed
with LC3-coding genes in the GSE85916 group. (g, h) Curves for risk signature constructed with LC3-coding genes in the TCGA group.
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component analysis (PCA) based on the remaining genes
was performed to reduce variables, and then, the top 20
principal components were selected to perform t-distrib-
uted stochastic neighbor embedding (t-SNE) analysis to
obtain cell clusters. Finally, the SingleR package was used to
identify cell types. Scatter plots and bubble plots were plotted
using the Seurat package to present the cells which expressed
MET and RIPK2 (Figure 1).

2.6. Analysis of the Protein Expression Level of MET and
RIPK2. The comparison of MET and RIPK2 protein expres-
sion in pan-cancer was gotten from the Human Protein Atlas
(HPA, https://www.proteinatlas.org/).

A total of seven pairs of paraffin-embedded PDAC and
corresponding adjacent tissues from patients who were
clinically and pathologically diagnosed from the establish-
ment of the Department of Hepatobiliary and Pancreatic
Surgery II of the Third Xiangya Hospital in March 2019 to
July 2020 were included in our immunohistochemistry
(IHC) experiment. Approval from the Ethics Committee of
the Third Xiangya Hospital and patients’ informed consent
were obtained for the use of these materials for research. Sec-
tions from paraffin-embedded samples were adhered to slides
and deparaffinized with xylene and rehydrated. Then, the
sections on slides were treated with citric acid antigenic
retrieval buffer (pH6.0), 3% hydrogen peroxide, and 3%

bovine albumin in turn. Sections separated into two groups
were incubated with anti-MET (1 : 200, Affinity, AF6128)
and anti-RIPK2 (1 : 200, Affinity, DF6967) separately over-
night at 4°C. The next day, they were incubated with
horseradish peroxidase marked anti-rabbit secondary anti-
body (1 : 200, Servicebio). Then, they were treated with
3,3′-diaminobenzidine, hematoxylin in turn, dehydrated,
and mounted.

3. Results

3.1. Identification of Differentially Expressed Autophagy
Regulatory Genes in PDAC.We set the cut-off value of differ-
entially expressed gene detection in GSE62165 as ∣log2ðfold
changeÞ ∣ >0:8 and empirical Bayes test p value < 0.01. As a
result, 25 autophagy regulatory genes were upregulated and
the 22 ones were downregulated in PDAC compared with
normal pancreatic tissues (Figures 2(a) and 2(b)).

3.2. Identification of Prognostic Autophagy Regulatory Genes
in PDAC. The univariate Cox proportional hazards regres-
sion analysis showed that 6 autophagy regulatory genes were
significantly associated with OS of PDAC patients in the
GSE85916 group (p < 0:05) (Figure 2(c)). The number of
prognostic genes in the TCGA group was also 6 (p < 0:05)
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Figure 4: Risk scores, survival status dot plots, and heat maps of MET and RIPK2: (a, c and e) GSE85916 group; (b, d and f) TCGA group.
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(Figure 2(d)). There were two common prognostic genes in
these two groups: MET and RIPK2 (Figure 2(e)).

3.3. Development and Validation of the Risk Signature. We
selected the GSE85916 group as the training group to con-
struct a risk signature based on RNA expression of the two
common prognostic genes, whose formula was risk score =
ð0:5265 ∗ expression value of METÞ + ð0:9437 ∗ expression
value of RIPK2Þ. The TCGA group was set as the testing
group. According to the formula, we calculated the risk
score of every sample of the training group and the testing
group. In these two groups, respectively, we subdivided the
samples into a high-risk subgroup and a low-risk sub-
group based on the median risk score (7.09 and 14.61).
Kaplan-Meier survival curves suggested that the prognosis
of low-risk patients was significantly better than that of
high-risk patients (log-rank test p < 0:05) (Figures 3(a)
and 3(c)). In addition, we plotted the time-dependent
receiver operating characteristic (ROC) curves of both
groups to measure the predictive performance of the risk
signature. The areas under the curve (AUC) at one year
in two groups were both more than 0.7 (Figures 3(b)
and 3(d)).

We constructed risk signatures based on LC3-coding
genes to serve as a contrast in both groups, respectively. The
formula in the GSE85916 group was risk score = ð1:2104 ∗
expression value of MAP1LC3AÞ + ð0:8094 ∗ expression
value of MAP1LC3BÞ + ð−0:5212 ∗ expression value of MAP
1LC3CÞ. The formula in the TCGA group was risk score =
ð−0:3334 ∗ expression value of MAP1LC3AÞ + ð0:0950 ∗
expression value of MAP1LC3BÞ + ð−0:2005 ∗ expression
value of MAP1LC3B2Þ + ð−0:1310 ∗ expression value of
MAP1LC3CÞ. In both groups, the prognosis of low-risk
patients was significantly better than that of high-risk patients
(log-rank test p < 0:05) (Figures 3(e) and 3(g)). However, the
AUC at one year were both less than 0.7 (Figures 3(f) and
3(h)), suggesting that the prognostic effect of risk signature
constructed with MET and RIPK2 was better than that of risk
signatures constructed with LC3-coding genes.

In both the GSE85916 group and the TCGA group, we
ranked the risk scores of patients and then displayed their
survival status by dot plots and the expression of MET and
RIPK2 by heat maps. With the increase of risk value, the sur-
vival time of patients tended to be shorter and the proportion
of deaths tend to increase, and both MET and RIPK2 tended
to highly express (Figure 4).
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Figure 5: Prognostic significance and application of risk signature. (a) Multi-ROC curves of risk signature and clinicopathological
factors. (b) Forest plot of univariate Cox regression analysis in the TCGA group. (c) Forest plot of multivariate Cox regression
analysis in the TCGA group. (d) Nomogram to predict the one-year survival rate of PDAC patients. (e) Calibration curve of the
nomogram for a one-year prediction.
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3.4. Clinical Application Value of the Risk Signature
Constructed with MET and RIPK2. In the TCGA group, we
plotted ROC curves of the risk signature and clinicopatholog-
ical factors to compare their prognostic effect. The AUC at
one year of risk score was significantly larger than that of
clinicopathological factors (Figure 5(a)). Then, we performed
univariate Cox regression analysis on the risk signature and
clinicopathological factors to explore their relationship with
OS. As a result, risk score, age at initial pathologic diagnosis,
and pathologic N were all risk factors for OS (p < 0:05)
(Figure 5(b)). Furthermore, we performed a multivariate
Cox regression analysis on the risk signature and clinicopath-
ological factors to identify whether these factors were inde-
pendently related to OS. The result showed that risk score
and age at initial pathologic diagnosis were independent risk
factors for PDAC prognosis (p < 0:05) (Figure 5(c)). Finally,
we constructed a nomogram based on risk signature and clin-
icopathological factors to predict prognosis for PDAC patients
more accurately (Figure 5(d)). Meanwhile, we plotted a cali-
bration curve for one-year prediction to demonstrate the good
predictive ability of the nomogram (Figure 5(e)). The sum-
mary statistics of the clinicopathological factors of the samples
included in this step are shown in Table 1.

3.5. Mechanism Prediction about Risk Signature, MET, and
RIPK2. We performed GSEA of 6 autophagy-related gene
sets (Table 2) to demonstrate the relation between autophagy
status and risk signature, MET expression, and RIPK2
expression. In the three separate analysis, REACTOME_
AUTOPHAGY (M27935) were enriched in the high-risk

subgroup, high-MET subgroup, and high-RIPK2 subgroup,
respectively (FDR q value < 0.05) (Figures 6(a)–6(c)), from
which we could infer that autophagy activity is upregulated
in high-risk patients, high MET expression patients, and high
RIPK2 expression patients. In addition, GO_POSITIVE_
REGULATION_OF_AUTOPHAGY (M15852) was also
enriched in the high-RIPK2 subgroup (FDR q value < 0.05)
(Figure 6(f)), suggesting that RIPK2 probably promotes
autophagy by regulating other molecules. The remaining
GSEA results of other autophagy-related gene sets are pre-
sented in Supplementary Figure 1.

More specifically, we presented the probable regulatory
relation between MET, RIPK2, and HADb genes by the coex-
pression network, predicting the mechanism of how MET
and RIPK2 participate in the regulation of autophagy in
PDAC (Figure 6(g)).

Furthermore, we explored other signaling pathways with
different activities between different subgroups. We per-
formed GSEA concerning hallmark gene sets and KEGG
gene sets. The gene sets enriched in either subgroup (FDR
q value < 0.1) are plotted in Figure 7. HALLMARK_
MTORC1_SIGNALING, HALLMARK_MYC_TARGETS_
V1 and HALLMARK_PROTEIN_SECRETION were all
enriched in high-risk, high-MET, and high-RIPK2 sub-
groups. None of KEGG gene sets was enriched.

3.6. Cells Which Express MET and RIPK2. According to our
screening criteria, in the scRNA-seq data from PDAC patient
A and patient B in GSE111672, the numbers of genes selected
for subsequent PCA were 9992 and 9863, respectively, and

Table 1: Summary statistics of clinicopathological data of PDAC patients selected into the drawing of multi-ROC curves and forest plots and
construction of nomogram.

Clinicopathological factors Variable Count Percentage (%)

Age at initial pathologic diagnosis
≤65 years 74 50.34

>65 years 73 49.66

Gender
Male 68 46.26

Female 79 53.74

Histologic grade

G1 20 13.61

G2 83 56.46

G3 43 29.25

G4 1 0.68

Tumor stage

Stage I 12 8.16

Stage II 128 87.07

Stage III 3 2.04

Stage IV 4 2.72

Pathologic T

T1 5 3.40

T2 16 10.88

T3 123 83.67

T4 3 2.04

Pathologic M

M0 68 46.26

Mx 75 51.02

M1 4 2.72

Pathologic N
N0 38 25.85

N1 109 74.15
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Table 2: Autophagy-related gene sets we performed GSEA.

Name Serial number Count of genes Organism

GO_regulation_of_autophagy M10281 319 Homo sapiens

GO_positive_regulation_of_autophagy M15852 114 Homo sapiens

GO_negative_regulation_of_autophagy M12149 81 Homo sapiens

GO_selective_autophagy M24317 47 Homo sapiens

KEGG_regulation_of_autophagy M6382 35 Homo sapiens

Reactome_autophagy M27935 109 Homo sapiens
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Figure 6: Mechanism prediction of prognostic autophagy regulation genes. (a, d) GSEA of high-risk versus low-risk. (b, e) GSEA of
high-MET versus low-MET. (c, f) GSEA of high-RIPK2 versus low-RIPK2. (g) Coexpression network between MET, RIPK2, and
HADb genes. Yellow nodes represent HADb genes. Red lines represent a positive correlation while green lines represent a negative
correlation. NES: Normalized Enrichment Score.
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Figure 8: Continued.
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the numbers of cells selected for subsequent clustering were
7448 and 6382, respectively. In the t-SNE analysis, we set
the resolution parameters as 0.5 and 0.3 to generate 15 and
11 cell clusters, respectively, which were consistent with the
analysis results of the data uploader (Figures 8(a) and 8(e))
[19]. The scatter plots suggested that MET and RIPK2 were
not evenly expressed among cell clusters (Figures 8(b), 8(c),
8(f), and 8(g)). Based on the analysis results of the SingleR
package (Figures 8(d) and 8(h)), we speculated that cluster
10 and cluster 7 from patient A, the epithelial cell clusters
most obviously expressing TM4SF1 and S100A4, respectively,
were cancer cells, while the cancer cell cluster in patient B was
cluster 3, which expressed TM4SF1 most obviously [19]. As
we can see from scatter plots and bubble plots, both MET
and RIPK2 were expressed in cancer cells and epithelial cells.
In addition, RIPK2 was also expressed in monocytes and
neutrophils. In these clusters of cancer cells, monocytes, and
neutrophils, MAP1LC3B was also expressed, which is tran-
scriptionally activated in the process of autophagy [24].

3.7. Protein Expression Pattern of MET and RIPK2. For MET
and RIPK2 separately, they both express moderately in the
pancreas compared with various organs (Figures 9(a) and
9(c)). However, they both highly express in pancreatic cancer
compared with other cancers (Figures 9(b), 9(d), and 9(e)).
As shown in the IHC images, protein expression levels of
MET and RIPK2 are both elevated in PDAC compared with
matching adjacent pancreatic tissue (Figures 9(f)–9(h);
Supplementary Figure 2). Moreover, we can observe that
MET mainly expresses in the cytoplasm while RIPK2
expresses in both the cytoplasm and the nucleus.

4. Discussion

In this study, a comprehensive analysis of RNA expression
data from different platforms and corresponding clinical

information reveals that MET and RIPK2 act as risk prognos-
tic genes in PDAC patients and predicts the probable role of
these two genes in autophagy regulation. This analysis
explores the prognostic value and regulatory mechanism of
autophagy regulatory genes recorded in MSigDB.

We took some measures to improve the reliability of
prognosis analysis. In the GEO dataset, we chose GSE62165
and GSE85916, samples of which were selected as PDAC by
strict inclusion criteria. For the samples from TCGA, we
removed unqualified samples to reduce the deviation of results
[17, 18]. In addition, the robust multiarray average (RMA)
[25] preprocessed gene expression data of GSE85916 and the
batch effects normalized mRNA expression data of TCGA
fromUCSC had both been log2(x) converted, being more suit-
able for constructing a stable generalized linear model.

The clinical application prospect of the risk signature
constructed with MET and RIPK2 is worthy of expectation.
A positive value of the risk signature’s parameters, consistent
with the heat maps ranked by risk score, and the log-rank
tests between high-risk and low-risk subgroups indicated
that MET, RIPK2, and risk signature are all risk factors for
the prognosis of PDAC. Because the median survival time
of PDAC is less than one year [3, 4], we evaluated the sensi-
tivity and specificity of the risk signatures by ROC curves at
one year. The AUC of ROC curves at one year were both
greater than 0.7 in the GSE85916 group and the TCGA
group, indicating good sensitivity, specificity, and stability
of the risk signature constructed with MET and RIPK2. In
order to provide a comparison, we constructed risk signa-
tures based on LC3-coding genes [26, 27]. Considering that
the AUC of the ROC curves at one year of the risk signatures
constructed with LC3-coding genes were both less than 0.7 in
two groups, we believed the clinical application of the risk
signature constructed with MET and RIPK2 is more valuable
in the RNA level. Moreover, the risk signature constructed
with MET and RIPK2 contains only two variables, but the
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Figure 8: Cell clusters from the analysis of the Seurat package. Scatter plots showing normalized expression of MET and RIPK2, method of
normalization: logNormalize (expression value more than 1 was set as 1). Bubble plots showing the distribution of MET, RIPK2 and
MAP1LC3B expression in different cell clusters, annotated according to the analysis of the SingleR package. (a–d) patient A; (e–h) patient B.
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A large subset of cancer tissues showed moderate cytoplasmic positivity. Several cases of endometrial
cancers showed strong cytoplasmic immunoreactivity. Most remaining cancer tissues were weakly
stained or negative.
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Adenocarcinomas of pancreas, stomach, endometrium and ovary as well as liver, cervix and breast
cancers displayed weak to moderate cytoplasmic staining. Most remaining cancer tissues were weakly
stained or negative.
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Figure 9: Protein expression pattern of MET and RIPK2. (a) Protein expression overview of MET in various normal organs. (b) Protein
expression overview of MET in various cancers. (c) Protein expression overview of RIPK2 in various normal organs. (d, e) Protein
expression overview of RIPK2 in various cancers. (f–h) Representative images of IHC staining of PDAC and adjacent pancreatic
tissues (200x).
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risk signatures constructed with LC3-coding genes contain
three or four genes (GPL13667, the array platform of
GSE85916, lacks a probe for MAP1LC3B2), suggesting that
the former is more cost-effective. As we can see from the
multi-ROC curves, compared with clinical data, the risk sig-
nature constructed with MET and RIPK2 still has obvious
advantages in terms of prognostic value. The calibration
curve for a one-year prediction of the nomogram showed
good application potential of this risk signature combined
with clinicopathological factors.

When screening differently expressed genes in GSE62165,
we set the cut-off value of ∣log2ðfold changeÞ ∣ as 0.8, rather
than 1, to produce more candidate prognostic genes. Actually,
the log2(fold change) value for MET and RIPK2 was 1.069 and
0.965, respectively. In later studies, we used IHC to further
prove these expression differences. MET has been reported
to be overexpressed at the protein level in PDAC, which is
related to poor survival [28]. The prognostic significance of
RIPK2 protein expression is worth considering to confirm.
When screening the prognostic genes in GSE85916, the house-
keeping gene GAPDH was calculated as a prognostic-related
gene. However, in the normalized matrix of the GSE85916
group, the coefficients of variation of GAPDH, HK2, LRRK2,
MET, NPC1, and RIPK2 were 0.0483, 0.0846, 0.0960, 0.1061,
0.0785, and 0.0855, respectively. The volatility of the house-
keeping gene GAPDH was obviously less than other genes,
which meant it is unsuitable to choose GAPDH as a prognos-
tic indicator in clinical practice.

The mechanism prediction of MET and RIPK2 in our
study provides clues for basic research. Some studies have
found that MET promotes malignant phenotypes and con-
tributes to tumor growth of PDAC [29, 30]. But it is still
unclear whether MET is associated with autophagy activity
in PDAC. Dephosphorylated MET was found to promote
autophagy in liver cancer and gastric cancer, suggesting that
a combination of kinase activity-targeted drugs and autoph-
agy inhibitors is a potential treatment strategy [31, 32]. Part
of the coexpression network about MET we constructed has
been mentioned in some studies of other tumors. The expres-
sion of MET and EGFR, both of which are coding genes of
receptor tyrosine kinases, is positively correlated due to the
regulation of microRNA in non-small-cell lung cancer and
breast cancer [33, 34]. The combination of MET inhibitors
and EGFR inhibitors represents a promising therapeutic
strategy [35]. In squamous cell carcinomas, EGFR is acti-
vated by MET, contributing to tumorigenesis [36]. In breast
cancer, MET and ERBB2 are also coexpressed and related
to therapeutic resistance [37]. RAC1 can also be activated
by MET-associated complex in various cancer cells and pro-
motes migration and invasion [38]. KIF5B gene and MET
gene were reported to fuse in lung cancer, which causes ele-
vated tumor growth [39, 40]. The role of RIPK2 in autophagy
in tumors is unclear. However, RIPK2 was reported to be
involved in the regulation of autophagy in intestinal bowel
diseases [41–43], so it is worthy of basic experimental to
research whether RIPK2 regulates autophagy in PDAC.

The analysis of scRNA-seq data reveals more details
about the expression of MET and RIPK2 in PDAC. As
we can see from the scatter plots, both MET and RIPK2 are

expressed in cancer cells, confirming the necessity to research
their role in the development of PDAC. Moreover, RIPK2 is
also expressed in monocytes and neutrophils. Previous
research has pointed out that autophagy not only is essential
for the transformation of monocytes to macrophages [44] but
also takes an important part in the major neutrophil functions
[45], arousing our curiosity about the relationship between
RIPK2 and autophagy in these two kinds of cells. In these cell
clusters where MET or RIPK2 were expressed, MAP1LC3B,
the most abundantly expressed LC3-coding genes, was also
expressed, laterally confirming our hypothesis that MET and
RIPK2 promote autophagy in PDAC. In addition, bubble plots
showed that MET and RIPK2 are also expressed in normal epi-
thelial cells. In the furthering research, we plan to verify our
prediction by experiments in vitro and in vivo.

5. Conclusions

Both MET and RIPK2 are upregulated and associated with
poor prognosis of PDAC. Based on the RNA expression data
of these two genes, we constructed a risk signature with good
prediction efficiency. In order to further research the mecha-
nism of how MET and RIPK2 promote the progression of
PDAC, we predict that the role of these two genes in cancer
is to promote autophagy and took these two genes as central
nodes to construct a probable regulatory network. Moreover,
analysis of scRNA-seq data reveals that MET is expressed in
cancer cells and epithelial cells while RIPK2 is expressed in
cancer cells, epithelial cells, monocytes, and neutrophils.
Our findings will be useful in the accumulation of evidence
for both patient management and experiment research.
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