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Abstract

Borrelia burgdorferi, the spirochete that causes Lyme disease, differentially regulates synthesis of the outer membrane
lipoprotein OspC to infect its host. OspC is required to establish infection but then repressed in the mammal to avoid
clearance by the adaptive immune response. Inverted repeats (IR) upstream of the promoter have been implicated as an
operator to regulate ospC expression. We molecularly dissected the distal inverted repeat (dIR) of the ospC operator by site-
directed mutagenesis at its endogenous location on the circular plasmid cp26. We found that disrupting the dIR but
maintaining the proximal IR prevented induction of OspC synthesis by DNA supercoiling, temperature, and pH. Moreover,
the base-pairing potential of the two halves of the dIR was more important than the nucleotide sequence in controlling
OspC levels. These results describe a cis-acting element essential for the expression of the virulence factor OspC.
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Introduction

Lyme disease is caused by the spirochete Borrelia burgdorferi,

which is transmitted via an Ixodes tick [1–3]. B. burgdorferi is

maintained in an enzootic cycle between its tick vector and a

vertebrate host reservoir [4–6]. Naı̈ve larvae acquire B. burgdorferi

when feeding on an infected animal and can then transmit the

bacterium to uninfected hosts as nymphs during feeding,

completing the cycle. B. burgdorferi encounters disparate, and

hostile, environments as it transitions through the enzootic cycle;

the spirochete has evolved a repertoire of strategies, which involve

the regulation of a variety of genes, to respond and adapt to these

changes during its lifecycle [6–8].

The differential syntheses of outer surface lipoproteins (Osp),

which are the interface between B. burgdorferi and its hosts, is

paramount to the ability to infect, survive and replicate in both the

tick and the vertebrate [6–10]. These regulated genes encode

wide-ranging functions; for example, VlsE mediates evasion from

the vertebrate immune system [11–13], while OspA binds to a tick

midgut protein and protects the spirochetes from the incoming

blood meal [14–17]. One of the best-studied lipoproteins is OspC

[18], which is required for transmission and the early stages of

mammalian infection [19–22]. The ospC gene is carried on the

conserved 26-kb circular plasmid cp26 [23,24]. The precise

function of OspC remains elusive, but the outer membrane

lipoprotein appears to have several activities [25], including

providing initial protection from the innate immune system [26]

and facilitating dissemination [27]. Additionally, OspC has a

ligand-binding domain essential for its function [28] and binds the

tick salivary protein Salp15 [29] as well as mammalian plasmin-

ogen [30,31], which may assist in transmission and dissemination,

respectively. OspC is highly immunogenic, so its synthesis must be

repressed for the spirochete to persist in the mammal [32–34]. B.

burgdorferi that continue to produce OspC during infection of

immunocompetent mice are cleared [34] and ospC expressed in

trans from a shuttle vector is selected against during mammalian

infection [35]. While ospC is present in all B. burgdorferi strains

examined, the sequence is variable, with only strains carrying

certain alleles capable of disseminating and establishing infection

in humans [13,36–39].

OspC synthesis is induced in vitro in response to increased

temperature, which presumably mimics a signal that occurs during

tick feeding [40–42]. Subsequent studies showed that numerous

factors such as pH [43,44], DNA supercoiling [42], oxygen [45],

carbon dioxide [46], acetate [47], and transition metals [48] also

control ospC expression. External signals are transmitted through a

unique signaling pathway involving the sequential action of two

alternative sigma factors, RpoN (s54) and RpoS (ss) [49,50].

RpoN, in collaboration with the response regulator Rrp2 [51–54]

and the transcription factor BosR [55–58], activates transcription

of rpoS; RpoS, in turn, activates transcription of ospC [49] and

other genes [54,59,60]. Another level of control of ospC expression

is exerted during translation of rpoS. The small RNA DsrABb

[61,62] and the RNA chaperone Hfq [63] control rpoS translation
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and subsequently ospC transcription. However, there is no

evidence for post-transcriptional control of the ospC gene [42,44–

49,52,61,64].

Previous studies identified an ospC operator consisting of two

overlapping inverted repeats (IRs) 42 bp upstream of the major

transcriptional start site [23,65–67]. The operator is highly

conserved in B. burgdorferi sensu stricto [67], but there is some

controversy about its role in ospC gene regulation. Eggers et al.

[64] showed that the operator is required for full ospC expression

in vitro, while Yang et al. [68] found the operator is dispensable for

induction and repression. In addition, mutants lacking the

operator were unable to persist in immunocompetent mice and

were also cleared from SCID mice injected with transferred anti-

OspC antibodies, suggesting that the operator is required to

repress ospC expression during infection [69]. One caveat to these

previous studies is that ospC was expressed in trans in an ospC null

background strain. In the current study, we molecularly dissect the

ospC operator in its native locus on cp26 and show that the distal

IR is an important cis-acting element controlling OspC expression.

Materials and Methods

Bacterial Strains and Culture Conditions
Low-passage B. burgdorferi strain 297 (BbAH130) [49] and all

mutant strains were maintained in Barbour-Stoenner-Kelly II

(BSK-II) liquid medium, pH 7.6, containing 6% rabbit serum

[70]. In temperature shift experiments, cultures were passaged

twice at 23uC, before inoculating cultures at 16105 cells ml21 and

growing at 23uC to late log phase (5 to 96107 cells ml21) or

inoculating cultures at 16103 cells ml21 and growing at 34uC to

late log phase. For temperature downshift experiments, cultures

were grown to log phase at 34uC before inoculating cultures at

16105 cells ml21 and growing at 23uC to late log phase. In

experiments examining the effect of pH, cultures at 34uC in BSK

II at pH 8.0 were passaged into BSK II at pH 7.0. To determine

the effect of DNA supercoiling, cultures were grown at 23uC
(inoculated at 16105 cells ml21) in the presence of 10 ng ml21

coumermycin A1 (50 mg ml21 stock in DMSO) or DMSO (solvent

control) until late log phase [42]. Cell density was determined

using a Petroff-Hausser counting chamber [71].

Construction of ospC Promoter Mutants
Mutations in the ospC operator were generated by allelic

exchange on cp26 [72]. Constructs containing the operator

mutants were made by overlap extension PCR [73]. The 59

portion of the upstream construct was amplified by PCR of

genomic DNA using KOD polymerase (Novagen) with the

primers ospC U866F and ospCp mutHup(297)R or ospCp

mutDH(297)R2 (Table 1). The 39 portion of the upstream

construct, which also includes the ospC gene, was amplified by

PCR using the primers ospC D697R+AatII+AgeI and ospCp

mutHup(297)F (Table 1). PCR products were separated and

purified in a 1% agarose gel. Paired 59 and 39 portions of the

upstream construct were then combined and extended for six

cycles in a thermal cycler. Next, the primers ospC U866F and

ospC D697R+AatII+AgeI (Table 1) were added and the combined

upstream construct was amplified by PCR. To generate the

construct for the wild-type control strain with the antibiotic

resistance cassette, PCR was done using primers ospC U866F and

ospC D697R+AatII+AgeI with genomic DNA as a template. PCR

products were separated in a 1% agarose gel, gel purified,

polyadenylated, and cloned into pCRH2.1-TOPO. PCR of

genomic DNA with the primers ospC D673F+AatII and ospC

D1572R+AgeI (Table 1) was used to amplify the downstream

construct, which was cloned into pCRH2.1-TOPO as described

above. The accuracy of all DNA constructs was confirmed by

sequencing. The downstream sequence was inserted into the

upstream ospC operator mutation constructs using the synthetic

AatII and AgeI restriction sites. Lastly, the kanamycin resistance

cassette flgBp-aphI [74] was inserted downstream of the ospC gene

into the engineered AatII site. The orientation of flgBp-aphI was

determined by PCR using the primers kanR 488R and ospC

D1572R+AgeI (primers a and b, respectively). The plasmid was

linearized by digestion with AhdI and electroporated into

competent B. burgdorferi [61,71,72]. Transformants were cloned

in liquid BSK-II by diluting the electroporated cells to less than

one cell per well of a 96-well plate in medium containing

kanamycin (200 mg ml21) at 34uC and a 1.5% CO2 atmosphere

[16]. Total genomic DNA was isolated from positive colonies and

sequenced by the Murdock DNA Sequencing Facility at The

University of Montana using the primer ospC U291F to confirm

the site-directed ospC operator mutations.

RNA Isolation and qRT-PCR Analysis
RNA was isolated from 40-ml cultures of B. burgdorferi grown at

23uC containing 10 ng ml21 coumermycin A1 or DMSO as a

solvent control using TRIzol (Invitrogen) as previously described

[61,75]. Samples were treated with Turbo DNase (Ambion) to

remove contaminating DNA. Samples were screened by PCR to

ensure that contaminating DNA had been removed using the

primers flaB 423F and flaB 542R. cDNA was synthesized using

1 mg RNA with SuperScriptH III for qRT-PCR (Invitrogen). flaB

and ospC primers and probes were designed using Primer ExpressH

version 3.0 (Applied Biosystems). TaqMan absolute qRT-PCR

was performed in 96-well plates using an Applied Biosystems 7300

Real-Time PCR System and standard curves for flaB and ospC

were generated using a portion of the flaB ORF (nucleotides 278–

551 of the ORF) cloned into pCRH2.1-TOPO and B. burgdorferi

strain 297 (BbAH130) genomic DNA, respectively. Values

represent the mean (6SE) from three independent experiments.

SDS-PAGE and Immunoblotting
B. burgdorferi cultures were grown to late log phase at 23uC or

34uC and total cell lysates collected as previously described

[61,72]. Equal amounts of protein were separated on pre-cast

Novex 4–20% Tris-Glycine polyacrylamide gels (Invitrogen).

Proteins were transferred by electroblotting to PVDF Immobi-

lonTM membranes (Millipore) and membranes blocked in Blocking

Buffer (138 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4,

1.5 mM KH2PO4, 0.05% Tween 20, 4% dry milk, and 1% goat

serum) overnight at 4uC. Membranes were incubated with rabbit

anti-OspC antibodies (1:1000) [68,76] or anti-FlaB antibodies

(1:1000) (a kind gift from Tom Schwan) in Blocking Buffer for 1 h

at room temperature. Rabbit antibodies were detected by

incubating membranes with goat anti-rabbit HRP-linked antibod-

ies (Bio-Rad Laboratories) (1:20,000) in Blocking Buffer for 1 h at

room temperature. HRP-linked antibodies were visualized by

chemiluminescence using AmershamTM ECL Plus (GE Health-

care) and images were collected using an LAS-3000 Intelligent

Dark Box (Fujifilm Medical Systems USA). Images were processed

using ImageJ (US National Institutes of Health and available at

http://rsbweb.nih.gov/ij/) and Pixelmator (Pixelmator Team,

Ltd).

Results

The ospC operator consists of a set of overlapping inverted

repeats that are highly conserved in B. burgdorferi sensu stricto

B. burgdorferi ospC Operator
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strains (Fig. 1) [65–67]. We hypothesized that the dIR has a

specific role in responding to changes in DNA supercoiling, which

is known to regulate ospC expression [42]. Increased negative DNA

supercoiling can alter DNA structure, including extrusion of

cruciforms from IRs, which can have a regulatory effect on

transcription [77–79]. We generated site-directed mutations in the

native ospC operator on cp26 that specifically disrupted the dIR

(dIR–) and that changed the dIR sequence but retained

complementarity (dIR+) (Fig. 2A; sequence changes are in bold).

The orientation of the kanamycin resistance cassette, flgBp-aphI,

downstream of the ospC gene was determined by PCR using the

primer sets a+b (Fig. 2B). Changes in the operator sequence of the

mutant strains were confirmed by DNA sequencing; about one-

third of the kanamycin-resistant clones contained the site-directed

mutations.

The Role of the dIR in ospC Expression Induced by
Relaxation of DNA Supercoiling

We have previously shown that a decrease in negative DNA

supercoiling causes an increase in ospC transcription [42]. The

antibiotic coumermycin A1 relaxes DNA supercoiling by inhibiting

DNA gyrase [80–83]. Wild-type and mutant strains were grown at

23uC in the presence of coumermycin A1 or DMSO (solvent only

control) until late log phase to examine if the increase in ospC

expression by the relaxation of supercoiling is mediated by the dIR

of the operator. Transcript levels of ospC and flaB were measured

by qRT-PCR. The fold increase in ospC transcript in the dIR+

strain grown in coumermycin A1, compared to the solvent control,

was significantly greater than that seen in the dIR2 strain (about

thirteenfold compared to less than twofold) (Fig. 3). The change in

flaB transcript levels was about twofold or less for both the dIR+

and dIR2 strains (Fig. 3). These data suggest that the ability to

form the dIR is an important regulator of coumermycin A1-

mediated ospC expression.

To examine if the changes in ospC transcript levels in response to

coumermycin A1 treatment were reflected in OspC protein levels,

total cell lysates were analyzed by Western blot using polyclonal

antibodies to OspC to determine the levels of OspC synthesis.

OspC levels increased in the wild-type 297 strain in response to

relaxation of supercoiling when grown at 23uC in the presence of

coumermycin A1 compared to cultures grown in the DMSO

control (Fig. 4). Very little OspC was produced when the dIR2

strain was grown in coumermycin A1 compared with the wild-type

strain and the dIR+ strain (Fig. 4). We have confirmed these results

with a second independently constructed clone of each of the

mutant strains (data not shown). Taken together, these results

suggest that the ability to form the dIR is more important than the

actual sequence, at least in regard to the nucleotides that we

mutated. These data imply that the increase in OspC levels

stimulated by relaxation of DNA supercoiling is mediated via the

Table 1. Oligonucleotides used in this studya.

Name Sequence (59-39)

ospC U866F AGCTTAATTTTTTCCACAATGG

ospC D697R+AatII+AgeI ACCGGTAATGACGTCTGACTTATATTGACTTTATTTTTCCAG

ospC D673F+AatII GACGTCGGAAAAATAAAGTCAATATAAGTCAAG

ospC D1572R+AgeI ACCGGTAATGGAAAAATTCCTAATGTCG

ospC U291F ATTAGTTGGCTATATTGGG

kanR 488R TCACTCGCATCAACCAAACC

ospCp mutHup(297)F TAAGACAATATTGAAAAAATTCTTCAAT

ospCp mutHup(297)R ATTGAAGAATTTTTTCAATATTGTCTTA

ospCp mutDH(297)R2 TTTCAATTTTTTATTTTTTCAAATATTTGAAAAAATTCTTCAATATTT

flaB 423F TTCTCAAAATGTAAGAACAGCTGAAGA

flaB 542R TGGTTTGTCCAACATGAACTC

flaB probe 6-FAM-TCACTTTCAGGGTCTCAAGCGTCTTGGAC-TAMRA

ospC F CATGGGCAACTTGGAATTGA

ospC R TTGCCAAGTTTTCTACTGCTTTAAATAG

ospC probe 6-FAM-TAAAGATAAGGGCGCTGCAGAGC-TAMRA

aSynthetic restriction sites are underlined.
doi:10.1371/journal.pone.0068799.t001

Figure 1. The sequence of the B. burgdorferi strain 297 ospC operator. Two overlapping inverted repeats (IR): proximal (pIR, dashed arrows)
and distal (dIR, solid arrows) of the ospC operator. The promoter (210 and 235) and ribosome-binding site (RBS) are in bold and the translational
start site is in italics.
doi:10.1371/journal.pone.0068799.g001

B. burgdorferi ospC Operator
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dIR of the operator and that the secondary structure of the

operator, rather than its sequence, plays a dominant role in

regulating OspC levels.

The Role of the dIR in Temperature-regulated OspC
Synthesis

A temperature shift from 23uC to 34uC is commonly used

in vitro to mimic an environmental signal during tick feeding that

induces virulence gene expression [8,40]. To assess the role of the

dIR in temperature-regulated OspC expression, cultures were

grown at 23uC, shifted to 34uC and grown to late log phase. Total

cell extracts were analyzed by Western blot. The wild-type 297

strain increased OspC synthesis upon a temperature shift (Fig. 5A).

Similar to the coumermycin A1 treatment, OspC was not induced

in response to temperature shift when the dIR was disrupted, while

regenerating the complementarity of the dIR restored the ability to

respond to increased temperature with increased OspC levels in

the dIR+ strain (Fig. 5A). A second clone of each mutant, from an

independent transformation, showed the same pattern of OspC

levels during temperature shift (data not shown).

We next assayed if the dIR was also involved in reducing OspC

levels at 23uC. Cultures were grown to late log phase at 34uC and

then passaged and grown at 23uC to late log phase. Again,

changing the dIR sequence but maintaining complementarity in

the dIR+ strain allowed for the reduction in OspC levels similar to

the wild-type strain shifted to 23uC (Fig. 5B).

The Role of the dIR in pH-regulated OspC Synthesis
OspC levels have also been shown to be regulated by pH

[43,44], which is considered an environmental signal that changes

during tick feeding: reducing the pH to 7.0 increases and raising

the pH to 8.0 decreases OspC levels. To examine if pH-regulated

OspC expression is mediated through the dIR, cultures were

Figure 2. The ospC operator and mutagenesis strategy. (A) ospC operator mutations are linked to the kanamycin resistance cassette (flgBp-
aphI). The sequence upstream of the ospC gene in B. burgdorferi strain 297 is shown (WT) with the dIR (solid arrows) and the overlapping pIR (dashed
arrows). The nucleotides that have been changed are marked in bold. The strain nomenclature is as follows: dIR+ has the nucleotide sequence
changed but the complementarity of the inverted repeats maintained, and dIR2 has the distal inverted repeat disrupted but the complementarity of
the proximal IR intact. (B) PCR of genomic DNA from ospC operator mutants (lane 1, WT with flgBp-aphI cassette; lane 2, dIR+; lane 3, dIR2; and lane 4,
no template control) using primers primers kanR 488R (a) and ospC D1572R+AgeI (b) to determine the orientation of the flgBp-aphI antibiotic
resistance cassette.
doi:10.1371/journal.pone.0068799.g002

Figure 3. ospC expression induced by relaxation of supercoil-
ing is dependent on the dIR of the operator. qRT-PCR analyses of
flaB (gray bars) and ospC (black bars) mRNA levels from strains grown to
late log phase at 23uC in 10 ng ml21 coumermycin A1 (Cou) or in DMSO
as a solvent control. Values represent the mean and error bars the SE of
the mean from three independent experiments. * = P,0.05 by an
unpaired t-test.
doi:10.1371/journal.pone.0068799.g003

B. burgdorferi ospC Operator
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grown at 34uC in medium at pH 7.0 and then passaged into

medium at pH 8.0. Total cell extracts were collected at late log

phase and OspC levels were analyzed by Western blot. The dIR–

strain did not show increased OspC levels at pH 7.0 and the dIR+

strain behaved like the wild-type strain in response to changing the

pH (Fig. 6). Thus, all the signals examined, DNA supercoiling,

temperature, and pH, control OspC levels through the dIR of the

operator in vitro, suggesting a common mechanism, and the

complementarity of the dIR may be more important than the

specific sequence.

Discussion

Induction and repression of ospC transcription are crucial for B.

burgdorferi to establish and maintain, respectively, an infection in

mammals. A number of external factors, including temperature,

pH, oxygen, carbon dioxide, acetate, and transition metals,

regulate ospC expression [40–48,72,84]. Induction of ospC expres-

sion is generally accepted to be dependent on the RpoN-RpoS

sigma factor cascade [49], which includes the regulatory proteins

Rrp2 [51–54] and BosR [55–58]. Considerably less is known

concerning the repression of ospC transcription, including the

signals and accessory proteins involved. Here we show that the cis-

acting dIR of the ospC operator functions to control expression and

our data indicate that the base-pairing potential of the two halves

of the inverted repeat, rather than the specific sequence, is

essential for induction, thus providing a level of ospC-specific

regulation downstream of RpoS.

The large intergenic region upstream of the ospC gene contains

the operator and is highly conserved among B. burgdorferi sensu

stricto strains, much more so than the ospC gene itself, likely

indicating selective pressure on the regulation of ospC expression

[65,67]. Certain features of the operator, including the proximal

IR (pIR), are broadly conserved throughout B. burgdorferi sensu lato

genospecies, but, inexplicably, the dIR does not overlap the pIR in

B. afzelii strains and is not even obviously present in B. garinii

strains [67], suggesting alternate modes of gene regulation.

Although we and others previously had shown that deleting the

operator has little effect on the regulation of ospC transcription

[68,69], our current results more closely agree with Eggers et al.

[64], who showed that the entire operator was required for full

ospC expression in response to a temperature shift. These data

suggest that the dIR plays a role in ospC regulation. This

discrepancy may be explained by the differences in the experi-

mental approaches between the studies. In the present work, we

have utilized a more precise method to dissect the operator: site-

directed mutations were generated in cis in the endogenous

operator on cp26, while the other studies utilized truncated

operator mutants in trans on a shuttle vector in an ospC null

background. Thus, ospC expression in trans from a plasmid much

smaller than cp26 (7 kb compared to 26 kb), albeit still circular,

with a strong promoter fused to a selectable marker, may affect

operator function, especially when DNA topology is likely involved

[42,68,85]. In fact, OspC levels expressed in trans were elevated at

Figure 4. The role of the dIR in OspC synthesis mediated by
relaxation of DNA supercoiling. Immunoblot analysis of whole-cell
lysates from strains grown to late log phase at 23uC in 10 ng ml21

coumermycin A1 (Cou) (+) or in DMSO as a solvent control (2).
Membranes were probed with antibodies against OspC (upper panel) or
FlaB (lower panel).
doi:10.1371/journal.pone.0068799.g004

Figure 5. The dIR is required for OspC synthesis regulated by
temperature. (A) Immunoblot analysis of whole-cell lysates from
strains grown at 23uC and then temperature shifted to 34uC and grown
to late log phase. The wild-type parental strain (297 WT) and the strain
with a wild-type ospC operator linked to the antibiotic resistance
cassette (WT) are controls. (B) Immunoblot analysis of whole-cell lysates
from strains grown at 34uC and then temperature shifted to 23uC and
grown to late log phase. Membranes were probed with antibodies
against OspC (upper panels) or FlaB (lower panels).
doi:10.1371/journal.pone.0068799.g005

Figure 6. The role of the dIR in OspC synthesis mediated by pH
increase. Immunoblot analysis of whole-cell lysates from strains grown
to late log phase at 34uC at pH 7.0 or shifted to pH 8.0. Membranes
were analyzed by probing with antibodies against OspC (upper panel)
or FlaB (lower panel).
doi:10.1371/journal.pone.0068799.g006

B. burgdorferi ospC Operator
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23uC compared to wild type, even though the plasmid-borne ospC

contained the entire operator region [68].

Mutations that disrupt the dIR, but maintain the pIR (dIR2

strain) prevent an increase in OspC levels in response to

temperature, pH or relaxation of supercoiling, suggesting that all

these signals function through a similar mechanism. Thus, the dIR

is required for an increase in the amount of OspC. The finding

that the ospC induction by relaxation of supercoiling at 23uC with

coumermycin A1 (Fig. 3) depends on the dIR suggests that DNA

topology has a regulatory role. These data imply that the

regulatory element may be the DNA structure rather than the

sequence, although we may not have mutated the nucleotides in

the dIR+ strain that are important in regulation. We propose that

the inverted repeats mediate the effect of DNA supercoiling,

possibly by extruding a cruciform, or bind a trans-acting factor that

recognizes an alternative DNA secondary structure. This provides

a molecular mechanism for our previous observation that

relaxation of supercoiling induces ospC expression [42].

Finally, we are aware of only a handful of studies in which site-

directed mutations were introduced in cis into the genome of B.

burgdorferi [51,73,86,87] and this work provides an important

caveat for interpreting genetic experiments involving introduction

of DNA in trans, albeit the methodology is considerably more

convenient. Our results add another level of complexity to ospC

regulation suggesting that the DNA structure of the operator

serves to mediate the external signals affecting expression.
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