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A strawman with machine learning for a brain: A response to Biedermann (2022) the strange 
persistence of (source) “identification” claims in forensic literature  
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A B S T R A C T   

We agree wholeheartedly with Biedermann (2022) FSI Synergy article 100222 in its criticism of research pub-
lications that treat forensic inference in source attribution as an “identification” or “individualization” task. We 
disagree, however, with its criticism of the use of machine learning for forensic inference. The argument it makes 
is a strawman argument. There is a growing body of literature on the calculation of well-calibrated likelihood 
ratios using machine-learning methods and relevant data, and on the validation under casework conditions of 
such machine-learning-based systems.   

Letter to Editor: 

Biedermann [1] is critical of research publications that treat forensic 
inference in source attribution as an “identification” or “individualiza-
tion” task. Biedermann [1] argues that such publications condone un-
scientific attitudes and practices, foster unrealistic expectations among 
consumers of forensic science, and undermine trust in peer-reviewed 
publications because so-called “original research papers” are not, in 
fact, well grounded. With respect to these points, we agree whole-
heartedly with Biedermann [1]. 

With respect to criticism of machine learning, however, we feel that 
Biedermann [1] makes a strawman argument. It defines “standard” 
machine learning as outputting categorical decisions and then criticizes 
the use of “standard” machine learning for forensic inference because it 
outputs categorical decisions. There are indeed research publications 
that misapply machine learning to forensic-inference problems, 
including using algorithms that output categorical decisions, e.g. [2]. 
But we fear that many readers will get the impression from Biedermann 
[1] that this is the only way (or at least the primary way) that machine 
learning is applied to forensic inference. There is in fact a growing body 
of literature on the calculation of well-calibrated likelihood ratios using 
machine-learning methods and relevant data, and on the validation 
under casework conditions of such machine-learning-based systems. 
Recent examples include [3–11]. 
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