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In this study, we introduced structure-based rational mutations in the guinea pig leukotriene B4 receptor
(gpBLT1) in order to enhance the stabilization of the protein. Elements thought to be unfavorable for the
stability of gpBLT1 were extracted based on the stabilization elements established in soluble proteins,
determined crystal structures of G-protein-coupled receptors (GPCRs), and multiple sequence alignment.
The two unfavorable residues His832.67 and Lys883.21, located at helix capping sites, were replaced with
Gly (His83Gly2.67 and Lys88Gly3.21). The modified protein containing His83Gly2.67/Lys88Gly3.21 was
highly expressed, solubilized, and purified and exhibited improved thermal stability by 4 °C in com-
parison with that of the original gpBLT1 construct. Owing to the double mutation, the expression level
increased by 6-fold (Bmax¼311 pmol/mg) in the membrane fraction of Pichia pastoris. The ligand binding
affinity was similar to that of the original gpBLT1 without the mutations. Similar unfavorable residues
have been observed at helix capping sites in many other GPCRs; therefore, the replacement of such
residues with more favorable residues will improve stabilization of the GPCR structure for the crystal-
lization.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The leukotriene B4 (LTB4) receptor (BLT1) is a rhodopsin-family
G-protein-coupled receptor (GPCR) expressed on the surface of
inflammatory cells [1]. LTB4 is a lipid mediator endogenously
biosynthesized from an arachidonic acid found within in the
phospholipid nuclear membrane in leukocytes and endothelial
cells [1]. In the initial inflammatory response, the LTB4-BLT1 sys-
tem induces inflammatory cell functions, such as the chemotaxis,
activation, and endothelial cell adhesion of leukocytes [1]. LTB4 is
involved in various inflammatory diseases, including asthma and
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chronic obstructive pulmonary disease [2], and BLT1 antagonists
have been developed as therapeutics for related diseases [3].

In vitro studies and the detailed crystal structures of GPCRs, in-
cluding BLT1, are indispensable for the functional analysis of GPCRs
and the development of novel therapeutics using these targets.
However, the low expression and unstable solubilization of integral
membrane proteins have blocked research progress in these areas
[4]. Furthermore, GPCRs, which function as cellular switching mo-
lecules, are highly flexible and can switch between the inactive and
active conformations. Various approaches to overcome these chal-
lenges have been attempted for structural studies of GPCRs [5]. For
example, exhaustive mutation screening and production of chi-
meric GPCRs bound with soluble stable proteins (e.g., T4 lysozyme
or b562RIL) have been used to obtain detergent-tolerant GPCRs
with high expression and to improve the conformation of GPCRs for
crystallization within a suitable ligand complex and/or a con-
formationally “locked” antibody complex [6–25].

Because the design of stabilized, detergent-solubilized proteins
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is indispensable for in vitro and structural studies of GPCR, we
aimed to define residues thought to destabilize BLT1 and subse-
quently replace these residues with more favorable residues pro-
moting the overexpression, solubilization, and purification of BLT1
based on the original mutant guinea pig BLT1 (gpBLT1) (dN15/
Ser309Ala) [4]. We focused on the helix capping residues and
those forming internal hydrogen bonds to establish stabilized
mutations suitable for purification and crystallization. We used the
structure-based rational design of mutations for the stabilization
of gpBLT1 in our previously established overexpression system of
the original mutant gpBLT1 (dN15/Ser309Ala) in the methylo-
trophic yeast Pichia pastoris [4]. The double mutations
His83Gly2.67/Lys88Gly3.21 (where superscripts indicate Balles-
teros–Weinstein numbering [26]) improved the stabilization of the
helix capping sites, increasing thermal stability by 5 °C in the
large-scale preparation of the BLT1 membrane fraction and by 4 °C
in the purified BLT1 sample. This rational approach may be also
applicable for improving the stability of the other GPCRs having
unfavorable residues at the expected helix-capping site.
2. Materials and methods

2.1. Expression and purification of gpBLT1 mutants

Mutant gpBLT1s were overexpressed by P. pastoris, solubilized
by dodecylmaltoside (DDM), and purified in the presence of
BIIL260, a BLT1 antagonist, which was kindly donated by Boeh-
ringer Ingelheim together with BIIL284 for assay, as described
previously [4]. Ligand binding and 7-diethylamino–3-(4′-mal-
eimidylphenyl)–4-methylcoumarin (CPM) assays were performed
after removal of BIIL260 bound to the gpBLT1 mutants with Su-
perose-12 gel-filtration (GE Healthcare, Uppsala, Sweden), eluted
with assay buffer (50 mM Tris [pH 8.0], 150 mM NaCl, 5% glycerol,
and 0.02% DDM) or CPM buffer (5 mM HEPES [pH 7.4], 150 mM
NaCl, 5% glycerol, and 0.02% DDM). Total protein concentrations
were determined using BCA assays (Thermo Scientific Pierce Pro-
tein Biology, Rockford, IL, U.S.A.).

2.2. Ligand binding and thermostability assays

The ligand binding assays with the gpBLT1 expressed mem-
brane fraction were performed as described previously [4]. For
measurement of thermal stability using the gpBLT1 membrane
fraction, aliquots of membrane fractions from small and large ex-
pression cultures (10 and 0.4 μg protein in 10 mL and 1 L culture,
respectively) were incubated for 30 min at each temperature and
quenched on ice for more than 150 min. [3H]-LTB4 (PerkinElmer,
Tokyo, Japan) binding was then measured. In the competitive li-
gand binding assay for the purified gpBLT1, the following im-
munoprecipitation method was applied to separate the
[3H]-LTB4/BLT1 complex and the unbound [3H]-LTB4 incorporated
in DDM micelles. First, 25 ng of purified gpBLT1 was reacted with
0.5 nM [3H]-LTB4 and cold ligands in 100 μL BLT1 binding buffer
(50 mM Tris–HCl [pH 7.4], 10 mM NaCl, 10 mM MgCl2, and 0.02%
DDM) at 4 °C for 12 h. The reaction solution was then mixed with
10 μL M2 anti-FLAG antibody agarose gel (Sigma-Aldrich, St. Louis,
MO, USA) at 4 °C for 3 h. Next, the gpBLT1 adsorbed gel was wa-
shed twice with 200 μL ice-cold BLT1 binding buffer to remove the
unbound ligand, and the washed gel was resuspended in 100 μL
BLT1 binding buffer. The gel solution was mixed with 1 mL Mi-
croScinti-20 scintillation cocktail (PerkinElmer), and the amount of
bound [3H]-LTB4 was measured on a liquid-scintillation counter
(PerkinElmer).
2.3. CPM assay

CPM assays were performed as previously described [27] with
some modifications. Before heat treatment, 30 μM CPM was in-
cubated with 6 μM gpBLT1 for 3 h at 4 °C in CPM buffer to form
CPM-thiol adducts with CPM-accessible Cys residues in native
gpBLT1. The mixture was incubated for 30 min at each tempera-
ture and quenched on ice. The fluorescence spectrum was mea-
sured at excitation and detection wavelengths of 387 and 463 nm,
respectively (the slit width of each filter was 1.5 nm) on a Shi-
madzu spectrofluorophotometer (RF-5301PC). For the blank, the
same procedure was performed for the solution without gpBLT1,
and the blank fluorescent intensity was subtracted.

2.4. Amino acid multiple alignments

Amino acid sequences of 274 human rhodopsin-family GPCRs
and 28 vertebrate BLT1s were obtained from a protein BLAST
search using the Swiss-Prot and nonredundant sequences modes,
respectively. All sequences were aligned by ClustalW with manual
modifications according to the conserved residues among GPCRs
[28].
3. Results

3.1. Mutation design for stabilization

The residues contributing to the instability of gpBLT1 were pre-
dicted based on the amino acid homology and crystal structures of
GPCRs. In principle, the profiles of ligand binding activities should
be sustained by the mutants. We presumed that residues other than
the completely conserved residues in the various vertebrate BLT1s
would not be directly involved in ligand binding; therefore, com-
pletely conserved residues were excluded from the mutation tar-
gets. Based on 17 crystal structures, 274 amino acid sequences of
human GPCRs, and 28 amino acid sequences of BLT1s in various
vertebrates (Fig. 1 and Table S1), we focused on elimination of the
unfavorable helix capping sites from gpBLT1 and introduction of
hydrogen bonds conserved in GPCRs but lacking in gpBLT1 [6–
20,29,30]. First, the unfavorable residues in helix capping sites were
replaced with more favorable, conserved residues among BLT1s at
the C-terminal of the transmembrane helix II (TM-II; His83Gly2.67)
and the N-terminal of TM-III (Lys88Gly3.21; Fig. 1A and Table S1).
Second, putative hydrogen bonds were introduced by replacing
residues that were conserved among GPCRs but not in BLT1 at the
N-terminal of TM-II (Ala56Asn2.40; Fig. 1B) [28] and at the putative
cholesterol binding site (Leu109Ser3.42 or Leu109Thr3.42; Fig. 1C)
[25]. These five selected mutations were introduced in the previous
construct of dN15/Ser309Ala gpBLT1 mutant [4] as five single and 18
combinational mutations (Table 1).

3.2. Screening of the stability of gpBLT1 mutants expressed in small-
scale culture

The binding activities of five single gpBLT1 mutants, i.e.,
Ala56Asn2.40, His83Gly2.67, Lys88Gly3.21, Leu109Ser3.42, and
Leu109Thr3.42, and 18 combinational gpBLT1 mutants, designed
based on the multiple sequence alignment and known structures
of GPCRs, were examined as described (Table 1). First, the mem-
brane fractions were screened using all the 23 mutants, including
the original dN15/Ser309Ala, expressed in small cultures of P.
pastoris. The specific LTB4 binding activities were sustained in all
the mutants except for the 12 mutants containing the Ala56Asn2.40

mutation with no binding capability, i.e., with loss of specific LTB4
binding (Table 1). The thermal stability of the active mutants was



Fig. 1. Representative template structure for the mutational designs. The three-di-
mensional structure of the mutation site of gpBLT1 using the structures of known
GPCRs. (A) The capping residues at TM-II and TM-III of β2 adrenergic receptor (PDB id:
2RH1). The corresponding capping residues Lys972.68 and Gly1023.21 are colored in
magenta, and Trp993.18 and Cys1063.25 with the disulfide partner Cys191 as the con-
served Trp3.18–Xxx–(Phe/Leu)3.20–Gly3.21–(Xxx)3–Cys3.25 sequence motif are colored in
cyan. This motif, with the exception of Gly3.21, is conserved in gpBLT1. (B) The conserved
hydrophilic residue 2.40 in the adenosine A2A receptor (PDB id: 3REY). Residue 2.40
(Asn42) and the hydrogen bond partners are colored in magenta and cyan, respectively.
The main-chain carbonyl group was drawn for Leu37. The hydrogen bond is shown as a
dashed line. (C) The putative cholesterol-binding site of the adenosine A2A receptor (PDB
id: 3EIY). The corresponding residue 3.42 (Ser94) is colored in magenta. The hydrogen
bond partners (with water molecules shown as red balls) are in cyan (Ser472.45, which is
conserved among GPCRs, including BLT1, is a hydrophilic residue) and green (Ser903.38,
which is not conserved; Table S1).
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calculated as the relative remaining activity (%) of LTB4 binding
after heat treatments at 40 °C to that of at 25 °C for each mutant.

Among the single mutations, His83Gly2.67 (68%) and Lys88Gly3.21

(75%) were much more thermally stable than the original dN15/
Ser309Ala (45%), whereas both Leu1093.42 mutants, Leu109Ser3.42

(41%) and Leu109Thr3.42 (49%), did not exhibit increased thermal sta-
bility. The combinatorial mutant exhibited higher relative remaining
activities than the single mutants, even for the Leu1093.42 mutants,
which exhibited binding capabilities similar to that of the original
protein. The triple mutants, His83Gly2.67/Lys88Gly3.21/Leu109Ser3.42

(95%) and His83Gly2.67/Lys88Gly3.21/Leu109Thr3.42 (93%), exhibited
higher remaining specific activities than those of the double mutants.
These results showed that mutations at His832.67, Lys883.21, and
Leu1093.42 not only retained LTB4 ligand binding activity but also im-
proved the thermal stability in an additive manner. The three double
and triple combinational mutants His83Gly2.67/Lys88Gly3.21,
His83Gly2.67/Lys88Gly3.21/Leu109Ser3.42, and His83Gly2.67/Lys88Gly3.21/
Leu109Thr3.42 were selected for subsequent characterization studies
after expression in preparative-scale culture.

3.3. Thermostability of the three combinatorial mutants expressed in
preparative-scale culture

The thermostability of the mutants expressed by preparative-scale
culture (1 L) was measured by determining the melting temperature
(T50), defined as the heat treatment temperature at which 50% of LTB4
binding activity remained. In this experiment, we used three combi-
natorial gpBLT1 mutants and the original dN15/Ser309Ala (Fig. 2A);
all of the selected mutants had T50 values of about 5 °C higher than
that of the original protein. The T50 values for
His83Gly2.67/Lys88Gly3.21, His83Gly2.67/Lys88Gly3.21/Leu109Ser3.42,
His83Gly2.67/Lys88Gly3.21/Leu109Thr3.42, and the original dN15/
Ser309Ala were 48.670.1, 47.970.0, 48.070.2, and 43.570.5 °C,
respectively (Fig. 2A). However, the membrane fractions of triple
mutants including Leu109Ser3.42 and Leu109Thr3.42 were further
stabilized after small-scale expression (Table 1).

The double mutation His83Gly2.67/Lys88Gly3.21 had a ligand
binding profile similar to that of the original protein for various
ligands, as described previously [4]. The binding affinity for LTB4
(Kd¼8.2 nM) was comparable to that of the original dN15/
Ser309Ala (Kd¼6.6 nM) in the saturation assay of membrane
fractions (Fig. 2B). Furthermore, the expression level (Bmax) of
His83Gly2.67/Lys88Gly3.21 was six times higher (311 pmol/mg) than
that of the original (50 pmol/mg) [4]. The competitive ligand
binding affinity (Ki¼12.9 nM for LTB4, 5.8 nM for BIIL260, and
395 nM for BIIL284) was also comparable to that of the original
dN15/Ser309Ala (Ki¼3.8 nM for LTB4, 9.4 nM for BIIL260, and
165 nM for BIIL284; Fig. 2C). These results indicated that the
double mutation of His83Gly2.67/Lys88Gly3.21 improved the ther-
mal stability of the protein without significantly affecting the li-
gand binding profile in gpBLT1.

3.4. Characterization of the purified His83Gly2.67/Lys88Gly3.21

mutant

The most thermostable mutant (His83Gly2.67/Lys88Gly3.21) was
expressed and purified by preparative scale culture, and ligand-
binding capability and thermostability were measured. The pur-
ified His83Gly2.67/Lys88Gly3.21 protein was produced at a yield of
more than 1.0 mg from 1 L culture of P. pastoris. The purified
mutant showed single monodispersion in gel-filtration analysis, as
shown in the original purified protein [4]. The competitive ligand
binding affinities of the purified mutant (IC50¼2.4 nM for LTB4 and
6.4 nM for BIIL260; Fig. 3A) were similar to those of the mutant
His83Gly2.67/Lys88Gly3.21 in the membrane fraction (Fig. 2B and C).
The solubilized and purified His83Gly2.67/Lys88Gly3.21 showed less
affinity for the moderate antagonist BIIL284 (Fig. 3A).

The double mutant His83Gly2.67/Lys88Gly3.21 exhibited sig-
nificantly improved thermal stability after purification. The T50 va-
lues in the CPM assay were 61.570.1 and 57.370.1 °C for
His83Gly2.67/Lys88Gly3.21 and the original dN15/Ser309Ala, respec-
tively (Fig. 3B). The discrepancy between the absolute T50 values
obtained in the CPM assay versus the ligand binding assay (e.g., 61.5
and 48.6 °C, respectively, for the mutant His83Gly2.67/Lys88Gly3.21)
could be explained by differences in the measurement methods.
That is, the ligand-binding assay directly measures the amount of
binding of the agonist LTB4 with gpBLT1, whereas the CPM assay
titrates the solvent-exposed thiol group of cysteine in gpBLT1 with
increasing temperature [27]. Additionally, the CPM assay subjects
proteins to harsh conditions for denaturation. The thermal stabili-
zation by the double His83Gly2.67/Lys88Gly3.21 mutant was



Table 1
Specific binding and relative remaining activity in construct screening and T50 after preparative-scale expression.

Mutant Specific binding (dpm)a RAb T50
c

25 °C 40 °C (%) (°C)

Ala56Asn2.40 9732 2074 – N.D.
His83Gly2.67 4933788 3332742 68 N.D.
Lys88Gly3.21 53277118 3993771 75 N.D.
Leu109Ser3.42 21797274 889792 41 N.D.
Leu109Thr3.42 31937232 1567782 49 N.D.
Ala56Asn2.40/Leu109Ser3.42 4277 �20736 – N.D.
His83Gly2.67/Leu109Ser3.42 43987207 34087159 77 N.D.
Lys88Gly3.21/Leu109Ser3.42 37837148 2875777 76 N.D.
Ala56Asn2.40/Leu109Thr3.42 28711 15716 – N.D.
His83Gly2.67/Leu109Thr3.42 47587207 3315797 70 N.D.
Lys88Gly3.21/Leu109Thr3.42 48367278 39677201 82 N.D.
Ala56Asn2.40/His83Gly2.67 5730 9713 – N.D.
Ala56Asn2.40/Lys88Gly3.21 6379 4474 – N.D.
His83Gly2.67/Lys88Gly3.21 50977482 3987786 78 48.670.1
Ala56Asn2.40/His83Gly2.67/Leu109Ser3.42 �272 1732 – N.D.
Ala56Asn2.40/Lys88Gly3.21/Leu109Ser3.42 21730 �6737 – N.D.
His83Gly2.67/Lys88Gly3.21/Leu109Ser3.42 54737133 51847290 95 47.970.0
Ala56Asn2.40/His83Gly2.67/Leu109Thr3.42 2710 22716 – N.D.
Ala56Asn2.40/Lys88Gly3.21/Leu109Thr3.42 4732 18736 – N.D.
His83Gly2.67/Lys88Gly3.21/Leu109Thr3.42 48567114 4513728 93 48.070.2
Ala56Asn2.40/His83Gly2.67/Lys88Gly3.21 6577 51712 – N.D.
Ala56Asn2.40/His83Gly2.67/Lys88Gly3.21/
Leu109Ser3.42 1277 �978 – N.D.
Ala56Asn2.40/His83Gly2.67/Lys88Gly3.21/
Leu109Thr3.42 11714 25711 – N.D.
Original (dN15/Ser309Ala) 2523775 1136781 45 43.570.5

a The value is the average specific binding with the standard deviation. The average specific binding was calculated as the difference between the total binding (n¼3)
and the nonspecific binding (n¼2). Total and nonspecific binding were set as the binding activity for 0.5 nM [3H]-LTB4 for each membrane fraction without or with 0.5 μM
LTB4 treatment, respectively. The membrane fractions from the small-scale expression experiment were reacted using the same amount (10 μg) of total protein.

b The remaining activity (RA, %) is the ratio of the specific binding at 25 °C to that at 40 °C.
c T50 is the half remaining binding activity temperature measured using the membrane fraction gpBLT1 (0.4 μg protein) from preparative-scale expression. A re-

presentative result is shown in Fig. 2A. N.D.: not determined.
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improved by 4 °C in the purified state (Fig. 3B) and by about 5 °C in
the membrane fraction (Fig. 2A).
4. Discussion

In this study, we performed structure-based rational mutations of
gpBLT1 to enhance the thermal stabilization of the protein. Among
the combinatorial mutants produced by rational designs, the double
mutation of His83Gly2.67/Lys88Gly3.21, which was designed to stabi-
lize the putative helix capping sites, improved the thermostability of
gpBLT1 by 5 °C in the membrane fraction and by 4 °C in the DDM-
solubilized and purified state. These results supported that the in-
stability of the local site could influence the overall stability of the
protein structure, as previously described in soluble proteins [31].

Lys88Gly3.21 was designed to stabilize the putative N-terminal
end of TM-III of gpBLT1 by replacing the expected unfavorable
residue Lys883.21 with a favorable Gly residue at the putative
N-terminal capping site [32]. In all the N-terminal regions of TM-III
for GPCRs of known structures, the capping site is at residue 3.21,
and the N’’’-N4/N’’’W;N4C structural motif is conserved at this
site [33] (Text S1). The amino acid sequence Trp3.18

(N”’)–Xxx3.19–(Phe/Leu)3.20–Gly3.21(Ncap)–(Xxx)33.22-24–
Cys3.25(N4) is also conserved in most vertebrate BLT1s and other
GPCRs but includes Lys883.21 in gpBLT1. We expected that gpBLT1
should have the same structural motif N’’’-N4/N’’’W;N4C and that
Lys883.21 would be present as the capping residue. In this case, the
positive charge of the amino group of the Lys residue side chain
would become the repulsive force acting on the helix dipole of the
TM-III, which would be unfavorable for protein stability.

The second His83Gly2.67 mutation at the C-terminal of TM-II is
expected to be the other capping residue stabilizing the end of the
helix. Unlike the N-terminus of TM-III, it was difficult to predict
the specific C-terminal capping site of TM-II in gpBLT1. In the
amino acid alignment, His832.67 was predicted to be the capping
residue (Text S1). In 23 out of 28 vertebrate BLT1s, the corre-
sponding residue 2.67 was the most favorable with Gly as the
capping residue. The His832.67 side chain in gpBLT1 would not be
expected to be favorable at the capping site because it would
prevent solvation of the helix C-terminal end [32,34] and would
cause loss of entropy due to the conformational restrain of the side
chain [35]. Moreover, the steric hindrance between its β-carbon
and the backbone carbonyl should be unfavorable if His832.67 is in
the left-handed helix (αL) conformation, as is often observed in the
C-capping site [36]. In fact, the His83Gly2.67 mutation improved
the remaining activity at 40 °C.

The stability of the capping site should be particularly im-
portant for TM helices fully embedded in the low dielectric con-
stant membrane, and helix-capping mutations can be used to
stabilize other GPCRs. In fact, a conserved interaction was ob-
served between the main chain carbonyl groups of residues 7.54
and 7.55 at the C-terminal end of the TM-VII and the positive side
chains of Arg or Lys in all of the GPCR crystal structures except
those of the chemokine CXCR4 [18] and the neurotensin receptor
[7]. A water molecule was found at the hollow of some helix-kinks
of the TMs in the high-resolution crystal structure of GPCRs, in-
dicating that the helix kink was stabilized by a “wedged” water
with connecting hydrogen bonds burying the helix-kink gap to
compensate for the loss of the hydrogen bond [37]. There are
several solvent molecules at the helix end region in the A2AR high-
resolution structure [14]. The stabilization of the helix end is ex-
pected to act as a stabilization element for the GPCR structure,
providing electrostatic compensation for the α-helical dipole
momentum edges, particularly in the molecular and membrane



Fig. 2. Thermal stabilities and ligand binding profiles of the membrane fractions of
the BLT1 mutants after preparative-scale expression. (A) The thermal stabilities of
LTB4 binding using BLT1 mutants in the membrane fraction. His83Gly2.67/Lys88Gly3.21

(filled circles with thick line), His83Gly2.67/Lys88Gly3.21/Leu109Ser3.42 (open squares),
His83Gly2.67/Lys88Gly3.21/Leu109Thr3.42 (open diamonds), and dN15/Ser309Ala as the
original BLT1 (open circles with dotted line) are shown. The amount of LTB4 bound to
the membrane fraction (0.4 μg protein) after heat treatment was normalized as the
remaining activity, and the standard errors were calculated (n¼3). (B) Saturation
binding isotherm of LTB4 in the membrane fraction (0.4 μg protein), with standard er-
rors (n¼3). (C) Replacement assays for LTB4 with the antagonists BIIL260 and BIIL284,
showing competitive binding to the membrane fraction (0.2 μg protein). Data include
the standard errors (n¼3).

Fig. 3. Ligand binding profiles and thermal stabilities of the purified BLT1 mutant,
His83Gly2.67/Lys88Gly3.21. (A) Replacement assays of LTB4 with LTB4 (open circles)
and the antagonists BIIL260 (filled circles) and BIIL284 (open triangles), showing
competitive binding to the purified His83Gly2.67/Lys88Gly3.21 (25 ng protein; n¼3).
(B) The thermal stabilities of the purified His83Gly2.67/Lys88Gly3.21 (filled circles)
and original BLT1 (open circles) using CPM assays (n¼3).
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boundary regions where the effects are greater than in the bulk
solvent region owing to the lower dielectric constant.

Mutations at the other two examined regions were not
effective. In particular, mutation of Leu1093.42 at TM-III to Thr or
Ser was expected to stabilize the cholesterol-binding site [25] by
forming a hydrogen bond network with the Ser472.45 at TM-II and
Trp1444.50 at TM-IV, as observed in the 15 known structures of
GPCRs. Mutation of Leu1093.42 was useful for improving the
thermal stability of BLT1 mutants in small-scale expression ex-
periments but was not effective when using preparative-scale
culture. The lipid composition of the cell membrane of P. pastoris
may be different depending on culture size; however, the details of
this phenomenon are still unclear. Alternatively, the Ala56Asn2.40

mutation causes complete loss of function of BLT1, but does not
affect LTB4 binding directly because Ala562.40 is located between
the TM helices close to the N-terminal region of TM-II at the cy-
toplasmic surface and is expected to be far from the ligand-bind-
ing site at the middle of the TM bundle [28]. The Ala56Asn2.40

mutation was expected to result in misfolding because this residue
is essential for appropriate folding of the protein (text S1). These
data indicate that creating a proper hydrogen bond in the folded
TMs is critical because the hydrogen bond is geometrically stricter
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in terms of distance and direction than helix capping. Further-
more, the Gly residue present in the helix-capping region may be
more adjustable due to the lack of a side chain. In this study on
gpBLT1, double consecutive helix-capping mutations of the
C-capping end of TM-II and the N-capping end of TM-III additively
improved the thermal stabilization of the protein. These data
supported the increased conformational adjustability in the helix-
capping end by Gly residue substitution, with no restriction in
position and orientation by hydrogen bond formation or steric
hindrance by the side chain neighbor atoms.

In this study, the stabilization of the TM helix end was achieved
for gpBLT1 by prediction of the helix-capping sites and replace-
ment with Gly, and we propose the application of the helix-cap-
ping approach to stabilize other GPCRs having unfavorable re-
sidues at the helix-capping site. In the 17 crystal structures of
GPCRs analyzed in this study, putative unfavorable capping sites
were detected at 35 sites in 14 GPCRs. Among these helix-capping
sites, we identified Coulomb repulsion occurring between simi-
larly charged side chains against the α-helical dipole, the isolated
helix end from the solvent by the bulkier side chain, and the left-
handed helical (αL) conformation with non-Gly residues within
the crystal structures. Similarly, out of the 274 human GPCRs,
putative unfavorable residues were also found at 349 sites in the
209 GPCRs, where the repulsive charged amino acids and bulkier
hydrophobic residues were located at the expected helix ends of
the TM, as shown by simple searching of the multiple sequence
alignments of the GPCR amino acid sequences. In contrast, it was
not possible to predict the αL conformation of non-Gly residues.
These results suggested that there may be unfavorable helix cap-
ping sites in many other GPCRs and that mutations at helix cap-
ping sites may be useful for stabilization of GPCR proteins, as
shown in our rational approach with gpBLT1 in this study (Table S2).

In the ligand binding profiles of the mutants, we observed
differences between membrane fractions containing expressed
gpBLT1 and purified gpBLT1 samples, particularly for that of
BIIL284, the prodrug of BIIL260. One possible explanation for this
difference is the different lipidic environments of gpBLT1 in the P.
pastoris membrane, causing variation in the lateral pressure and/or
electrostatic potential patterns and in DDM-solubilized state. In-
deed, these environments are completely different, both chemi-
cally and physically. BIIL284 is the ethoxycarbonyl prodrug of
BIIL260 and has a larger molecular size than BIIL260 [38]. There-
fore, it is possible that the binding affinity of the prodrug group of
BIIL284 may be affected by the DDM-solubilized state of gpBLT1 to
a greater extent than those of BIIL260 and LTB4.
5. Conclusion

In summary, our current structure-based rational approach for
protein stabilization was less laborious than approaches described
in previous stabilization studies using exhaustive Ala-scan muta-
tions for crystallization of GPCRs with unknown structures
[6,7,21]. Mutational design focusing on helix capping stabilization
could be widely applicable for GPCR stabilization. However, the
effects of independent mutation on improvement of protein sta-
bility should accumulate in an additive manner [39], and alter-
native approaches should be implemented to achieve sufficient
stabilization for a variety of studies in addition to structural stu-
dies. Structural and functional predictions will become increas-
ingly relevant, particularly predictions of the structure of the TM
helix region in GPCRs, for both sample preparation of isolated
active proteins and computer-aided drug design. In this study, we
predicted which residues would be unfavorable for protein stabi-
lity and replaced these residues with residues that would be
physicochemically favorable, taking advantage of available
structural and amino acid sequence information. Our results
showed that this method was experimentally effective. However, it
is difficult to predict the precise helix capping site in some TMs in
GPCRs, thus it would be valuable that the criteria of the unfavor-
able or favorable residues at the helix capping site specific for the
membrane proteins among limited helical transmembrane struc-
tures including GPCRs.
Conflict of interest

All the authors declare that there is no competing interests.
Acknowledgments

We are grateful to T. Okuno (Juntendo University) for technical
advice and useful discussions. This work was supported in part by
a grant-in-aid from the Ministry of Education, Culture, Sports,
Science and Technology of Japan (MEXT) (#23770133, to T.H.) and
grants from the MEXT-Supported Program for the Strategic Re-
search Foundation at Private Universities (2013–2017).
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.bbrep.2015.09.
007.
References

[1] M. Nakamura, T. Shimizu, Leukotriene receptors, Chem. Rev. 11 (2011)
6231–6298.

[2] A.D. Luster, A.M. Tager, T-cell trafficking in asthma: lipid mediators grease the
way, Nat. Rev. Immunol. 4 (2004) 711–724.

[3] A. Hicks, S.P. Monkarsh, A.F. Hoffman, R. Goodnow Jr., Leukotriene B4 receptor
antagonists as therapeutics for inflammatory disease: preclinical and clinical
developments, Expert Opin. Investig. Drugs 16 (2007) 1909–1920.

[4] T. Hori, Y. Sato, N. Takahashi, K. Takio, T. Yokomizo, M. Nakamura, T. Shimizu,
M. Miyano, Expression, purification and characterization of leukotriene B4
receptor, BLT1 in Pichia pastoris, Protein Expr. Purif. 72 (2010) 66–74.

[5] C.G. Tate, G.F. Schertler, Engineering G protein-coupled receptors to facilitate
their structure determination, Curr. Opin. Struct. Biol. 19 (2009) 386–395.

[6] T. Warne, M.J. Serrano-Vega, J.G. Baker, R. Moukhametzianov, P.C. Edwards,
R. Henderson, A.G. Leslie, C.G. Tate, G.F. Schertler, Structure of a β1-adrenergic
G-protein-coupled receptor, Nature 454 (2008) 486–491.

[7] J.F. White, N. Noinaj, Y. Shibata, J. Love, B. Kloss, F. Xu, J. Gvozdenovic-Jeremic,
P. Shah, J. Shiloach, C.G. Tate, R. Grisshammer, Structure of the agonist-bound
neurotensin receptor, Nature 490 (2012) 508–513.

[8] V. Cherezov, D.M. Rosenbaum, M.A. Hanson, S.G. Rasmussen, F.S. Thian, T.
S. Kobilka, H.J. Choi, P. Kuhn, W.I. Weis, B.K. Kobilka, R.C. Stevens, High-re-
solution crystal structure of an engineered human β2-adrenergic G protein-
coupled receptor, Science 318 (2007) 1258–1265.

[9] E.Y. Chien, W. Liu, Q. Zhao, V. Katritch, G.W. Han, M.A. Hanson, L. Shi, A.
H. Newman, J.A. Javitch, V. Cherezov, R.C. Stevens, Structure of the human
dopamine D3 receptor in complex with a D2/D3 selective antagonist, Science
330 (2010) 1091–1095.

[10] S. Granier, A. Manglik, A.C. Kruse, T.S. Kobilka, F.S. Thian, W.I. Weis, B.
K. Kobilka, Structure of the delta-opioid receptor bound to naltrindole, Nature
485 (2012) 400–404.

[11] K. Haga, A.C. Kruse, H. Asada, T. Yurugi-Kobayashi, M. Shiroishi, C. Zhang, W.
I. Weis, T. Okada, B.K. Kobilka, T. Haga, T. Kobayashi, Structure of the human
M2 muscarinic acetylcholine receptor bound to an antagonist, Nature 482
(2012) 547–551.

[12] M.A. Hanson, C.B. Roth, E. Jo, M.T. Griffith, F.L. Scott, G. Reinhart, H. Desale,
B. Clemons, S.M. Cahalan, S.C. Schuerer, M.G. Sanna, G.W. Han, P. Kuhn,
H. Rosen, R.C. Stevens, Crystal structure of a lipid G protein-coupled receptor,
Science 335 (2012) 851–855.

[13] A.C. Kruse, J. Hu, A.C. Pan, D.H. Arlow, D.M. Rosenbaum, E. Rosemond, H.
F. Green, T. Liu, P.S. Chae, R.O. Dror, D.E. Shaw, W.I. Weis, J. Wess, B.K. Kobilka,
Structure and dynamics of the M3 muscarinic acetylcholine receptor, Nature
482 (2012) 552–556.

[14] W. Liu, E. Chun, A.A. Thompson, P. Chubukov, F. Xu, V. Katritch, G.W. Han, C.

http://dx.doi.org/10.1016/j.bbrep.2015.09.007
http://dx.doi.org/10.1016/j.bbrep.2015.09.007
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref1
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref1
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref1
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref2
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref2
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref2
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref3
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref3
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref3
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref3
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref3
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref3
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref4
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref4
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref4
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref4
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref4
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref5
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref5
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref5
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref6
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref6
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref6
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref6
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref6
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref6
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref6
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref7
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref7
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref7
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref7
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref8
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref8
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref8
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref8
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref8
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref8
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref8
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref8
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref9
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref9
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref9
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref9
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref9
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref10
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref10
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref10
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref10
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref11
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref11
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref11
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref11
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref11
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref12
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref12
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref12
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref12
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref12
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref13
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref13
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref13
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref13
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref13
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref14


T. Hori et al. / Biochemistry and Biophysics Reports 4 (2015) 243–249 249
B. Roth, L.H. Heitman, A.P. IJzerman, V. Cherezov, R.C. Stevens, Structural basis
for allosteric regulation of GPCRs by sodium ions, Science 337 (2012) 232–236.

[15] A. Manglik, A.C. Kruse, T.S. Kobilka, F.S. Thian, J.M. Mathiesen, R.K. Sunahara,
L. Pardo, W.I. Weis, B.K. Kobilka, S. Granier, Crystal structure of the μ-opioid
receptor bound to a morphinan antagonist, Nature 485 (2012) 321–326.

[16] T. Shimamura, M. Shiroishi, S. Weyand, H. Tsujimoto, G. Winter, V. Katritch,
R. Abagyan, V. Cherezov, W. Liu, G.W. Han, T. Kobayashi, R.C. Stevens, S. Iwata,
Structure of the human histamine H1 receptor complex with doxepin, Nature
475 (2011) 65–70.

[17] A.A. Thompson, W. Liu, E. Chun, V. Katritch, H. Wu, E. Vardy, X.P. Huang,
C. Trapella, R. Guerrini, G. Calo, B.L. Roth, V. Cherezov, R.C. Stevens, Structure of
the nociceptin/orphanin FQ receptor in complex with a peptide mimetic,
Nature 485 (2012) 395–399.

[18] B. Wu, E.Y. Chien, C.D. Mol, G. Fenalti, W. Liu, V. Katritch, R. Abagyan,
A. Brooun, P. Wells, F.C. Bi, D.J. Hamel, P. Kuhn, T.M. Handel, V. Cherezov, R.
C. Stevens, Structures of the CXCR4 chemokine GPCR with small-molecule and
cyclic peptide antagonists, Science 330 (2010) 1066–1071.

[19] H. Wu, D. Wacker, M. Mileni, V. Katritch, G.W. Han, E. Vardy, W. Liu, A.
A. Thompson, X.P. Huang, F.I. Carroll, S.W. Mascarella, R.B. Westkaemper, P.
D. Mosier, B.L. Roth, V. Cherezov, R.C. Stevens, Structure of the human κ-opioid
receptor in complex with JDTic, Nature 485 (2012) 327–332.

[20] C. Zhang, Y. Srinivasan, D.H. Arlow, J.J. Fung, D. Palmer, Y. Zheng, H.F. Green,
A. Pandey, R.O. Dror, D.E. Shaw, W.I. Weis, S.R. Coughlin, B.K. Kobilka, High-
resolution crystal structure of human protease-activated receptor 1, Nature
492 (2012) 387–392.

[21] G. Lebon, T. Warne, P.C. Edwards, K. Bennett, C.J. Langmead, A.G. Leslie, C.
G. Tate, Agonist-bound adenosine A2A receptor structures reveal common
features of GPCR activation, Nature 474 (2011) 521–525.

[22] D.M. Rosenbaum, C. Zhang, J.A. Lyons, R. Holl, D. Aragao, D.H. Arlow, S.
G. Rasmussen, H.J. Choi, B.T. Devree, R.K. Sunahara, P.S. Chae, S.H. Gellman, R.
O. Dror, D.E. Shaw, W.I. Weis, M. Caffrey, P. Gmeiner, B.K. Kobilka, Structure
and function of an irreversible agonist-β2 adrenoceptor complex, Nature 469
(2011) 236–240.

[23] T. Hino, T. Arakawa, H. Iwanari, T. Yurugi-Kobayashi, C. Ikeda-Suno, Y. Nakada-
Nakura, O. Kusano-Arai, S. Weyand, T. Shimamura, N. Nomura, A.D. Cameron,
T. Kobayashi, T. Hamakubo, S. Iwata, T. Murata, G-protein-coupled receptor
inactivation by an allosteric inverse-agonist antibody, Nature 482 (2011)
237–240.

[24] J. Standfuss, G. Xie, P.C. Edwards, M. Burghammer, D.D. Oprian, G.F. Schertler,
Crystal structure of a thermally stable rhodopsin mutant, J. Mol. Biol. 372
(2007) 1179–1188.

[25] M.A. Hanson, V. Cherezov, M.T. Griffith, C.B. Roth, V.P. Jaakola, E.Y. Chien,
J. Velasquez, P. Kuhn, R.C. Stevens, A specific cholesterol binding site is
established by the 2.8 Å structure of the human β2-adrenergic receptor,
Structure 16 (2008) 897–905.

[26] J.A. Ballesteros, H. Weinstein, Integrated methods for the construction of three
dimensional models and computational probing of structure-function rela-
tions in G protein-coupled receptors, Methods Neurosci. 25 (1995) 366–428.

[27] A.I. Alexandrov, M. Mileni, E.Y. Chien, M.A. Hanson, R.C. Stevens, Microscale
fluorescent thermal stability assay for membrane proteins, Structure 16 (2008)
351–359.

[28] J. Bockaert, J.P. Pin, Molecular tinkering of G protein-coupled receptors: an
evolutionary success, EMBO J. 18 (1999) 1723–1729.

[29] K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox, I.
L. Trong, D.C. Teller, T. Okada, R.E. Stenkamp, M. Yamamoto, M. Miyano, Crystal
structure of rhodopsin: a G protein-coupled receptor, Science 289 (2000)
739–745.

[30] T. Shimamura, K. Hiraki, N. Takahashi, T. Hori, H. Ago, K. Masuda, K. Takio,
M. Ishiguro, M. Miyano, Crystal structure of squid rhodopsin with in-
tracellularly extended cytoplasmic region, J. Biol. Chem. 283 (2008)
17753–17756.

[31] T. Hori, H. Moriyama, J. Kawaguchi, Y. Hayashi-Iwasaki, T. Oshima, N. Tanaka,
The initial step of the thermal unfolding of 3-isopropylmalate dehydrogenase
detected by the temperature-jump Laue method, Protein Eng. 13 (2000)
527–533.

[32] L. Serrano, J. Sancho, M. Hirshberg, A.R. Fersht, α-Helix stability in proteins. I.
Empirical correlations concerning substitution of side-chains at the N and
C-caps and the replacement of alanine by glycine or serine at solvent-exposed
surfaces, J. Mol. Biol. 227 (1992) 544–559.

[33] R. Aurora, G.D. Rose, Helix capping, Protein Sci. 7 (1998) 21–38.
[34] J.S. Richardson, D.C. Richardson, Amino acid preferences for specific locations

at the ends of α helices, Science 240 (1988) 1648–1652.
[35] B.W. Matthews, H. Nicholson, W.J. Becktel, Enhanced protein thermostability

from site-directed mutations that decrease the entropy of unfolding, Proc.
Natl. Acad. Sci. U.S.A. 84 (1987) 6663–6667.

[36] D. Bang, A.V. Gribenko, V. Tereshko, A.A. Kossiakoff, S.B. Kent, G.I. Makhatadze,
Dissecting the energetics of protein α-helix C-cap termination through che-
mical protein synthesis, Nat. Chem. Biol. 2 (2006) 139–143.

[37] M. Miyano, H. Ago, H. Saino, T. Hori, K. Ida, Internally bridging water molecule
in transmembrane α-helical kink, Curr. Opin. Struct. Biol. 20 (2010) 456–463.

[38] F.W. Birke, C.J. Meade, R. Anderskewitz, G.A. Speck, H.M. Jennewein, In vitro
and in vivo pharmacological characterization of BIIL 284, a novel and potent
leukotriene B4 receptor antagonist, J. Pharmacol. Exp. Ther. 297 (2001)
458–466.

[39] J.A. Wells, Additivity of mutational effects in proteins, Biochemistry 29 (1990)
8509–8517.

http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref14
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref14
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref14
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref15
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref15
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref15
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref15
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref15
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref15
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref16
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref16
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref16
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref16
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref16
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref16
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref16
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref17
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref17
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref17
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref17
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref17
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref18
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref18
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref18
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref18
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref18
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref19
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref19
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref19
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref19
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref19
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref19
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref19
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref20
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref20
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref20
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref20
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref20
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref21
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref21
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref21
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref21
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref21
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref21
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref22
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref22
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref22
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref22
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref22
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref22
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref22
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref22
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref22
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref23
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref23
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref23
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref23
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref23
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref23
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref24
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref24
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref24
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref24
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref25
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref25
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref25
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref25
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref25
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref25
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref25
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref25
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref26
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref26
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref26
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref26
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref27
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref27
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref27
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref27
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref28
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref28
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref28
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref29
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref29
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref29
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref29
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref29
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref30
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref30
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref30
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref30
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref30
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref31
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref31
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref31
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref31
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref31
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref32
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref32
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref32
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref32
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref32
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref32
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref32
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref33
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref33
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref34
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref34
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref34
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref34
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref34
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref35
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref35
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref35
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref35
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref36
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref36
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref36
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref36
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref36
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref36
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref37
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref37
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref37
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref37
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref37
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref38
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref38
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref38
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref38
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref38
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref38
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref38
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref39
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref39
http://refhub.elsevier.com/S2405-5808(15)00087-4/sbref39

	The leukotriene B4 receptor BLT1 is stabilized by transmembrane helix capping mutations
	Introduction
	Materials and methods
	Expression and purification of gpBLT1 mutants
	Ligand binding and thermostability assays
	CPM assay
	Amino acid multiple alignments

	Results
	Mutation design for stabilization
	Screening of the stability of gpBLT1 mutants expressed in small-scale culture
	Thermostability of the three combinatorial mutants expressed in preparative-scale culture
	Characterization of the purified His83Gly2.67/Lys88Gly3.21 mutant

	Discussion
	Conclusion
	Conflict of interest
	Acknowledgments
	Supplementary material
	References




