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Abstract: The development of new polymer scaffolds is essential for tissue engineering and for
culturing cells. The use of non-mammalian bioactive components to formulate these materials is
an emerging field. In our previous work, a scaffold based on salmon gelatin was developed and
tested in animal models to regenerate tissues effectively and safely. Here, the incorporation of
anatase nanoparticles into this scaffold was formulated, studying the new composite structure by
scanning electron microscopy, differential scanning calorimetry and dynamic mechanical analysis.
The incorporation of anatase nanoparticles modified the scaffold microstructure by increasing the pore
size from 208 to 239 µm and significantly changing the pore shape. The glass transition temperature
changed from 46.9 to 55.8 ◦C, and an increase in the elastic modulus from 79.5 to 537.8 kPa was
observed. The biocompatibility of the scaffolds was tested using C2C12 myoblasts, modulating their
attachment and growth. The anatase nanoparticles modified the stiffness of the material, making it
possible to increase the growth of myoblasts cultured onto scaffolds, which envisions their use in
muscle tissue engineering.
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1. Introduction

Tissue engineering uses therapeutic alternatives that allow the functional regeneration of damaged
tissues, mainly through the inclusion of materials and cells in the affected areas, providing factors
for cell proliferation and tissue repair [1]. The materials used to culture cells for tissue engineering
require specific characteristics and components of the extracellular matrix (ECM) to treat the injured
tissue [2]. The microstructure of these biomaterials, particularly the way in which some of their features
(e.g., pores) are distributed and interconnected, together with the type of synthesis (e.g., chemical
crosslinking) [3] used in the fabrication, contribute to the establishment of the scaffold concept in tissue
engineering [4], which not only supports the deposition of cells, but also maintains active properties
that enable cell adhesion, proliferation, and differentiation [5].
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Gelatin is a biomaterial with outstanding and well-known physical properties, which include high
biodegradability and biocompatibility, and combined with collagen, they have generated promising
results through a variety of tissue engineering formulations [6]. The source of the extracted gelatin
establishes characteristics that affect the scaffold properties [7,8].

Fish are a promising source of gelatin for the development of novel scaffolds [9,10]. In particular,
gelatin from salmon skin, like other cold-water fish gelatins, has a lower concentration of imino
acids (proline and hydroxyproline) and a lower molecular weight distribution, showing significant
differences in thermal and viscoelastic properties compared with mammalian (bovine or porcine) and
warm-water fish gelatins, providing some advantages for scaffold fabrication [11,12].

When considering new biomaterials formulated based on salmon gelatin, one of the least studied
areas corresponds to the development of scaffolds for muscle cells, where the use of mammals gelatins
is common [13]. For the development of scaffolds for muscle tissue engineering (MTE), the materials
need complementary properties that can support the development of muscle cells [14], where the
structure and mechanical properties, such as the stiffness of the material, are key variables to be
considered [15–18].

Titanium oxide (TiO2) nanostructures have been used to culture muscle cells (C2C12 myoblasts) [19]
and other cells, such as fibroblasts and keratinocytes, showing adequate adhesion and cell proliferation
for tissue engineering [20]. TiO2 is spontaneously formed from titanium in the air and electrolytes;
it is stable in the body and does not degrade. TiO2 with specific crystal structures, such as anatase,
is effective in in vitro apatite formation, which is believed to be a prerequisite for bioactivity [21].
In particular, the anatase form of TiO2 is widely accepted as a component that adds functionality to
scaffolds due to its demonstrated biocompatibility with various cell types [22,23], including muscle
cells [24]. TiO2 nanostructures can be used to affect the cell response and to influence cell fate in tissue
engineering. Over the last two decades, several in vitro studies have focused on the interaction of TiO2

nanostructures with different kinds of cells, such as chondrocytes, endothelial cells, smooth muscle
cells, macrophages, mesenchymal stem cells, neural progenitors, osteoblasts, periodontal ligament
stem cells, platelets, and leucocytes [25]. The design of nano-anatase polymeric scaffolds offers an
exciting approach to combine the advantages of a degradable polymer with those of nanoparticles to
optimize physical and biological properties for regeneration [21].

In our previous work [11,12], a novel porous scaffold based on salmon gelatin and excipients
(chitosan, agarose, and glycerol) was developed and tested in animal models (rabbits and pigs), with
excellent results, to regenerate tissues. It is of great interest to us to continue studying this biomaterial,
and due to the high use of anatase for tissue engineering, we researched the incorporation of anatase
nanoparticles into this scaffold and its effect on myoblast cell adhesion and growth.

2. Materials and Methods

2.1. Scaffold Preparation

Gelatin was extracted from salmon skins according to the methodology described by
Enrione et al. [12]. Chitosan (pharmaceutical grade, 95% deacetylated, 300 kDa, derived from crab
shells) was purchased from Quitoquimica (Concepción, Chile). Agarose (molecular biology grade) was
purchased from Lonza (Morristown, NJ, USA). Glycerol (pharmaceutical grade) was purchased
from Merck (Darmstadt, Germany). EDC (N-ethyl-N’-(3-dimethylaminopropyl)carbodiimide
hydrochloride), NHS (N-hydroxysuccinimide), MES (2-(N-morpholino)ethanesulfonic acid hydrate),
and anatase nanoparticles (nanoparticle size < 25 nm) were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

The salmon-gelatin-based scaffolds (with excipients: chitosan, agarose, and glycerol) were
fabricated using our previously reported method [11,12], with minimal modifications to incorporate
anatase (nanoparticles) into the composite. The anatase nanoparticles were previously dissolved into a
chitosan stock solution (2% w/v in 1% w/v acetic acid). Salmon gelatin, agarose, and glycerol stock
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solutions were prepared in Milli-Q water (2% w/v, 0.4% w/v, and 1% w/v, respectively). Briefly, the stock
solutions were used to prepare three composite solutions with different anatase concentrations: salmon
gelatin, 0.6% w/v; chitosan, 0.2% w/v; agarose, 0.2% w/v; glycerol, 0.1% w/v; and anatase, 0.0, 0.1, and
0.2% w/v. The solutions were mixed at 50 ◦C for 1 h and poured into Petri dishes (adjusting the volume
to obtain a height of 3 mm). They were then were cooled at 4 ◦C, frozen at −80 ◦C, and lyophilized.
The dry composites were crosslinked using EDC/NHS/MES/ethanol (30 mM/8 mM/50 mM/90% v/v) at
room temperature for 3 h. The resultant crosslinked composites were washed (pure ethanol; ethanol,
70% v/v; ethanol, 40% v/v; and water), frozen at −80 ◦C, and freeze-dried to obtain the scaffolds. The
scaffolds were stored with silica gel until experimentation.

2.2. Scaffold Microstructural Characterization

The scaffold microstructure was analyzed by SEM/EDS (scanning electron microscopy/energy
dispersive X-ray spectroscopy). Prior to the measurements, the samples were coated with gold
(10–20 nm). The coated scaffolds were scanned by a Carl Zeiss SEM (EVO MA 10, Oberkochen,
Germany) system equipped with EDS (X-Act, Oxford Instruments, Abingdon, UK).

The pore size (equivalent circular diameter) and pore shape (circularity values equal to 1 and 0 for
a perfect circle and irregular elongated shape, respectively) of the scaffolds were determined from the
SEM images using ImageJ software (NIH, Bethesda, MD, USA). Three SEM images per scaffold were
used, counting at least 100 pores for each formulation. The equations used for pore size and shape
were [3,10,12]:

Pore size(equivalent circular diameter) =

√
4A
√
π

(1)

Pore shape (circularity) =
4Aπ
P2 (2)

where A and P are the area and perimeter of the pore, respectively.

2.3. Differential Scanning Calorimetry (DSC)

A differential scanning calorimeter (DSC 1 STAR System, Mettler Toledo, Greifensee, Switzerland)
with an intracooler TC100 (Huber, Offenburg, Germany) was used to characterize the scaffolds. The
measurements were carried out using ~10 mg of sample in a stainless-steel pan (120 µL). An empty
pan was used as a reference. The thermal scanning protocol used was: cooling down from 25 to 0 ◦C
at 40 ◦C/min, isothermic step at 0 ◦C for 5 min, and heating to 150 ◦C at 10 ◦C/min. The samples
were subjected to the same thermal protocol twice. The melting temperature (Tm) and changes in the
enthalpy of melting (∆Hm) were determined from the first scan. The glass transition temperature (Tg)
was determined in the amorphous material (second scan). The curves were analyzed using the STARe
software (DB V 12.10). Prior to the measurements, the melting temperature and enthalpy values were
calibrated using indium as standard. All determinations were made in triplicate.

2.4. Dynamic Mechanical Analysis (DMA)

The mechanical properties of the scaffolds were measured using a dynamic mechanical analyzer
(DMA 1 Star System, Mettler Toledo, Greifensee, Switzerland) equipped with two parallel compression
plates. Before conducting the experiments, all instrumental calibrations were performed. The
compression frequencies applied were 1, 5, and 10 Hz and were tested from 0 to 120 ◦C at a heating
rate of 3 ◦C/min. The displacement amplitude used was 10 µm. Liquid nitrogen was used as a cooling
medium. The geometries of the sample were cylinders with a height and diameter of ~2 mm and
~10 mm, respectively. All determinations were made in triplicate.
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2.5. Cell Culture

The cell line C2C12 was used as a model of myoblast cells. The cell line was purchased from
the European Collection of Authenticated Cell Cultures (ECACC) and supplied by Sigma-Aldrich
(St. Louis, MO, USA). The cells were cultured using standard conditions for cell culture (37 ◦C and
5% CO2). The cells were seeded onto the scaffold at 1 × 104 cells/cm2. Scaffold sections of 1 cm2

were used to seed the cells. The medium used to culture the cells was DMEM high glucose (Gibco,
Life Technologies, Grand Island, NY, USA), supplemented with 10% fetal bovine serum, L-glutamine
(2 mM), and antibiotics (100 U/mL of penicillin and 100 µg/mL of streptomycin). Cell adhesion and
growth onto the scaffolds were performed in triplicate as described below.

The cell adhesion and cell growth were quantified by estimating the viable biomass in the scaffold
at different times by using the commercial colorimetric assay WST-1 (Roche, Mannheim, Germany).
Cell adhesion was assessed after 4 h of seeding and compared with the control (cells adhered to
commercial plastic for cell culture). For cell growth, the membranes were sampled at 24, 48, and 72 h;
then, the data were fitted using the classic exponential model to obtain the specific growth rate (µ) [26].

2.6. Statistical Analysis

The data were analyzed using one-way analysis of variance (ANOVA) and considered to be
significantly different when p < 0.05. The analysis was performed using Excel (version 16.4, Microsoft).

3. Results and Discussion

3.1. Microstructure of the Scaffolds

The microstructure of the scaffolds is shown in Figure 1a–c. The incorporation of anatase altered
the pore morphology (size and shape) when the concentration of anatase increased to 0.2%. The
changes in pore size and shape were significant (p < 0.05, ANOVA) in both cases. Indeed, changes in
pore size from 208.4 to 239.5 µm and shape (circularity) from 0.805 to 0.691 are reported in Table 1.
This effect could be related to an increase in viscosity of the polymer solutions due to the inclusion of
anatase nanoparticles [27]. This increase in viscosity would affect the pore structure formation and size
relaxation upon cooling, which in the case of the freeze-drying of the samples would increase the pore
size after drying [28]. The pore changed from a round-like geometry to a flatter shape, which could be
explained by a dentification effect of the added anatase since its higher relative density can increase
the overall material weight, showing an ellipsoidal-like geometry parallel to the surface [29]. This
modulation of the pore size and shape is fundamental in order to provide a favorable environment for
cell survival and growth [30], which in the case of muscle cells is essential for interconnectivity and
three-dimensional proliferation [31].

As indicated in Section 2.2, the SEM analysis was complemented by an EDS analysis, allowing for
the mapping of titanium (Ti) as red dots over the scaffold structure. Figure 1d–f depicts a homogeneous
distribution of anatase (TiO2) nanoparticles on the material. It is important to highlight that the
homogeneity of the particle dispersion in the scaffold was obtained without the use of surfactants,
which tend to generate negative biological interactions and modify the structural characteristics of the
gelatin in the formulation of the scaffolds [32–35].

The results shown in Table 1 also indicate that the modification of the microstructure of the
scaffolds was dependent on the anatase concentration in the composites.

As already discussed, the incorporation of nanoparticles into scaffolds is done with the aim
of improving their mechanical and pore surface capabilities [36], but they can often modify the
thermophysical properties of the polymers present in the composites during the manufacturing
processes of the biomaterial [11].
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Figure 1. Microstructure of the scaffolds prepared with different anatase concentrations. The images
were obtained with SEM (a–c). The red spots show the titanium (Ti) mapping with EDS (d–f), indicating
a homogeneous distribution of anatase (TiO2) nanoparticles. Bar scale 300 µm.

Table 1. Microstructure by SEM and thermal characterization by DSC of the scaffolds prepared with
different anatase concentrations.

Anatase (%) Pore Size (µm) Pore Shape (Circularity) Tg (◦C) Tm (◦C) ∆Hm (J g−1)

0.0 208.4 ± 22.0 0.805 ± 0.069 46.9 ± 1.0 68.5 ± 3.0 8.1 ± 0.9

0.1 223.6 ± 28.0 0.743 ± 0.070 55.9 ± 0.5 72.3 ± 0.5 5.5 ± 0.1

0.2 239.5 ± 21.2 0.691 ± 0.112 55.8 ± 1.6 73.2 ± 1.1 5.3 ± 0.5

3.2. Thermal Properties of the Scaffolds

The analysis of the thermal properties of the scaffolds by differential scanning calorimetry is shown
in Table 1. It can be observed that the incorporation of anatase nanoparticles modified the thermal



Polymers 2020, 12, 1943 6 of 11

parameters when their concentration was increased. In particular, the glass transition temperature
(Tg) increased significantly (p < 0.05, ANOVA) from 46.9 to 55.8 ◦C and the melting temperature (Tm)
increased from 68.5 to 73.2 ◦C (p < 0.05, ANOVA). This increase in both parameters can be explained
by the change in molecular mobility of the polymer mixes, which would be reduced by the addition
of anatase. The scaffold with anatase nanoparticles would require higher levels of energy for both
transitions to occur. The ∆Hm decrease (p < 0.05, ANOVA) when anatase was added to the scaffolds
was associated with the disruption of a lower number of triple helices of the gelatin fraction formed
upon cooling during the scaffold fabrication [37]. Lower values of ∆Hm would represent a lower
number of triple helices formed due to the increase in the viscosity of the system [38].

3.3. Mechanical Properties of the Scaffolds

The elastic modulus (G’) values of the formulated scaffolds at the three frequencies from DMA are
depicted in Figure 2a. The G’ values of the control scaffold were relatively constant at 85–95 kPa at
temperatures below 50 ◦C, after which the G’ decreased steadily to the lowest value at 80 ◦C. This
decrease in G’ was related to the melting of the amorphous fraction of the gelatin in the composite.
It is also clear in this figure that anatase affects the mechanical properties of the scaffolds [39]. The
scaffold with 0.1% anatase showed similar G’ values as the control below 60 ◦C; however, at higher
temperatures, G’ decreased to the lowest value at a temperature of ~100 ◦C. It was interesting to note
that the slope of the drop in G’ with temperature was less steep for the 0.1% anatase sample, and
therefore, at temperatures higher than 60 ◦C, the values of G’ were significantly higher for the 0.1%
anatase scaffold. For instance, at 70 ◦C, G’ was 8 kPa for the control scaffold and 40 kPa for the scaffold
containing anatase.
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(G’). (b) Loss modulus (G”).

In the case of the scaffold with 0.2% anatase, the values of G’ were several times higher, reaching
~600 kPa for the temperature range from 0 to 80 ◦C. Table 2 shows the values of G’ at 37 ◦C as a reference
temperature for the three formulations. The increase of G’ at 37 ◦C was significant (p < 0.05, ANOVA)
in all the frequencies tested. At temperatures higher than 80 ◦C, the modulus dropped almost vertically
to similar values of the other samples. This drop in G’ can be explained by the reinforcing effect of
the anatase nanoparticles of the amorphous fraction of the composite, sustaining the compression
up to a temperature near melting of the composite (Table 1), at which the material collapsed. The
improvement in mechanical properties by anatase can be explained by the filling effect within the
gelatin-chitosan-agarose composite by the anatase nanoparticles [39], significantly increasing the elastic
components (stiffness) of these materials.
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Table 2. Elastic modulus (G’) and loss modulus (G”) at 37 ◦C of the scaffolds prepared with different
anatase concentrations.

Anatase (%)
Elastic Modulus (G’) at 37 ◦C (kPa) Loss Modulus (G”) at 37 ◦C (kPa)

1 Hz 5 Hz 10 Hz 1 Hz 5 Hz 10 Hz

0.0 79.5 ± 4.7 84.0 ± 3.9 85.5 ± 4.0 10.3 ± 0.33 10.4 ± 0.35 9.6 ± 0.41

0.1 90.5 ± 6.2 95.5 ± 6.8 97.4 ± 4.8 9.8 ± 0.58 9.7 ± 0.48 9.7 ± 0.21

0.2 537.8 ± 3.9 572.3 ± 4.4 ± 4.8 31.6 ± 0.42 31.2 ± 0.51 30.0 ± 0.32

Similar changes in mechanical properties were observed for all the frequencies tested, reporting
a slight increase in G’ values from 1 to 10 Hz (Table 2), which was expected since the mechanical
response in this type of material should be time-dependent.

Figure 2b shows the loss modulus (G”) with temperature from 0 to 100 ◦C. The curve profiles for
all the samples were similar to those observed for G’. The values of G” remained relatively constant
up to a marked drop in its values, which occurred at ~55, 65 and 80 ◦C for the control, 0.1% anatase,
and 0.2% anatase samples, respectively. It is important to note that the G” values for all the samples
were lower than the G’ values, and that the values of tan δ were relatively constant and lower than 0.2
(data not shown). These results indicate that the structure of the samples was stable throughout the
temperature range and frequencies tested, and the drop in G’ and G” was related to the melting of
crystalline fractions in the composite rather than the relaxation of amorphous components.

These results show that the mechanical properties, the elastic modulus and the loss modulus,
of the formulations were very stable throughout a wide range of temperatures. This behavior was
particularly clear for the scaffold with 0.2% anatase, with an almost constant value of G’ at a temperature
of 80 ◦C. However, it is important to state that in future work, similar tests should be performed under
hydrated conditions for more realistic information on the mechanical behavior of the scaffolds in
physiological-like conditions.

3.4. Behavior of Myoblasts Cultured into Scaffolds

The biological behavior was evaluated by measuring the adhesion and growth of C2C12 myoblasts
seeded onto the scaffolds (Table 3). The cell adhesion measured after four hours of seeding showed
a concentration-dependent relationship with anatase. The adhesion changed significantly (p < 0.05,
ANOVA) when anatase was added. It is known that the cell adhesion onto scaffolds depends on the
activity of the binding receptors αvβ3 and α5β1 that can recognize gelatin RGD sequences [40,41]. The
inclusion of nanoparticles likely reduces adhesion by covering RGD sequences—a known situation
that has been studied in RGD peptides coating [42,43].

Table 3. Cell adhesion and growth (µ) on scaffolds prepared with different anatase concentrations.

Anatase (%) Adhesion (%) µ (d−1)

0 62.4 ± 4.69 0.692 ± 0.021

0.1 57.42 ± 3.86 0.734 ± 0.077

0.2 37.26 ± 2.75 0.813 ± 0.078

Control (commercial plastic) 100.00 ± 2.46 0.926 ± 0.042

The inclusion of anatase into scaffolds induced a change in the pore morphology, increasing
the size and producing a deformation of the pore (circularity decreased with anatase, see Table 1),
which could be related to the adhesion of myoblasts [44,45]. It has been reported that the adhesion
of myoblasts and fibroblasts onto gelatin-chitosan scaffolds is close to 40% [46–48], its value being
comparable to our lowest data obtained (0.2% anatase). Besides, the pore size of gelatin-based scaffolds
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affects the adhesion and growth of the cells [46], and scaffold microstructural changes can decrease
adhesion and increase proliferation simultaneously [47], which is considered an improvement for
tissue engineering purposes.

The kinetics of cell growth are shown in Figure 3, indicating a lag phase on the first day, and
then an exponential growth in all scaffolds. The specific cell growth (µ) showed a significant increase
(p < 0.05, ANOVA) when the anatase concentration increased (see Table 3). Particularly in muscle
cells, the proliferative activity depends on the form of TiO2 [20]. It is considered a bioactive coating
that can enhance proliferation and differentiation [49,50], mainly in the anatase form of TiO2 [51].
On the other hand, the increase of cell growth correlates positively with the increase of scaffold
stiffness (see G’ in Table 2). It has been reported that scaffold stiffness is an important physical factor
in the response of many cell lineages, including myoblasts and other mesenchymal cells [16]. The
behavior of muscle cells has a strong dependence on the stiffness, affecting adhesion, spreading,
growth, and differentiation [15–17]. Porosity and stiffness are two important factors involved in the
cell behavior [18], which changed together by incorporating anatase into our scaffolds, modulating the
adhesion and growth of the myoblasts cultured onto them.
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Figure 3. Cell growth of C2C12 myoblasts cultured onto scaffolds at 1 × 104 cell/cm2.

The non-mammalian scaffold developed here, made mainly with salmon gelatin, shows a high
biocompatibility and capacity to incorporate anatase nanoparticles, which can be used to modulate the
response of cell adhesion and growth in the field of tissue engineering.

4. Conclusions

The development of scaffolds for tissue engineering requires the exploration of different polymeric
alternatives and their combination with biological, chemical, and physical elements to provide specific
functions for each tissue. In this work, we show for first time the physical and biological characterization
of a scaffold based on salmon gelatin and anatase nanoparticles, which showed biocompatibility with
myoblasts. The thermal and mechanical behavior of the salmon-gelatin-based scaffold was modified
by the incorporation of anatase nanoparticles, increasing the myoblast growth on the scaffold. The
increase of stiffness and cell growth produced by the incorporation of anatase nanoparticles could be
used to improve scaffold design for muscle tissue engineering.
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