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Abstract

Contemporary psycholinguistic models place significant emphasis on the cognitive processes
involved in the acquisition, recognition, and production of language but neglect many issues related
to the representation of language-related information in the mental lexicon. In contrast, a central tenet
of network science is that the structure of a network influences the processes that operate in that sys-
tem, making process and representation inextricably connected. Here, we consider how the structure
found across phonological networks of several languages from different language families may influ-
ence language processing as we age and experience diseases that affect cognition during the typical
and atypical acquisition of new words, during typical perception and production of speech in adults,
and during language change over time. We conclude that the network science approach may not only
provide insights into specific language processes but also provide a way to connect the work from these
domains, which are becoming increasingly balkanized.

Many contemporary models in cognitive psychology focus on processing, ignoring how the organization of
representations in memory may influence processing. In contrast, cognitive network science focuses on the organi-
zation of information in memory, and how that structure influences various cognitive processes. Vitevitch reviews
work using the cognitive network science approach to understand spoken word recognition and points to some
limitations of this approach for cognitive psychology more broadly.
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To understand spoken language, the listener must first identify the specific words that are
heard, then access the meaning of those words from that part of memory known as the mental
lexicon. Contemporary cognitive psychology models have attempted to explain this important
process known as spoken word recognition, but in doing so these models have neglected how
memory for the sounds that make up a word (i.e., phonological representations) may influence
this process. In the sections that follow, we will first consider evidence for the processing-
centric bias in contemporary cognitive psychology. We will then contrast that approach with
an emerging view called cognitive network science, which focuses on the organization of
information in memory, and how that structure influences various cognitive processes. Given
the importance of spoken word recognition to the rest of language processing, we will limit
our discussion to phonological networks, and how the structure of phonological networks
might influence various language processes.

1. Processing and representation in contemporary cognitive psychology

Cognitive psychology has traditionally examined how information is represented in mem-
ory, and the processes used to acquire, encode, retrieve, and manipulate that information rep-
resented in memory. In the area of psycholinguistics, there is a significant amount of research
focusing on the cognitive processes involved in the acquisition, recognition, and production of
language. What is not as well represented in contemporary cognitive psychology is research
on the representation of language-related information in the mental lexicon. Specifically, what
information is represented, how are those representations organized, and how might the struc-
ture of those representations influence cognitive processing? The bias toward processes com-
pared to representations is prevalent in contemporary cognitive psychology.

For evidence of this bias toward processing over representation in contemporary cognitive
psychology, consider the numerous journal articles that debated whether spoken word recog-
nition was an interactive process, as exemplified in the TRACE model (McClelland & Elman,
1986) or strictly feed-forward, as exemplified in the Shortlist (Norris, 1994) and Merge mod-
els (Norris, McQueen, & Cutler, 2000). A similar debate between interactive (Dell, 1986)
versus feed-forward (Levelt, Roelofs, & Meyer, 1999) models occurred about the processes
involved in speech production, providing additional evidence for a processing-centric bias in
contemporary cognitive psychology.

An extreme example of this processing-centric bias in contemporary cognitive psychology
can be found in the computational principles of parallel distributed processing (PDP) in the
late 1980s and early 1990s (Rumelhart, McClelland, & PDP Research Group, 1986; see also
Rogers & McClelland, 2014). Among the central tenets of the PDP framework is the idea that
knowledge “does not exist as a set of dormant data structures in a separate store but is encoded
directly in the network architecture, in the values of the connection weights that allow the
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system to generate useful internal representations and outputs” (Rogers & McClelland, 2014,
p. 1039). (Note that network in this context is referring to a type of artificial neural network,
not to the structural networks described below.)

Further to this processing-centric bias, “active representations in the mind are thought to
correspond to the patterns of activation generated over a set of units” (Rogers & McClel-
land, 2014, p. 1038). In other words, in the PDP framework, representations are not explicitly
stored in and retrieved from memory but instead are ephemeral and emerge via the processing
that occurs over many distributed processing units. In contrast to this view of processing and
representation in contemporary cognitive psychology, an emerging approach known as cog-
nitive network science takes a different view of processing and representation (Siew, Wulff,
Beckage, & Kenett, 2019).

2. Processing and representation in cognitive network science

Cognitive network science uses the mathematical tools of network science to examine
questions commonly studied by cognitive psychologists and cognitive scientists (Vitevitch,
2019a). In this approach, nodes are used to represent entities in a system, like words in the
mental lexicon, and edges are used to connect nodes that are related in some way, like words
that are phonologically related (Vitevitch, 2008), or words that are semantically related (e.g.,
Steyvers & Tenenbaum, 2005). See Fig. 1 for a network representation of the word speech.
Words that are phonologically similar to speech (based on the addition, substitution, or dele-
tion of one phoneme in the word to speech), such as peach, speed, and speak are known
as 1-hop neighbors of speech. Words such as spike, preach, and spud that are phonologically
similar to peach, speed, and speak (but not to speech) are known as 2-hop neighbors of speech.

Various measures of the resulting network structure can then be made at the level of indi-
vidual nodes (known as the micro-level), at the level of the whole network (known as the
macro-level), or of subsets of nodes in the network (known as the meso-level). It is important
to understand the structure of a network at these three levels because a central tenet of net-
work science states that the structure of a network influences how efficiently a process will
operate in that system. For example, Kleinberg (2000; see also Latora & Marchiori, 2001)
found that the algorithm that enabled an efficient navigation of a type of network known as
a small-world network was less efficient when that algorithm was implemented on a network
with the same number of nodes and the same number of edges, but the nodes were connected
in a different pattern. In other words, how the representations are structured influences pro-
cessing. Given the important influence of the structure of a network on processing, the next
section will explain the structural characteristics of phonological networks.

3. The structure of phonological networks

Given the important influence that the structure of a network may have on process-
ing, Arbesman, Strogatz, and Vitevitch (2010a) examined whether the structure of the
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Fig. 1. In a phonological network, nodes are used to represent words, and edges connect words that sound similar to
each other. In the present case, phonological similarity is defined by a simple computational metric (add, delete, or
substitute a phoneme in a word to form another word). Phonological similarity can be defined in other ways as well.

phonological network observed by Vitevitch (2008) was unique to English or might be found
in other languages as well. If the characteristics of phonological networks are found across
multiple languages, it might suggest that those structural characteristics are in some way
important and may influence language processing.

Arbesman et al. (2010a) compared the structure of the English phonological network to
the structure of the phonological networks formed from words in Spanish, Mandarin, Hawai-
ian, and Basque. These languages were selected to be representative examples of different
language families. Although English and Spanish are both from the Indo-European family of
languages, English is a Germanic language, whereas Spanish is a Romance language. Man-
darin is a Sino-Tibetan language, Hawaiian is an Austronesian language, and Basque (or
Euskara) is a linguistic isolate, meaning that it has not (yet) been identified as a member of a
given language family.

Despite these five languages differing from each other in their morphology, phonemic
inventories, typical word-length, canonical syllable shape, use of tone, etc., Arbesman et al.
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(2010a) found that all five languages had similar network structures characterized by (1)
a giant component that was smaller than is typically observed in networks of social or
technological systems, (2) a small-world structure in the giant component, (3) assortative
mixing by degree in the giant component, and (4) the degree distribution of the giant compo-
nent did not follow a power-law. Below we will discuss each of these structural characteristics
and the relevance of them for language processing.

The giant component of a network refers to the largest cluster of interconnected nodes.
In social networks that map friendships among people upwards of 90% of the nodes in the
network are found in the giant component. However, in the phonological networks examined
by Arbesman et al. (2010a), 34%–66% of the lexical nodes were found in the giant compo-
nent. In addition to observing a smaller giant component, Arbesman et al. (2010a) observed
that the phonological networks contained a large number of smaller components (referred to
as “lexical islands”) that contained words that were connected to each other, but not to the
giant component. (See Arbesman, Strogatz, and Vitevitch [2010b] for an analysis of how the
lexical islands differed in English and Spanish.) Further, a large number of isolates (nodes
not connected to anything, also referred to as lexical hermits) were also observed in the five
phonological networks.

The lack of a large core of highly connected nodes in the phonological networks has some
interesting implications. Arbesman et al. (2010a) found that the phonological networks were
more resilient to targeted attacks to highly connected nodes and to failures of randomly
selected nodes. (Resilient in this context means that the network remained relatively well con-
nected despite increasing amounts of damage.) In contrast, the much larger giant component
found in a network model of the Internet was resilient to failures of randomly selected nodes
but was vulnerable to targeted attacks to highly connected nodes (Albert, Jeong, & Barabási,
1999). If one views targeted attacks to highly connected nodes and the failures of randomly
selected nodes as being analogous to the damage caused by aging, stroke, or disease, then the
structure of the phonological networks may confer upon various language processes a level
of resilience not typically seen in networks of social or technological systems (see also De
Domenico & Arenas, 2017).

The second network structure that was common to the five phonological networks was
that the giant component exhibited a small-world structure. Small-world structure is typically
identified by (1) the shortest average path length being comparable to the shortest average path
length of a network with the same number of nodes connected randomly, and (2) by an aver-
age clustering coefficient that is several orders of magnitude larger than the average clustering
coefficient of a network with the same number of nodes connected randomly. This method
of identifying a small-world network was the one initially proposed by Watts and Strogatz
(1998); however, more sophisticated approaches have been developed since that initial paper
describing small-world networks (e.g., Humphries & Gurney, 2008). Recall that Kleinberg
(2000) found that navigation algorithms were very efficient in small-world networks, sug-
gesting that the small-world structure of the phonological networks may contribute to the
rapid and efficient lexical retrieval found in healthy, typically developed language users.

The third network structure that was common to the five phonological networks was assor-
tative mixing by degree in the giant components of the phonological networks. Assortative
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mixing by degree means that nodes with many connections tended to be connected to nodes
that also had many connections. Similarly, nodes with few connections tended to be connected
to nodes that also had few connections. In contrast, disassortative mixing by degree, often
found in technological networks (e.g., the Internet), occurs when a highly connected node
tends to connect to nodes that themselves have few connections (Newman, 2002). Although
assortative mixing by degree is not unique to phonological networks—it is observed often
in social networks (Newman, 2002)—the values of assortative mixing by degree were much
higher than those values typically observed in social networks. The work of Vitevitch, Chan,
and Goldstein (2014) suggests that this characteristic in phonological networks may result in
the graceful degradation typically observed in instances of failed lexical retrieval. That is, you
retrieve a similar sounding word rather than fail to retrieve anything from the lexicon (i.e., a
catastrophic failure in lexical retrieval).

The final network structure that was common to the five phonological networks examined
by Arbesman et al. (2010a) was that the degree distribution of nodes in the giant component
(i.e., the number of nodes with 1 connection, the number of nodes with 2 connections, etc.)
did not follow a power law. When a degree distribution follows a power law, the distribution
appears as a straight line with an exponent in the range of 2–3 when the x and y axes are
plotted on logarithmic scales. This relationship indicates that there are many nodes with only
a few connections and a few nodes with many connections (often called hubs).

Networks with degree distributions that follow a power law are known as scale-free net-
works (Barabási & Albert, 1999), meaning similar patterns in the network are observed across
multiple levels of analysis. The presence of a scale-free degree distribution may indicate that
a particular growth algorithm known as preferential attachment produced the structure of that
network. However, work by Keller (2005) and others has shown that other algorithms can
also produce power-law distributions. Further, work by Broido and Clauset (2019) suggests
that scale-free networks/power-law degree distributions may not be as common as previously
thought.

The deviation of the degree distribution in the phonological networks from a power law
is interesting because work by Amaral, Scala, Barthélémy, and Stanley (2000) suggests that
degree distributions may deviate from a power-law when there is a cost associated with the
attachment of a new node in the network. In the case of phonological networks, the phoneme
inventory, canonical syllable structures, and phonotactic constraints (e.g., Vitevitch & Luce,
2016) of a given language may all impose costs that constrain the attachment of a new node
in the network. The presence of more than one language in the lexicon (i.e., being bi- or
multi-lingual) may also impose a cost that constrains the attachment of a new node in the
network (e.g., Bilson, Yoshida, Tran, Woods, & Hills, 2015; Tiv, Gullifer, Feng, & Titone,
2020). Alternatively, growth algorithms other than preferential attachment may influence the
acquisition of words in the phonological network and may result in a degree distribution in
the phonological networks that deviates from a power law (e.g., Hills, Maouene, Maouene,
Sheya, & Smith, 2009; Siew & Vitevitch, 2020a,2020b).

As described above, computer simulations and analogy to networks in other domains sug-
gested that the constellation of network structures observed in phonological networks may
influence lexical processing in interesting ways. The possibility of certain network structures
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Fig. 2. An illustration of the local clustering coefficient for the words badge and log. Notice that both badge and
log have the same number of phonological neighbors (i.e., the words encircling badge and log). However, the
neighbors of badge are also neighbors of each other to a greater extent than are the neighbors of log.

influencing lexical processing prompted additional research using traditional psycholinguis-
tic tasks to directly determine how certain network features influenced lexical processing.
By using traditional psycholinguistic tasks that are widely used and well understood, one
could be confident that the results of those psycholinguistic experiments—some of which are
reviewed in the next section—were actually demonstrating the influence of certain network
measures on processing.

4. Psycholinguistic evidence that structure influences processing

The first characteristic of phonological networks to be examined with psycholinguistic
experiments was clustering coefficient, which measures in a phonological network the pro-
portion of phonological neighbors of a word that are also phonological neighbors of each
other (see Fig. 2). The clustering coefficient, C, has a range from 0 to 1. When C = 0, none of
the neighbors of a given word are neighbors of each other, and when C = 1, every neighbor
of a given word is also a neighbor of all of the other neighbors of that word.

Given the well-studied and widespread influences of phonological neighborhood density
in psycholinguistics (Vitevitch & Luce, 2016)—which refers to the number of words that
are phonologically similar to a given word and corresponds to the term degree in network
science—it was reasoned that if any network science measure should influence lexical pro-
cessing, it would be a measure that captured something about the internal structure of the
phonological neighborhood, that is, clustering coefficient. Indeed, earlier attempts to assess
the internal structure of the phonological neighborhood suggested that such influences could
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be observed (Vitevitch, 2002, 2007), making the local clustering coefficient a reasonable
network measure to examine first.

Chan and Vitevitch (2009) used a perceptual identification task and an auditory lexical
decision task, two conventional psycholinguistic tasks used to study spoken word recognition,
to examine how clustering coefficient might influence lexical processing. In the perceptual
identification task, they found that words with low clustering coefficient were responded to
more accurately than words with high clustering coefficient. In the lexical decision task, they
found that words with low clustering coefficient were responded to more quickly than words
with high clustering coefficient.

Reasoning from work done in other domains that also used network science, Chan and
Vitevitch (2009) proposed a verbal model to account for the differences they observed in
performance. They suggested that activation would spread from the target word to the phono-
logically related words and from those words to other words that were phonologically related,
etc. For words with low clustering coefficient, the activation would tend to disperse to the rest
of the network, allowing the target word to “stand out” from the background of partially acti-
vated phonological neighbors, and therefore be retrieved quickly and accurately. However,
for words with high clustering coefficient, the spreading activation would tend to recirculate
among the highly interconnected phonological neighbors, resulting in the target word being
“buried” in the background of partially activated phonological neighbors.

To further explore how the structure of representations in the lexicon may influence
processing, Chan and Vitevitch (2009) also reported the results of a computer simulation
of the TRACE model of word recognition (McClelland & Elman, 1986; Strauss, Harris, &
Magnuson, 2007). Given that (j)TRACE is a connectionist model of the process of spoken
word recognition, and that it does not consider how representations in the lexicon are
structured, or how that structure may influence processing, it is perhaps not surprising that
(j)TRACE was not able to simulate how differences in the clustering coefficient might
influence processing as was observed in the two psycholinguistics tasks used by Chan and
Vitevitch (2009).

Additional studies demonstrated that the local clustering coefficient of words in the lexicon
influenced other psychological processes, including speech production (Chan & Vitevitch,
2010), word learning (Goldstein & Vitevitch, 2014), and long-term and short-term memory
(Vitevitch, Chan, & Roodenrys, 2012). Further, the verbal account first put forth in Chan
and Vitevitch (2009) was subsequently modeled computationally by Vitevitch, Ercal, and
Adagarla (2011) (see also Siew, 2019). They simulated on 2-hop networks (like those in
Fig. 1) the spreading of activation among words with high and low clustering coefficient to
provide a more formal account of the influence of clustering coefficient on processing.

It is important to note that measures of the network structure at the level of individ-
ual nodes (i.e., the micro-level)—like local clustering coefficient—are not the only network
structures that influence various lexical processes. Other measures at the meso- and macro-
level have also been observed to influence lexical processing. Mixing by degree, described
above, is considered a macro-level measure describing a characteristic of the whole network.
Recall that Vitevitch et al. (2014), also described above, examined how this structural char-
acteristic might influence how individuals recover from instances of failed lexical retrieval
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(see also Vitevitch, Goldstein, & Johnson, 2016 for a study of path-length and misperceptions
of speech).

A study by Siew and Vitevitch (2016) looked at the macro-level structure of where words
were located in the phonological network—either in the giant component or in a lexical
island—and how that location might influence lexical retrieval in a naming task and a lexical
decision task. They also examined how the location of a word in the phonological network
might influence short-term memory processes by using a serial recall task. In all of the tasks
considered, Siew and Vitevitch found that words from the lexical islands were recognized
more quickly and accurately than words from the giant component despite being comparable
in their frequency of occurrence, neighborhood density, word length, etc., demonstrating that
macro-level structures of the phonological network can also influence cognitive processing.

Turning to the meso-level—which measures subsets of nodes in the network rather than
a characteristic at the individual level or of the overall network (e.g., Siew, 2013)—we see
that key players in a network (Borgatti, 2006) also influence the process of spoken word
recognition. Key players constitute a set of nodes in a network that, when removed, result
in the network fracturing into several smaller components. When compared to another set of
foil words that were comparable to the key players in frequency of occurrence, neighborhood
density, word length, etc., Vitevitch and Goldstein (2014) found in a perceptual identification
task that the key players were responded to more quickly and accurately than the foil words.
Similar results were obtained in a naming task, a lexical decision task, and in an analysis of
data from the English Lexicon Project (Balota et al., 2007). Together the studies described
above demonstrate that the micro-, meso-, and macro-level structures of the phonological
network influence various language-related and cognitive processes.

5. Network structure and speech and language disorders

In addition to leading to insights about the typical perception and production of speech
in adults (as described above), the network approach has also been used to shed light on
the atypical perception and production of speech in adults and children. Consider the work
of Castro, Pelczarski, and Vitevitch (2017), who found that closeness centrality influenced
reaction times in a lexical decision task of adults who stutter. Closeness centrality measures
the distance from one node to all other nodes in the network (following the shortest path
between any two nodes being considered). Although stuttering is often viewed as a disorder
that primarily affects the fluent production of speech, subtle differences—that are not yet
well understood—have been observed in the phonological processing abilities of people who
stutter as compared to typically fluent peers (e.g., Byrd, McGill, & Usler, 2015; Newman &
Bernstein Ratner, 2007; Pelczarski & Yaruss, 2014, 2016; Sasisekaran & De Nil, 2006). The
tools of network science might be able to reveal more of these subtle differences in people
who stutter, which are not always revealed using traditional psycholinguistic tasks.

Another study that used network science to gain insights that could not have been observed
with standard measures (of phonetic accuracy) comes from Benham, Goffman, and Schwe-
ickert (2018), who examined novel sound and syllable production in typical and atypical
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language learners (i.e., children with developmental language disorder [DLD], also known as
specific language impairment). Benham et al. asked children to repeat specially constructed
nonwords with two syllables, and they used networks in which nodes represented syllables,
and links connected the first to the second syllable in the production of each child. Although
a more conventional kinematic analysis could not distinguish between the two groups of
children, the nonword networks revealed higher variability and more disorganized production
patterns in the children with DLD, despite both typical children and those with DLD exhibit-
ing similar patterns of learning over time. The work of Benham et al. further demonstrates
how the network approach can be used to gain insights into typical and atypical language
development that might not be observed using more conventional or traditional measures and
techniques (see also Carlson, Sonderegger, & Bane, 2014; Siew & Vitevitch, 2020a, 2020b).

Turning to acquired language disorders in adults, work by Vitevitch and Castro (2015)
showed that individuals with Wernicke’s or Broca’s aphasia experienced problems in speech
production as measured by the Philadelphia Naming Test that correlated with differences
in the closeness centrality and the location in the phonological network (giant component
vs. lexical island or a lexical hermit) of the words to be named. Studies like this further
demonstrate the utility of the network approach to increase our understanding of acquired
language disorders like aphasia.

Although the present paper has focused primarily on phonological networks, interesting
work looking at other language disorders has been done with semantic networks, where con-
nections are placed between words that are similar in their meanings instead of similar in how
they sound. Some of this work is summarized here to provide further evidence that networks
can provide insight into the atypical processes and representations that may characterize cer-
tain developmental and acquired speech and language disorders.

Beckage, Smith, and Hills (2011) demonstrated that networks that grow over time could
provide insight not only into word learning in typically developing children but also provide
insight into “late talking” children, who have vocabulary that are smaller than age-matched
children. Importantly, Beckage et al. (2011) found that late talkers had semantic networks
that were less small-world-like than the semantic networks of typically developing children.
Further, Beckage et al. (2011) observed a bias among the late talkers to learn “oddball” words
that were semantically unique, rather than new words that were well connected to other words
in the lexicon as typically developing children tend to do (e.g., Hills et al., 2009). It is not
clear if other analysis approaches could have provided the insights that Beckage et al. (2011)
observed with the network approach.

The tools of network science have also been used to examine the semantic networks of
children with cochlear implants (Kenett et al., 2013) and may hold promise for increasing our
understanding of the changes that take place in the lexicon as we age and possibly experience
certain diseases often associated with aging (e.g., Wulff, De Deyne, Jones, & Mata, 2019).
Although many of the diseases often associated with aging, like Alzheimer’s disease, typically
affect the semantic rather than phonological aspects of language, the work being done on
semantic networks (e.g., Zemla & Austerweil, 2019) serves at the very least as a proof of
concept of how network science can be used to provide insight into other aspects of the aging
lexicon, like phonology.
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6. The social network influences the lexical network

Up to this point, we have considered how network science can be used to capture the struc-
ture of the linguistic knowledge that individuals represent internally, and how that internally
represented linguistic knowledge is acquired and develops over time. However, language
does not occur solely in the black box of the mind but is inherently social as evidenced by
the need for a language learner to be immersed in a community of language users (either
speakers or signers) that transmit the ambient language to the learner. By having nodes
represent people and edges connecting people who are friends with each other, the tools of
network science can be used to examine the influences of one’s social network on language
processing.

Lev-Ari and colleagues provide examples of how the size of one’s social network can influ-
ence the ability of an individual to correctly interpret semantic information (Lev-Ari, 2016),
and also to process the phonetic/phonological information used to perceive speech (Lev-Ari,
2018). These studies demonstrate how network science can help us better understand social
influences on certain language processes rather than ignore those social influences as is more
often done in the typical approach of cognitive psychology to examine language processing.

Further, changes in language occur not only at the developmental time-scale of an indi-
vidual but also occur at longer and shorter time-scales. An example of language change that
occurs on a longer time-scale is seen by the changes in language that occur across genera-
tions of language users. An example of language change that occurs on a shorter time-scale
is seen when an individual accommodates to various linguistic features—such as a foreign
accent—of a newly encountered interlocutor. The tools of network science can also be used
to examine the influences on processing that occur at these shorter and longer time-scales.

A study by Iacozza, Meyer, and Lev-Ari (2020) demonstrates that social influences on
cognitive processing can be induced very quickly (i.e., on very short time-scales). Partici-
pants in their experiment were asked to learn the names of novel objects. Crucially, the names
of the objects were taught to the participants by (ostensibly) students from their own uni-
versity (inducing an in-group bias) or by students from another university (inducing an out-
group bias). Participants with stronger in-group biases (as assessed by a perceptual matching
task; Moradi, Sui, Hewstone, & Humphreys, 2015) were less accurate at identifying match-
ing speaker-label pairs when the speaker was from the out-group, indicating more specific
encoding of information for members of the in-group than for members of the out-group.

Although Iacozza et al. (2020) did not use network analysis in this study, their work does
show that whether a person is in or out of one’s social network (i.e., in-group versus out-group,
see also Frable & Bem, 1985) can influence certain cognitive processes, and those influences
can be induced on a relatively short time-scale. For an example of the use of network analysis
on a longer, evolutionary time-scale see, for example, Centola and Baronchelli (2015).

Network science may not only provide insights into internal language processes often stud-
ied by cognitive psychologists and other language scientists, as described above, but it may
also provide a way to connect the work from various domains of language science. The work
of Lev-Ari (2016, 2018) provides one example of how the tools of network science might con-
nect social psychology/sociolinguistics to cognitive psychology/psycholinguistics. The next
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section examines other ways that network science can be used to connect various domains of
language science.

7. Multilevel networks in psycholinguistics

Another way the tools of network science may connect various domains of language is
through the use of multilevel networks, also known as a network of networks. In a multilevel
network, for example, words in one level are connected to each other via their phonological
relationship but connected to each other in another level via their semantic relationship. An
additional connection would link cat at the phonological level to cat at the semantic level,
for example. Other relationships among words—such as morphology or orthography (Siew
& Vitevitch, 2019)—could also be included in another network level to further examine the
way different types of linguistic information interact during language processing.

Much progress has already been made using multilevel networks to understand word learn-
ing (Stella, Beckage, Brede, & De Domenico, 2018) and acquired language disorders (Castro,
Stella, & Siew, 2020). Continued exploration of multilevel linguistic networks may provide
new insights into various types of language processes and into language disorders, especially
if additional levels are incorporated in the network of networks. With the right additional lev-
els, one might even be able to finally connect the physiological network in the brain to the
cognitive network in the mind (Vitevitch, 2019b).

8. Challenges for cognitive network science

The cognitive network science approach has been criticized because “these networks do
not ‘do’ anything; they have no function” (Brown et al., 2018, p. 16). On the contrary, what
such networks “do” is capture certain regularities and relationships among entities in the
world around us. Work by Karuza, Kahn, Thompson-Schill, and Bassett (2017) suggests that
humans are able to extract those relationships among entities from the world around us and
exploit that information in subsequent tasks. This suggests that these networks indeed “do”
something and “function” to internally organize representations of the world around us.

With the regularities and relationships among entities in the world around us captured
in the structure of the network, a simple processing algorithm—like a random walk on the
network—may be sufficient to reproduce the behavior exhibited by humans in various tasks
(e.g., Abbott, Austerweil, & Griffiths, 2015; Schweickert, Xi, Viau-Quesnel, & Zheng, 2020).
Alternatively, diffusion of activation across the network may also reproduce the behavior
exhibited by humans in certain tasks (e.g., Siew, 2019; Vitevitch et al., 2011).

However, simple processes such as random walks and activation diffusing across a struc-
tured network may not be sufficient to capture the richness of all of human cognition.
Human cognition also has many examples of directed search through memory (e.g., Hills
& Pachur, 2012). Therefore, cognitive network science may also need to consider algorithms
that employ a mixture of random and directed walks such as the taxi-drive algorithm proposed
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by O’Keeffe, Anjomshoaa, Strogatz, Santi, and Ratti (2019)). The taxi-drive algorithm was
inspired by real taxis serving passengers in a city. Typically, a taxi drives around randomly
until a passenger flags them down for a ride to a specific location. The taxi then proceeds
along the shortest route to the randomly prescribed location, deposits the passenger, and then
proceeds to roam around randomly until flagged down for the next randomly selected yet
directed destination. This mixture of random and directed walks may better capture certain
aspects of human cognition (i.e., executive function) and navigation across a structured net-
work of the mental lexicon.

The tools of network science may enable us to understand how many of the pieces of
language and cognition (and social influences) fit together, and how that underlying structure
influences the behavior of cognitive and linguistic systems (Barabási, 2009, 2012). Additional
computer simulations and psycholinguistic experiments will be required to assess how cog-
nitive network science can examine in new ways the typical and atypical perception and pro-
duction of speech (in mono- and multi-lingual individuals), the influences of age and disease
on language processing, the typical and atypical acquisition of new words, and to language
change over time. Work using multilevel networks also holds much promise for reconnecting
work from various domains of language science, which have become increasingly balkanized
and disconnected over the years.
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