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Background: Thyroid nodules (TNs) cytologically defined as category Bethesda III and IV pose a major 
diagnostic challenge before surgery, demanding new methods to reduce unnecessary diagnostic thyroid 
lobectomies for patients with benign TNs. This study aimed to assess whether a model combining dual-
energy computed tomography (DECT) quantitative parameters with morphologic features could reliably 
differentiate between benign and malignant lesions in Bethesda III and IV TNs. 
Methods: Data from 77 patients scheduled for thyroid surgery for Bethesda III and IV TNs (malignant 
=48; benign =29) who underwent DECT scans were reviewed. DECT quantitative parameters including 
normalized iodine concentration (NIC), attenuation on the slope of spectral Hounsfield unit (HU) curve, 
and normalized effective atomic number (Zeff) were measured in the arterial phase (AP) and venous phase 
(VP). DECT quantitative parameters and morphologic features were compared between the malignant and 
benign cohorts. The receiver operating characteristic curve was performed to compare the performances 
of significant DECT quantitative parameters, morphologic features, or the models combining the DECT 
parameters, respectively, with morphologic features. A nomogram was constructed from the optimal 
performance model, and the performance was evaluated via the calibration curve and decision curve analysis.
Results: The areas under the receiver operating characteristic curve with 95% confidence interval (CI) of 
the NIC in the AP (AP-NIC), slope of spectral HU curve in the AP, and NZeff in the AP were 0.749 (95% 
CI: 0.641–0.857), 0.654 (95% CI: 0.530–0.778), and 0.722 (95% CI: 0.602–0.842), respectively. The model 
combining AP-NIC with enhanced blurring showed the highest diagnostic performance, with an area under 
the receiver operating characteristic curve (AUC), sensitivity, and specificity of 0.808, 0.854, and 0.655, 
respectively; it was then used to construct a nomogram. The calibration curve showed that the discrepancy 
between the prediction of the nomogram and actual observations was less than 5%. The decision curve 
analysis indicated the nomogram had a positive net benefit in threshold risk ranges of 14% to 58% or 60% 
to 91% for malignant Bethesda III and IV TNs.
Conclusions: The model combining AP-NIC with enhanced blurring could reliably differentiate between 
benign and malignant lesions in Bethesda III and IV TNs.
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Introduction

Thyroid nodules (TNs) are a common finding, detected 
in up to 65% of the general population (1). Accurate 
identification of the nature of TNs is crucial for both 
patients and clinicians, as it dictates the adoption of distinct 
management strategies. Ultrasound-guided fine-needle 
aspiration biopsy stands as the standard preoperative 
method for assessing TN status (2). Within the 2023 
Bethesda System for reporting thyroid cytopathology, 
fine-needle aspiration biopsy results include atypia of 
undetermined significance (Bethesda III) and follicular 
neoplasm (Bethesda IV), which carry malignancy risks of 
13–30% and 23–34%, respectively (3). These categories 
pose challenges in preoperative characterization, often 
leading to recommendations for diagnostic thyroid 
lobectomy. However, this invasive procedure inevitably 
results in unnecessary thyroid lobectomies for patients with 
benign Bethesda III and IV TNs, causing potential surgical 
complications and escalating healthcare expenditures (2,4,5). 
Consequently, there is a pressing need for novel methods 
to differentiate between benign and malignant lesions in 
Bethesda III and IV TNs.

Various imaging modalities, such as ultrasound and 
positron emission tomography, have been employed to 
discern the nature of Bethesda category III and IV TNs 
(6,7). Although ultrasound is the preferred method due to 
its cost-effectiveness and accessibility, its limitations lie in 
the overlapping of benign and malignant TN ultrasound 
features and its inability to depict the stereoscopic anatomy 
around the thyroid (4,8-10). Positron emission tomography, 
while capable of identifying malignant lesions in Bethesda 
III and IV TNs based on differential metabolism, is subject 
to inadequate management of some Bethesda IV TNs and 
poor specificity (39.8–50%), possibly due to neglecting 
the morphologic features of TNs (11-13). Thus, achieving 
accurate preoperative identification of malignant lesions in 
Bethesda III and IV TNs remains a considerable challenge.

Dual-energy application, an advanced functional 
imaging technique, offers quantitative information related 
to hemodynamics and specific components. It enables an 
objective identification of lesions and provides detailed 
stereoscopic anatomical information for comprehensive 
lesion assessment (14,15). Previous studies have confirmed 
the clinical applicability of dual-energy computed 
tomography (DECT) parameters in the diagnosis of thyroid 
diseases (16), detection of extrathyroidal extension (17), 
and assessment of lymphatic node metastasis in thyroid  

cancer (18). However, to the best of our knowledge, there 
is limited research on the value of DECT quantitative 
parameters and morphologic features specifically for 
discriminating between benign and malignant lesions in 
Bethesda III and IV TNs.

This study thus aimed to identify useful DECT 
quantitative parameters and morphologic features for 
distinguishing between benign and malignant lesions 
in Bethesda III and IV TNs. Additionally, we aimed to 
integrate these findings into a nomogram to facilitate 
clinical personalized assessment. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1511/rc).

Methods

Patients

This retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013) and was 
approved by the Review Committee of Chongqing General 
Hospital (No. KY S2023-061-01). The requirement of 
informed consent from participants in this retrospective 
study was waived. The selected data in this study were 
derived from patients who received cytological diagnosis 
after ultrasound-guided fine-needle aspiration biopsy 
and who underwent DECT scans between August 2021 
to June 2023. The inclusion criteria were the following: 
(I) a cytological diagnosis of Bethesda III or IV and (II) 
surgical pathological results available within 2 weeks after 
the DECT scan. Meanwhile, the exclusion criteria were 
as follows: (I) unqualified DECT image; (II) nodules with 
extensive calcification, cystic change, or necrosis; (III) 
patients with diffuse thyroid disease (involvement of the 
entire thyroid gland) (19); and (IV) nodule diameter <5 mm. 
Ultimately, 77 patients were enrolled. The patient eligibility 
flowchart is shown in Figure 1.

DECT acquisition technique 

All patients underwent preoperative noncontrast and 
neck contrast-enhanced computed tomography (CT) 
scans with 64-slice DECT devices (IQon Spectral CT, 
Philips Healthcare, Amsterdam, the Netherlands). The 
DECT scanning protocol was as follows: tube voltage,  
120 kVp; tube current, modulated with automated exposure 
control (DoseRight system, Philips Healthcare); detector 

https://qims.amegroups.com/article/view/10.21037/qims-23-1511/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1511/rc
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collimation, 64×0.625 mm; field of view, 350 mm; matrix, 
512×512; and reconstruction thickness, 0.67 mm. The 
noncontrast scan was performed first, and the contrast-
enhance scan was conducted following injection of nonionic 
contrast media (iopamidol 350 mg/mL; Bracco, Milan, 
Italy) at a dose of 1.5 mL/kg and a rate of 3.5 mL/s, which 
was followed by a 30-mL saline flush at the same rate. The 
arterial phase (AP) scan was started with a threshold of  
150 Hounsfield units (HU) in the descending aorta lumen 
at the tracheal bifurcation level, and the venous phase (VP) 
scan was started 40 seconds after the end of the AP scan.

DECT quantitative analysis

Two trained radiologists were blinded to the pathologic 
results and reconstructed DECT images at a spectral CT 
postprocessing workstation (IntelliSpace Portal version 
10.1, Philips Healthcare) for the quantitative assessment of 
TNs. The generated DECT images included iodine images, 
40- and 100-keV monochromatic images, and effective 
atomic number (Zeff) images in the AP and VP. 

In conducting the quantitative analysis, we properly 
zoomed in on images to accurately assess lesions on the 
premise of ensuring a clear image. Second, a circular 
two-dimensional region-of-interest of the TN was 
manually drawn as large as possible, with calcification and 

cystic or necrotic regions being avoided, to acquire the 
following imaging parameters: HU on 40 and 100 keV 
monochromatic imaging, iodine concentration (IC), and 
Zeff. Another two-dimensional region of interest was then 
placed on the ipsilateral adjacent artery for subsequent 
normalized measurements to minimize the variations caused 
by the patient's circulation status. All DECT quantitative 
parameters were measured twice to calculate the average. 
Finally, the DECT quantitative parameters examined in 
the study included slope of the spectral HU curve (λHU), 
normalized iodine concentration (NIC), and normalized 
effective atomic number (NZeff) in the AP and VP. The 
formulae for these parameters were as follows: λHU = (HU40 

keV – HU100 keV)/(100 – 40); NIC = ICnodule/ICipsilateral carotid artery; 
NZeff = Zeffnodule/Zeff ipsilateral carotid artery.

Morphological analysis

Morphological analysis of TNs was performed on the 
noncontrast, AP and VP images by two radiologists 
specializing in head-and-neck imaging who only knew 
the location of the lesion and who were blinded to 
the pathologic results of the TNs. Any disagreements 
were resolved via discussion. The DECT morphologic 
features included punctate calcification, irregular shape, 
enhanced blurring, and thyroid marginal interruption. 

Patients who received cytological diagnosis after ultrasound-guided fine-needle aspiration biopsy
and who underwent DECT scans between August 2021 to June 2023

The inclusion criteria:
• Patients received Bethesda III or IV 

cytological diagnosis
• Patients had surgical pathological results 

within 2 weeks after DECT scan

The exclusion criteria:
• DECT image was unqualified (n=6)
• Patients had nodules with extensive 

calcification, cystic change or necrosis (n=3)
• Patients had diffuse thyroid disease (n=3)
• Nodule diameter was less than 5 mm (n=8)

Patients met the criteria (n=97)

Patients finally were included (n=77)

Include

Exclude

Figure 1 Flowchart of patient selection. DECT, dual-energy computed tomography.
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Punctate calcification was defined as the largest diameter 
of calcification ≤2 mm. Irregular shape was defined as 
neither a circular nor ovoid shape. Enhanced blurring 
was defined as the rim of the TN being more blurred on 
contrast enhancement image than on plain image and the 
density difference between the TN and surrounding thyroid 
parenchyma being decreased after enhancement CT scan. 
Thyroid marginal interruption was defined as a defect in 
the thyroid capsule.

Statistical analysis

Statistical analyses were performed using R software (The 
R Foundation for Statistical Computing; http://www.R- 
project.org), SPSS version 25.0 (IBM Corp., Armonk, NY, 
USA), MedCalc version 18.2.1 (MedCalc Software, Ostend, 
Belgium), and Python version 3.10.9 (Python Software 

Foundation. Wilmington, DE, USA). The intraclass 
correlation coefficient was used to assess the interobserver 
agreement for the DECT quantitative parameters. A two-
sided P value <0.05 was considered statistically significant. 

The Shapiro-Wilk test was used to determine the data 
distribution. Continuous data are expressed as mean ± 
standard deviation if they fit a normal distribution or 
as median with the interquartile range if they did not. 
Categorical variables are expressed as numbers of lesions 
with percentages. Differences in DECT quantitative 
parameters and morphologic features between benign and 
malignant Bethesda III and IV TNs were compared with 
the two-sample t-test, the Mann-Whitney, or chi-square 
test as appropriate. Receiver operating characteristic curve 
analysis was applied to evaluate the diagnostic ability of 
the DECT quantitative parameters, morphologic features, 
and combined models integrating DECT parameters, 
respectively, with morphologic features via multivariable 
binary logistic regression analysis. The area under the 
receiver operating characteristic curve (AUC) with a 95% 
confidence interval (95% CI) was acquired to evaluate 
the diagnostic capability. The DeLong test was used for 
the comparisons between the AUCs. The cutoff value 
was determined by the maximum Youden index, and the 
sensitivity and specificity were calculated. A nomogram 
was then constructed for optimal diagnostic performance. 
Calibration curve and decision curve analysis were 
employed to assess nomogram goodness of fit and clinical 
utility, respectively. The random forest variable importance 
and Shapley additive explanations (SHAP) summary plots 
were applied to visualize each variable’s contribution to the 
predictive performance.

Results

Patient demographic and pathologic characteristics

A total of 77 Bethesda III and IV TNs in 77 patients were 
included and then divided into two cohorts according to 
the histopathologic results: benign nodules (n=29) and 
malignant nodules (n=48). Among these patients, 14 were 
men (mean age ± standard deviation 41.79±10.11 years) 
within an age range of 28–65 years, while 63 were women 
(mean age ± standard deviation 47.06±11.55 years) aged of 
22–67 years. The patient demographic and histopathologic 
information is summarized in Table 1.

Table 1 Characteristics of patients and histopathological information 

Characteristic Patients (n=77)

Age* (years) 46.10±11.43

Sex

Male 14

Female 63

Bethesda classification

III 67

IV 10

Histopathological type

Benign nodules 29

Fibrotic nodule 1

Nodular goiter 20

Follicular adenoma 3

Hashimoto thyroiditis 4

Granulomatous thyroiditis 1

Malignant nodules 48

Papillary carcinoma 14

Medullary carcinoma 1

Papillary microcarcinoma 33

Unless otherwise indicated, data are the number of patients. *, 
data are the mean ± standard deviation.

http:// www.R- project. org
http:// www.R- project. org
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Table 2 Univariate analysis of the benign and malignant nodule cohorts 

Variable
Benign nodule cohort 

(n=29)
Malignant nodule cohort 

(n=48)
F value /Z value/χ2 value P value

CT morphologic features#

Punctate calcification 6 (20.7) 7 (14.6) 0.480 0.49

Irregular shape 13 (44.8) 18 (37.5) 0.404 0.53

Enhanced blurring 9 (31.0) 31 (64.6) 8.151 0.004

Thyroid marginal interruption 20 (69.0) 31 (64.6) 0.155 0.69

DECT parameters 

AP-NIC 0.37 (0.30, 0.46) 0.28 (0.23, 0.36) −3.648 <0.001

AP-λHU 4.19 (3.29, 5.06) 3.58 (2.71, 4.30) −2.250 0.02

AP-NZeff 0.83 (0.79, 0.85) 0.79 (0.76, 0.82) −3.248 0.001

VP-NIC* 0.73±0.20 0.74±0.17 1.227 0.90

VP-λHU 3.48 (2.70, 4.31) 3.60 (2.86, 4.20) −0.121 0.90

VP-NZeff* 0.95±0.42 0.95±0.03 0.980 0.97

Unless otherwise indicated, data are median with the interquartile range in parentheses. #, data are numbers of lesions with percentages; 
*, data are the mean ± standard deviation. CT, computed tomography; DECT, dual-energy computed tomography; AP, arterial phase; VP, 
venous phase; NIC, normalized iodine concentration; λHU, slope of the spectral Hounsfield unit curve; NZeff, normalized effective atomic 
number.

Differences in the DECT quantitative parameters and 
morphologic features between the malignant and benign 
cohorts

The DECT quantitative parameters and morphologic 
features of the benign and malignant nodule cohorts are 
summarized in Table 2. The intraclass correlation coefficients 
for all quantitative DECT parameters exceeded 0.75. For 
DECT quantitative parameters, significant differences 
were noted for NIC in the AP (AP-NIC) (P<0.001), λHU 
in the AP (AP-λHU) (P=0.02), and NZeff in the AP (AP-
NZeff) (P=0.001). However, no significant differences were 
observed for NIC in the VP (VP-NIC) (P=0.90), λHU in 
the VP (VP-λHU) (P=0.90), or NZeff in the VP (VP-NZeff) 
(P=0.97). Regarding morphologic features, enhanced 
blurring showed significant differences between the benign 
and malignant nodule cohorts (P=0.004), while there were 
no significant differences between the two cohorts in terms 
of punctate calcification (P=0.49), irregular shape (P=0.53), 
or thyroid marginal interruption (P=0.69). 

Diagnostic performance of enhanced blurring or DECT 
quantitative parameters 

The AUC, 95% CI of the AUC, sensitivity, and specificity of 
enhanced blurring and the DECT quantitative parameters 
are shown in Table 3 and Figure 2A. Enhanced blurring 
had an AUC of 0.668. Among the DECT quantitative 
parameters in the AP, AP-NIC exhibited the highest 
diagnostic performance, with an AUC of 0.749.

Diagnostic performance of the models combining enhanced 
blurring and DECT parameters

After significant DECT parameters were respectively 
integrated with enhanced blurring, a combined model was 
developed using multivariate binary logistic regression. The 
receiver operating characteristic curves of these combined 
models are illustrated in Figure 2B. Table 4 details the 
diagnostic performance of significant DECT quantitative 
parameters respectively in combination with enhanced 
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blurring. The AUCs with 95% CIs of enhanced blurring 
+ AP-NIC, enhanced blurring + AP-λHU, and enhanced 
blurring + AP-NZeff were 0.808 (95% CI: 0.707–0.910), 
0.724 (95% CI: 0.608–0.840), and 0.744 (95% CI: 0.627–
0.860), respectively. The P values of the DeLong test for 
the AUCs of different combinations are detailed in Table 5.

Performance of the nomogram and visualization of results 
using SHAP

The nomogram (Figure 3) was constructed based on the 
combined model with enhanced blurring and AP-NIC 
according to the following the formula: nomogram = 

Table 3 The diagnostic performance of enhanced blurring and DECT parameters 

DECT parameter AUC (95% CI) Sensitivity Specificity Cutoff value P value

Enhanced blurring 0.668 (0.542–0.793) 0.646 0.690 – 0.01

AP-NIC 0.749 (0.641–0.857) 0.813 0.448 0.661 0.001

AP-λHU 0.654 (0.530–0.778) 0.917 0.207 0.590 0.04

AP-NZeff 0.722 (0.602–0.842) 0.917 0.414 0.576 0.006

DECT, dual-energy computed tomography; AUC, area under the receiver operating characteristic curve; CI, confidence interval; AP, arterial 
phase; NIC, normalized iodine concentration; λHU, slope of the spectral Hounsfield unit curve; NZeff, normalized effective atomic number.
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Figure 2 Receiver operating characteristic curves of DECT parameters. (A) Diagnostic performance of enhanced blurring and DECT 
quantitative parameters. (B) Diagnostic performance of the combined model with enhanced blurring and DECT parameters. AP, arterial 
phase; NIC, normalized iodine concentration; λHU, slope of the spectral Hounsfield unit curve; NZeff, normalized effective atomic 
number; DECT, dual-energy computed tomography.

Table 4 The diagnostic performance of the combined model with enhanced blurring and DECT parameters

DECT parameter AUC (95% CI) Sensitivity Specificity Cutoff value P value

Enhanced blurring + AP-NIC 0.808 (0.707–0.910) 0.854 0.655 0.658 <0.001

Enhanced blurring + AP-λHU 0.724 (0.608–0.840) 0.792 0.483 0.568  0.001

Enhanced blurring + AP-NZeff 0.744 (0.627–0.860) 0.854 0.483 0.624 <0.001

DECT, dual-energy computed tomography; AUC, area under the receiver operating characteristic curve; CI, confidence interval; AP, arterial 
phase; NIC, normalized iodine concentration; λHU, slope of the spectral Hounsfield unit curve; NZeff, normalized effective atomic number.
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3.23 + 1.40 × enhanced blurring – 10.29 × AP-NIC. The 
calibration curve demonstrated a discrepancy of less than 5% 
between the nomogram’s predictions and actual observations 
(Figure 4). The decision curve showed that the nomogram 
had positive a net benefit within threshold risk ranges of 
14% to 58% or 60% to 91% for malignant Bethesda III and 
IV TNs (Figure 5). The variable importance plot (Figure 6A)  
and SHAP summary plot (Figure 6B) indicated that AP-NIC 
was the feature with the highest eigenvalues. An example of 
DECT and pathological imaging is shown in Figure 7.

Table 5 P values of the DeLong test for AUC 

DECT parameter
Enhanced 
blurring

AP-NIC AP-λHU AP-NZeff
Enhanced blurring 

+ AP-NIC
Enhanced blurring  

+ AP-λHU
Enhanced blurring 

+ AP-NZeff

Enhanced blurring  
(AUC =0.668) 

– 0.30 0.86 0.49 0.007 0.11 0.09

AP-NIC (AUC =0.749) 0.30 – 0.07 0.60 0.12 0.71 0.93

AP-λHU (AUC =0.654) 0.86 0.07 – 0.37 0.008 0.17 0.24

AP-NZeff (AUC =0.722) 0.49 0.60 0.37 – 0.14 0.98 0.63

Enhanced blurring +  
AP-NIC (AUC =0.808)

0.007 0.12 0.008 0.14 – 0.056 0.16

Enhanced blurring +  
AP-λHU (AUC =0.724)

0.11 0.71 0.17 0.98 0.056 – 0.69

Enhanced blurring +  
AP-NZeff (AUC =0.744)

0.09 0.93 0.24 0.63 0.16 0.69 –

AUC, area under the receiver operating characteristic curve; DECT, dual-energy computed tomography; AP, arterial phase; NIC, 
normalized iodine concentration; λHU, slope of the spectral Hounsfield unit curve; NZeff, normalized effective atomic number.
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Figure 3 The nomogram based on the combination model for identifying malignant Bethesda III and IV thyroid nodules. The points of 
each predictor are obtained based on the “Points” bar. Subsequently, the sum of the two points is mapped to the “Total points” and “Risk” 
bars to thereby calculate the risk probability of malignant Bethesda III and IV thyroid nodules. AP, arterial phase; NIC, normalized iodine 
concentration.
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Figure 4 The calibration curves of the nomogram.
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Discussion

We found that the combined model integrating enhanced 
blurring with AP-NIC demonstrated superior performance 
compared to enhanced blurring alone. These findings 
indicated that the DECT quantitative parameters could 
serve as an effective complement to morphologic features 
for the preoperative diagnosis of malignant lesions in 
Bethesda III and IV TNs. Moreover, the nomogram based 
on the combined model was demonstrated to be an effective 
tool for the differential diagnosis of benign from malignant 
lesions in Bethesda III and IV TNs.

Our findings revealed that enhanced blurring exhibited 
the capacity to identify malignant lesions in Bethesda 
III and IV TNs, with an AUC of 0.668. We also found 
that enhanced blurring was more prevalent in malignant 
lesions than in benign ones, aligning partially with prior 
studies (20,21). This observation might be attributed to the 
increased neovascularization in the thyroid cancer's rim 
compared to its central area, resulting in density difference 
after enhancement and rendering thyroid cancer more 

similar to normal thyroid tissue (22,23). Surprisingly, no 
discernible differences were noted in punctate calcification, 
irregular shape, or thyroid marginal interruption, which 
is partially consistent with previous research (24,25). 
However, the disparate findings between several studies 
attempting to identify CT features of malignant TNs (26,27) 
may stem from variations in study cohorts, and notably, the 
subjectivity of the morphological assessments performed 
by observers. Additionally, only 64.6% of malignant TNs 
exhibited enhanced blurring in our study, emphasizing 
the need for a more accurate method for identifying 
malignancies in Bethesda III and IV TNs, especially those 
lacking typical morphologic features that tend to be easily 
overlooked by radiologists.

A previous paper proposed the utility of DECT 
quantitative parameters in objectively discerning malignant 
from benign lesions (28). Consistent with these findings, 
our study identified AP-NIC, AP-λHU, and AP-NZeff as 
valuable for preoperatively identifying malignant lesions in 
Bethesda III and IV TNs. AP-NIC, in particular, displayed 
the highest diagnostic performance among all the significant 
DECT parameters. The random forest variable importance 
and SHAP plots further supported the crucial role of AP-
NIC as the most significant predictor of thyroid malignancy. 
The results indicated that the AP-NIC of malignant lesions 
was lower than that of benign lesions in Bethesda III and 
IV TNs. One possible explanation for this is that thyroid 
follicular cells with iodine uptake function are still present 
in benign TNs but not in thyroid cancers, leading to a 
lower IC of the malignant lesion (29,30). IC in tissues and 
that measured in DECT are highly similar (31). Hence, the 
NIC in our study, calculated based on the IC, was lower in 
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Figure 5 The decision curve analysis of the nomogram.
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malignant lesions than in benign lesions in Bethesda III and 
IV TNs. Furthermore, our findings revealed no significant 
differences in any of the quantitative DECT parameters 
assessed during the VP. This might be attributable to the 
intricately arranged and tortuous microvessels in malignant 
lesions that result in slow contrast flows. Additionally, 
cancer embolus in microvessels could contribute to this 
process. Iodinated contrast leaking into the intercellular 
space through loosely connected capillary endothelial cells 
in malignant lesions may also facilitate a slow iodinated 
contrast discharge in the VP, concealing the differences in 
DECT morphologic features parameters between benign 
and malignant Bethesda III and IV TNs (32). Chen et al. 
similarly reported that the diagnostic performance of DECT 
quantitative parameters in the AP outperformed those in the 

VP in predicting central lymph node metastases in patients 
with papillary thyroid cancer (33). 

The addition of DECT parameters to enhanced blurring 
yielded satisfactory results for identifying malignant lesions 
in Bethesda III and IV TNs. The combined model that 
incorporated enhanced blurring and AP-NIC demonstrated 
the highest diagnostic utility in distinguishing benign from 
malignant lesions in Bethesda III and IV TNs, achieving an 
AUC, sensitivity, and specificity of 0.808, 0.854, and 0.655, 
respectively. Nomograms, as a simple visual representation 
of statistics-based tools, hold promise for evaluating the 
numerical probability of a clinical occurrence and aiding 
in the personalized management of patients (34). Decision 
curve analysis showed that the nomogram based on the 
combination model exhibited good clinical utility for 
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patients with Bethesda III and IV TNs. Therefore, this 
nomogram may serve as a straightforward, objective, and 
reliable tool for assisting in individualized assessment in 
clinic.

This study has certain limitations which should be 
acknowledged. First, we employed a single-center, 
retrospective design with a relatively small sample size, 
especially for the Bethesda IV TNs. Further studies with 
a larger sample size are required to confirm our findings. 
Second, all patients enrolled in this study underwent thyroid 
surgery, which might have introduced selection bias. Third, 
papillary carcinomas and nodular goiters were predominant 
among malignant nodules and benign nodules, respectively. 
Consequently, the study’s findings may not be applicable to 
the detection of other pathological varieties of TNs.

Conclusions

Our findings suggest that AP-NIC has potential as an 
imaging biomarker for characterizing Bethesda III and 
IV TNs. The constructed nomogram that incorporates 
enhanced blurring and AP-NIC may serve as a convenient 
tool for accurately and reliably differentiating between 
benign and malignant lesions in Bethesda III and IV TNs, 
which may help decrease the need for diagnostic thyroid 
lobectomy. 
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