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We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast
tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction
steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D)
objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects
as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the
individualMC candidates and prescreen theMC-like objects. Each cluster seed candidate was prescreened by counting neighboring
individualMC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step,
we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP
reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.

1. Introduction

Recently, there have been several reports that the acquisi-
tion of several projection views (PVs) of the compressed
breast using a conventional full-field digital mammography
(FFDM) detector is sufficient to reconstruct the total DBT
images at a total radiation dose comparable to that used
in mammography [1, 2]; however, the reconstructed 3D
DBT volume contains artifacts from missing information,
regardless of the reconstruction technique applied [3–5].
Despite these shortcomings, it is expected that DBT can
reduce the overlapping breast tissue effect, which is usually
considered to be a limiting factor for lesion detection and
characterization in FFDM [1, 6, 7].

There has been a controversy as to whether or not the
cancer detection performance through prospective clinical
trials has found an increase in sensitivity with a moderate

increase in the call-back rate [8–10]. As a consistent second
reader, CADe may be helpful by detecting lesions in DBT
missed by radiologists owing to the large volume of the image
data, as well as a number of other factors [11].The detection of
MCCs in DBT volumes by radiologists may be more difficult
compared with mammography for two reasons: the number
of MCs on each reconstructed slice will be fewer than the
total number of MC clusters, making it less apparent. CADe
may be of particular interest in DBT for MC detection by
adopting a maximum intensity projection (MIP) method.
MCs may appear blurred from many factors including an
inaccurate system geometry, focal spot motion, and patient
motion. There have been several feasibility studies recently
regarding CADe for MC detection in DBT [12, 13].

It is also important to reduce the number of false negatives
during the search for MCCs in a 3D DBT volume, which
may be more demanding than for mammograms. For these
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reasons, CADe may play an even more important role in MC
detection in DBT than in mammography by automatically
searching for MCCs in a 3D DBT image volume within a
relatively short period of time. There have been a number of
studies regarding the development of CADe techniques for
the detection of masses in DBT [11, 14–17]. Compared with
the detection of masses, preliminary researches regarding the
detection of MCCs on DBT have been reported [12, 18–23].

Reiser and coworkers back-projected binarized PVs con-
taining detected MCs into a 3D volume to conduct an
MIP transformation for second-stage detection [18]. Features
were extracted and a false-positive (FP) reduction step was
conducted with a sensitivity of 86% with 1.3 FP clusters per
DBT volume. Bernard and others developed a detection
algorithm ofMCCs on filtered back-projection reconstructed
slices [21] enhanced by convolving the image volume with a
Mexican hat wavelet with a sensitivity of 85% at an average of
1.4 FPmarks per breast volume. Park and coworkers detected
MCCs on both individual PVs with a sensitivity of 70% at an
average of 3.99 FPs per volume and individual reconstructed
slices with a sensitivity of 86% at an average of 15.9 FPs
per volume [19]. Sahiner and coworkers investigated the
detection of MCCs in the reconstructed DBT volume using
an enhanced-modulated 3Dmultiscale calcification response
function and SNR enhancement [13].

In this paper, a simple and efficient FP reduction
scheme coupled with a detection algorithm for MCCs in a
reconstructed DBT volume using 3D objectness- and SNR-
enhanced images is suggested [13, 23]. For a dataset of two-
view DBTs of 69 breasts with or without MCCs, a view-based
sensitivity of 83.3%was achieved at 2.47 FPs perDBT volume.

2. Data Acquisition

The patient recruitment protocol was approved by IRB.
Breast imaging patients of the breast imaging research
laboratory at Asan Medical Center (Seoul, Korea) who
were recommended for breast biopsy based on suspicious
mammographic breast masses and microcalcifications were
eligible. Written informed consent was obtained from each
patient. We acquired the DBT scans of 15 PV images over
a ±21 angular range in 2.8 increments through a step-
and-shoot operation using the prototype DBT system for
breast imaging research fabricated by KERI (Ansan, Korea)
[25]. The DBT system has a flat panel digital detector with
dimensions of 14.40 cm × 25.92 cm and a pixel pitch of
0.0748mm × 0.0748mm [26–28].The 3DDBT volumes were
reconstructed at a 1mm slice interval with a pixel pitch of
0.1mm × 0.1mm using the FDK filtered back-projection
reconstruction technique [29]. DBT scans of the 69 breasts
were acquired in both craniocaudal and mediolateral oblique
views prior to a biopsy and the location of the biopsy-proven
MCCwasmarked by an experienced radiologist using clinical
mammograms and the biopsy report as references. A total of
19MCCs were identified on the 138DBT scans.

3. Prescreening Step

The MCs are first enhanced using a multiscale Hessian
enhancement with an object-type response function and an
SNR enhancement with combination of several simple digital
filters in the reconstructed DBT volume (Im(𝑥, 𝑦, 𝑧)) [13].
Then, the resulting Hessian-based object-type response vol-
ume is again voxel-wise convolved with the SNR-enhanced
volume, and a connected-component segmentation process
[30] is performed to extract the clustering seed objects for
the MCCs, which are described in Section 5. Before the
prescreening step, we subsampled the DBT images in the 𝑥-𝑦
direction by 10 and themaximum grey level value was chosen
as a representative value to reduce the computational load;
its effect on the detection accuracy is discussed later in this
paper.

3.1. Multiscale Object-Type Response. There is an observation
that all three eigenvalues of the Hessian matrix [30, 31] near
the center of a spherically symmetric lesion with positive
contrast are given negative and are nearly equal to each other
in the case of spherical shape, whereas the Hessian matrix
for voxels that are a part of other types of shapes, such as
lines or planes, will give unequal eigenvalues. In practice,
to optimize the Hessian enhancement process for objects
at different scales and reduce the computational noise from
the estimation of second-order derivatives in the Hessian
operator calculations, the image 𝐼(𝑥, 𝑦, 𝑧) is first convolved
with a 3DGaussian smoothing filter giving a smoothed image
𝐺(𝑥, 𝑦, 𝑧) and Hessian matrix𝐻

𝜀𝛿
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where the selected values for the objectness parameters of
𝛼 and 𝛾 are 0.1 and 3.0, respectively [32]. We find that the
selection of typically chosen functional type for an object
response is enough to give sufficiently accurate detection
results comparable to other researches.

Then, a response vector 𝑅 = {𝑂(𝜆
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at every (𝑥, 𝑦, 𝑧). In this study, we chose 𝑁 = 3 to reduce
the computational load. After the optimal index for scale
𝑖
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Figure 1: (a) Amammogram containingMCCs.TheROI drawn by a radiologist is shown in the red circle. (b) Amultiscale Hessian-enhanced
image. (c) An SNR-enhanced image.

the filtering process to enhance the objectness using the
multiscale Hessian matrix.

3.2. 3D SNR Enhancement. From the clinical observations,
many visible MCs are closely related with grey level fluctua-
tions, andwe introduced an SNR enhancement preprocessing
step to each two-dimensional DBT slice independently. It
consists of a combination of three linearmean filters centered
at the calcification candidate, 𝐹
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= 3, to define a single band-pass filter before

convolutionwith the image and extracting the signal intensity
relative to the slowly varying background image intensity [13].
In order to remove an artifact resulting from the inclusion
of pixels right near the candidate pixel, 𝐹

2
is subtracted from

𝐹

1
filter. Then, the combined band-pass filter was convolved

with DBT volume as illustrated in Figure 1(c). Overall block
diagram for our CADe system of MCCs in DBT images is
given in Figure 2.

4. MCC Detection

In the MCC detection step, we firstly weighted 𝑂(𝑥, 𝑦, 𝑧)

with SNR-enhanced voxel value of SNR(𝑥, 𝑦, 𝑧), where
SNR(𝑥, 𝑦, 𝑧) is given by SNR(𝑥, 𝑦, 𝑧) = 𝐼(𝑥, 𝑦, 𝑧) ⊗ 𝐹(𝑥, 𝑦),
and 𝐹(𝑥, 𝑦) is a resulting 2D digital filter in order to obtain
the multiscale objectness response (MOR). Since both the
multiscale calcification response and the SNR enhancement
are intended to highlight the MCs, it may be expected that
their product will improve the microcalcification detection.

Over MOR(𝑥, 𝑦, 𝑧), a connected-component segmenta-
tion technique was performed to detect about 500 connected
objects as the initial seed objects [30, 33]. Voxels that were
above the binarizing thresholdweremarked and grouped into
3D connected objects to give a labeled image. The labeled
image was again converted to the labeled map to examine the
shape attributes of each segmented and labeled object. The

DBT images

Objectness response images SNR-enhanced images

Segmentation of clustering MCs Segmentation of MCs

FP reduction of clustering MCs

Bounding boxes for MCCs

FP reduction of MCC boxes

MCC boxes from CADe system

Figure 2: The block diagram of our CADe system.

initial threshold was chosen to be relatively high enough to
detect only about 500 connected objects, which are defined
as cluster seed objects below as exemplified in Figure 3.

The noise around each individual MC candidate was
estimated using the SNR3D(𝑥, 𝑦, 𝑧) images as follows.
The squared noise level 𝜎2(𝑥, 𝑦, 𝑧) at each input voxel of
SNR(𝑥, 𝑦, 𝑧) was evaluated from the standard deviation of
the grey level value distribution in the neighborhood of that
pixel. The SNR of the MC candidate was then calculated as
the ratio of 𝜎2(𝑥, 𝑦, 𝑧) and the local mean value 𝑚loc(𝑥, 𝑦, 𝑧)
at the same voxel as follows:

SNR3D (𝑥, 𝑦, 𝑧) =

𝜎

2

(𝑥, 𝑦, 𝑧)SNR(𝑥,𝑦,𝑧)

𝑚loc (𝑥, 𝑦, 𝑧)SNR(𝑥,𝑦,𝑧)
, (3)

where the subscripts indicate the corresponding local oper-
ator performed on the given 3D image. The individual MC
candidates were also labeled using a connected-component
segmentation algorithm and an SNR threshold value of 3.2
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Figure 3: (a) Volume distributions of segmented candidates from
(a) MOR image and (b) SNR image. Blue, brown, green, and violet
colored bars are for RMLO, LMLO, RCC, and LCC modalities of a
DBT image, respectively.

was chosen for the binarization of the SNR3D(𝑥, 𝑦, 𝑧) image
to locate about 5,000MC candidates, independent of the
cluster seed object detection process.

Then, anMC clustering process was applied to choose the
MCC candidates as follows. Note that only the clustering seed
objects segmented from the MOR images were considered as
the clustering center. Starting with each cluster seed object,
individual MC candidates satisfying the clustering criteria of
their distances being within 5mm from the cluster center
were included as cluster members. Figure 4 shows a snapshot
of our MCC detection system before MC clustering and FP
reduction step.

5. False-Positive Reduction

As a first step to reduce the FPs for the MCC candidates,
we applied a rule-based classifier with two rules related to
the voxel sum of the individual MCs and the number of
cluster seed candidates in the neighborhood of the candidate
cluster. The voxels of individual MC candidates within a
5mm radius of the cluster seed candidate were counted and
the first rule specifies that if this number is less than 9, the

cluster seed candidate will be eliminated. We also counted
the number of nearby cluster seed candidates within a 5mm
radius of the cluster candidate under consideration. The
second rule specifies that if this number is less than 2, the
cluster candidate will be eliminated.

Second, the cubes minimally containing the MCs were
generated and clustered for a further FP reduction. To qualify
the clustered MCs, a bounding cube was generated for
each accepted seed candidate. The overlapping cubes were
combined and examined to determine whether the number
of combined cubes is larger than one. Next, we examined
the number and voxel sum of the included individual MC
candidates contained in each cube. When the number of
the included individual MC candidates within the resulting
MCC cube was less than 80 or the total volume of the MC
candidates was less than 140mm3, the combined cube was
eliminated.

In this study, a suggested MCC candidate on the DBT
image was considered as true positive, if the overlapped vol-
ume between the annotated gold standard and the detected
MCC candidate is larger than zero, to simplify the volumetric
analysis between them. Further improvement of the FP
reduction algorithm using the elaborated volumetric analysis
as a next step will be reported in the near future.

6. Results and Discussion

As shown in Figure 4, our detection and screening system
for the MCCs in DBT successfully suggests the outlining
range of inspection. Using view-based scoring, the average
number of FPs using the datasets was estimated to be 2.47
per DBT volume at an 83.3% sensitivity, which was found
to be comparable with other pioneering researches [12, 13].
In particular, it is notable that the FPs for the DBT volumes
with MCCs proven to be positive were found to be 2.24,
lower than 2.56 for the DBT volumes without an MCC
[34]. It is noted that our CADe system gives less FPs with
the true-positive lesion marking than with normal breast
images, indicating that our algorithm should be improved
further to give the lower specificity or less FPs with the
same sensitivity results. It is well known that the higher
rate of FPs of the breast cancer diagnosis usually leads to
increased psychological and economical burden, meaning
that the patients undergo unnecessary and exhaustive diag-
nostic procedures. It is also notable that the clinical criterion
of FPs per case for CADe based on any commercial medical
imaging modality is eventually under or about to be one-per-
case, and the mammography CADe of the breast cancer has
been proven to satisfy such a criterion. Our results compared
with the clinical gold standards marked by a radiologist
(as exemplified in Figure 5) indicate that the feasibility of
automated detection algorithm of MCCs in reconstructed
DBTvolumes coupledwith the relatively simplified clustering
and FP reduction algorithm, however, is also necessary to
fine-tune the prescreening parameters to reduce the number
of FPs.

In principle, our approach basically utilizes the combi-
nation of two microcalcification enhancement processes: (1)
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(a) (b)

Figure 4: Snapshots of our MCC detection system (a) before and (b) after clustering step. Red circles are for the clustering MC candidates
extracted from an MOR image after the prescreening step based on the analysis of the individual MC candidates extracted from an SNR
image. Blue square means a bounding box after the prescreening step. Left top, right top, left bottom, and right bottom images are for RLMO,
LMLO, RCC, and LCC modalities of a DBT image.

(a) (b)

Figure 5: (a) Amammogram containingMCCs.The ROI drawn by a radiologist is shown in the red circle. (b) ADBT slice with the suggested
MCC bounding cube. The blue square containing the MCCs was automatically determined during the CADe calculation. Red dots or circles
indicate the MC seed objects before the FP reduction step.

3D objectness enhancement of the MC response based on a
multiscale Hessian analysis and (2) SNR enhancement based
on a combination of linear boxcar filters. The FPs per DBT
volume were counted from the dataset after two FP reduction
steps, and the free response receiver operating characteristics
(FROC) curve for the detection system is shown in Figure 6.
The area under the FROC curve normalized to 20.44 FPs per
DBT volume at a sensitivity of 100.0% was estimated to be
0.88 [35–38], implying that our results are in quite reason-
able agreement with previous researches in spite of several
assumptions and the setting of the evaluation parameters
[39–41], however, giving slow convergence of the sensitivity
as FPs increase.

Our CADe system contains a large number of parameters
for prescreening, clustering, and FP reduction stages. In
this preliminary study, we focused on the effect of the FP
reduction threshold parameters. The binarizing threshold
values for the MOR volume and the SNR-enhanced volume
were chosen empirically, implying that further studies with a
larger DBT image set to optimize the control parameters may
improve the MC detection performance [42–44].

The MOR function used in this study was introduced for
spherically symmetric objects; however, pathology-proven
MCs will have a variety of shapes, including elongated, stel-
lated, and irregular shapes. In addition, the interplanar arti-
facts resulting from the adopted limited-angle reconstruction
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Figure 6: The overall performance of the MCC detection and FP
reduction algorithm in terms of the FROC curve. Solid brown line is
for the ROCusing ourCADe algorithm. Solid blue and dashed green
lines are for the ROCs using the FP reduction algorithm involving
convolution neural network features with the DBT volume and the
digital mammography [24].

algorithm to obtain DBT image may distort the shape of the
MCs in the depth direction and influence the performance
of the applied segmentation method probably giving lower
sensitivity of MCC detection [22]. Further studies regarding
the anisotropic properties of the SNR distribution in the
depth direction are also desired.

It should be commented that there have been some
notable reports regarding MC detection on PVs [18, 19].
The MC detection on each two-dimensional PV is supposed
to be independent of the specific reconstruction method,
meaning that its detection results can be compared without
the interplanar artifacts originating from the incomplete
reconstruction algorithm for theDBT images. Tomosynthesis
reconstruction with multiple noisy PVs can play a role in the
prescreening step in the clinical MC detection approach by
increasing the SNR of the targets.

It is notable that several pioneering reports involving
various imaging modalities, such as three-dimensional DBT
volume itself [24] and the planar projection view images
[45], have been published up to now; however, the CADe
for DBT images seems to be not outperforming that for
digital mammography within near future. It is also worth
commenting that, recently, there has been a report of a
multimodal joint-CADe algorithm involving both DBT and
projection view images [46].

Further research using the independently acquired DBT
volume dataset is in progress to validate our proposed FP
reduction algorithm.

7. Conclusion

We developed a CADe system with a simplified FP reduc-
tion scheme for the detection of MCCs in reconstructed
DBT volumes. The result of our proposed MCC detection
algorithm is a promising approach, giving detection results
comparable to other researches. Ongoing researches include

further optimization of the FP reduction parameters using
a large dataset and the 2D-3D hybridized detection on
both PVs and the reconstructed volume. It is expected that,
with further study on the CADe algorithm to improve the
detection accuracy, the CADe system may play the role of
a second reader by assisting radiologists in the detection of
MCCs in DBT in the near future.
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