
sensors

Article

UP-Fall Detection Dataset: A Multimodal Approach

Lourdes Martínez-Villaseñor * , Hiram Ponce * , Jorge Brieva, Ernesto Moya-Albor ,
José Núñez-Martínez and Carlos Peñafort-Asturiano

Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, México,
Ciudad de México 03920, Mexico; jbrieva@up.edu.mx (J.B.); emoya@up.edu.mx (E.M.-A.); 0169723@up.edu.mx
(J.N.-M.); 0184404@up.edu.mx (C.P.-A.)
* Correspondence: lmartine@up.edu.mx (L.M.-V.); hponce@up.edu.mx (H.P.);

Tel.: +52-55-5482-1600 (ext. 5227) (L.M.-V.); +52-55-5482-1600 (ext. 5254) (H.P.)

Received: 1 February 2019; Accepted: 13 April 2019; Published: 28 April 2019
����������
�������

Abstract: Falls, especially in elderly persons, are an important health problem worldwide. Reliable
fall detection systems can mitigate negative consequences of falls. Among the important challenges
and issues reported in literature is the difficulty of fair comparison between fall detection systems
and machine learning techniques for detection. In this paper, we present UP-Fall Detection Dataset.
The dataset comprises raw and feature sets retrieved from 17 healthy young individuals without
any impairment that performed 11 activities and falls, with three attempts each. The dataset also
summarizes more than 850 GB of information from wearable sensors, ambient sensors and vision
devices. Two experimental use cases were shown. The aim of our dataset is to help human activity
recognition and machine learning research communities to fairly compare their fall detection solutions.
It also provides many experimental possibilities for the signal recognition, vision, and machine
learning community.
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1. Introduction

According to the World Health Organization (WHO), falls are, globally, the second leading cause
of unintentional injury and death. Falls also frequently cause functional dependencies in elderly.
“Approximately 28–35% of people aged of 65 and over fall each year increasing to 32–42% for those
over 70 years of age” [1]. The incidence of falls varies in different countries and is less frequent in
developed countries [2]. In Mexico, 33.5% of the elderly over 60 years of age suffered at least one fall
in the year prior to the interview [3].

Fall prevalence increases with age globally and is actually considered an important health problem.
Falls often require immediate medical attention since they lead to 20–30% of mild to severe injuries [1]
or even death. Fall detection systems alert when a fall occurs mitigating its consequences. Negative
consequences of falls can be reduced with real-time fall detection improving the time required for
the patient to receive medical attention [4]. Patients sometimes remain laying in the floor causing
additional medical and psychological problems if falls are not detected quickly. When monitoring
falls in subjects in real conditions at less-frequent periods of time, participants tend to forget the exact
data of a fall. This recall problem is more critical particularly in elder or impaired participants [5].
Fall detection systems can help to determine the real time of fall.

There are three main approaches reported in literature for fall detection systems [6] depending
on whether data is acquired with wearable sensors, ambient sensors or vision devices. Igual et al. [4]
categorized fall detectors into two broad approaches: context-aware systems and wearable devices.
Context-aware systems consider all systems using sensors deployed in the environment, which include
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ambient sensors as infrared, floor, radar, microphones, and pressure sensors as well as vision-based
devices. Cameras, motion capture devices, and Kinect are considered also as context-aware systems.
Wearable sensors with accelerometers and gyroscopes are frequently used in fall detectors. Lately,
sensors embedded in smart phones, smart watches and other portable devices have gained popularity
in fall detection systems due to the great affordability and global adoption of these devices. Other
authors, such as Mubashir et al. [6], divided the approaches for fall detection in three categories:
wearable device-based, ambience sensor-based, and vision-based. These reviews of fall detection
systems and more recent surveys like that in [7] present detailed analysis of benefits and limitations of
these approaches, and additional novel multimodal systems which include different combinations
of wearable, vision and ambient sensors. Among the important challenges and issues reported by
most authors are privacy concerns, obtrusiveness and operative device limitations, and difficulty of
comparison among techniques. This last issue is caused by the lack of public databases, especially
those recording real falls of elderly.

Due to infrequency and diversity of falls in real life, it is difficult to collect datasets of actual
unexpected falls. Most datasets for fall detection are simulated in laboratory settings. Khan et al. [8]
described the problem of the enormous imbalance of real falls data: if all persons in a nursery where
to fall 2.6 times on average in a year, the final dataset recorded in one year would have 31.55 million
of normal activities per person and 2.6 falls. Therefore, although simulated fall data cannot really
reproduce a fall exactly, building datasets collecting data of volunteers that simulate different falls
seems still the best option for fall detection system evaluation. Many surveys [8,9] reported that
there is a lack of reference framework and a few publicly available datasets for fall detection can be
found. These facts, in addition to almost no access to real data, hinder systems and method validation
and comparison.

We present a publicly available multimodal dataset for fall detection in order to address the
aforementioned problem. The UP-Fall Detection dataset was collected using 17 healthy young subjects
without any impairment using multiple modalities namely wearable sensors, ambient sensors and
vision devices. The volunteers performed six daily living activities and simulated five different types
of falls, with three attempts each. We use five wearable sensors to collect accelerometer, gyroscope and
ambient light data. In addition, we acquired data from one electroencephalograph (EEG) headset, six
infrared sensors, and two cameras. This dataset comprises raw and feature sets summarizing more
than 850 GB of information from wearable sensors, ambient sensors and vision devices.

The aim of our dataset is to help human activity recognition and machine learning research
communities to fairly compare their fall detection solutions. It also provides many experimental
possibilities for the signal recognition, vision, and machine learning community. We are aware that
as the falls were simulated by young healthy adults without impairment for safety reasons, some
differences can be found with real falls in elderly. Nevertheless, this dataset can be used to transfer
learning experiments for prediction in elderly people or adults with impairments.

Two experimental use cases were presented in this paper: Modalities configuration and benchmark
of machine learning models.

The rest of the paper is organized as follows: firstly, an overview of fall detection datasets is
presented in Section 2. Secondly, our UP-Fall Detection Dataset is described in Section 3. We explain
two experimental use cases in Section 4. Experiments and results are presented in Section 5. We discuss
our results and present conclusions in Sections 6 and 7, respectively.

2. Databases for Fall Detection

There are many fall detection systems reported in literature, hence very few datasets are publicly
available. In this section, we present an overview of fall detection datasets. We considered sensor-based
databases those including wearable or ambient sensors; vision-based databases those including regular
or depth cameras or motion capture data; multimodal databases those containing a combination of
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sensors and/or cameras. There are some important publicly available datasets for human activity
recognition like SCUT-NAA [10] that are excluded from this overview since they do not include falls.

2.1. Wearable-Based Databases

The most cited datasets for fall detection-based sensors are reported in [11–15], and they are
summarized in Table 1.

DLR (German Aerospace Center) dataset [11] is the collection of data from one Inertial
Measurement Unit (IMU) worn in the belt of 16 people (6 female and 5 male) whose ages ranged from
23 to 50 years old. They consider seven activities (walking, running, standing, sitting, laying, falling
and jumping). The types of fall were not distinguished.

MobiFall fall detection dataset [12], was developed by the Biomedical Informatics and eHealth
Laboratory of Technological Educational Institute of Crete. They captured data generated from
inertial-sensors of a Smartphone (3D accelerometer and gyroscope) positioned in trousers pocket.
The 24 subjects, seventeen male and seven female with an age range 22–47 years performed between 3
to 6 trials for each activity. The authors considered four types of falls and nine different activities of
daily living (ADL).

The tFall dataset developed by EduQTech (Education, Quality and Technology) in Universidad
de Zaragoza [13] collected data from ten participant, three female and seven male, with age ranged
from 20 to 42 years old. They obtained data from two smartphones carried by the subjects in everyday
life for ADL. The subjects simulated eight types of common falls among elderly coded as FALL and
daily living activities coded as ADL.

Vilarinho et al. [14] gathered information from a smartphone carried in the thigh pocket and a
smartwatch worn on the wrist to create Project gravity dataset. Three young participants, ranged age
22 to 32, performed seven ADL activities and twelve types of fall done simulating natural ADL and a
sudden fall. They combine threshold and machine learning techniques for fall detection.

UMAFall [16] is a dataset including three types of falls and eight ADL obtained from a smartphone
worn in right thigh pocket and four wearable sensors worn in ankle, waist, right wrist and chest.
Subjects executed at least three trials of each activity in a domestic environmental. They used a
threshold-based approach for fall detection.
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Table 1. Wearable-based databases for fall detection.

Dataset Type of Sensors Position Subjects Fall Types Other Activities Trials Method Performance

DLR Dataset
[11]

one IMU
accelerometer belt 16 (23 to

50 years old) falling
walking, running,
standing, sitting,
laying, jumping

Bayesian
techniques

recall 100%
precision 80%

MobiFall
Dataset [12]

smartphone
accelerometer and
gyroscope sensors

trouser pocket 24 (22 to
47 years old)

fall forward from
standing, use of hands to
dampen fall; fall forward
from standing, first
impact on knees; fall
sidewards from standing,
bending legs; fall
backward while trying to
sit on a chair

standing,
walking, jogging,
jumping, stairs
up, stairs down,
sit chair, car-step
in, car-step out

3 to 6 k-nearest
neighbor

accuracy fall
detection 99.12%,
fall classification
83.06%

tFall [13] two smartphones
accelerometers

worn in two
pockets (left
and right)

10 (20 to
42 years old)

eight types of fall: fall
forward, fall backward,
fall left and right-lateral,
syncope, sitting on
empty chair, falls using
compensation to prevent
the impact

ADL 3

neural
networks,
support
vector
machines

auc 95.29%,
sensitivity 90.75%,
specificity 89.65%

Vilarinho
et al. [14]

smartphone and
smartwatch

thigh pocket
and wrist 3 12 types of fall 7 ADL threshold

accuracy 68%,
sensitivity 63%,
specificity 78%

UMAFall
[16]

smartphone and
four wearable
sensors

thigh pocket
and ankle,
waist, right
wrist and
chest

17 (18 to
55 years old)

3 types of fall, backwards,
forwards, lateral 8 ADL 3 threshold

SisFall [15]

self developed
device with two
accelerometeres
and one
gyroscope

waist worn
23 young and
15 elderly
adults

15 types of fall 19 ADL 1 or 5 threshold

young: accuracy
92.684%, sensitivity
95.74%, specificity
89.62% elderly:
accuracy 88.112%,
sensitivity 79.46%,
specificity 96.76%

SisFall is a dataset [15] of falls and ADL obtained with self-developed embedded device with two
accelerometers and one gyroscope. The device was positioned the waist. The dataset was generated
with the collaboration of 38 participants with 15 elderly people and 23 young adults from ranged age
19 to 75 years old. They selected 19 ADL activities and 15 interesting types of fall simulated when
doing another ADL activity. It is important to notice that this dataset is the only including elderly in
their trials.

These datasets only include wearable sensors, commercial, self-developed or embedded in smart
devices, especially in smart phones. Only a few authors use only near field image sensor [17], Pressure
and infrared sensors [18] or only infrared sensors [19]. To our knowledge, no dataset is publicly
available with ambient sensors or other type of sensors for fall detection.

2.2. Vision-Based Databases

The vision-based approaches can be based in normal RGB camera or web camera, and depth
camera such as Kinect. Motion capture cameras are also used for fall detection. RGB cameras major
issues are privacy, occlusion, and illumination. The use of Kinect for fall detection has been increased
given that it can obtain 3D information by tracing a human [7]. Hence, the Kinect cannot cover an
entire room because the resolution decreases in the depth image hindering fall detection.

SDUFall [20] built a public dataset with one Kinect camera including five daily living activities
and falls performed by ten young women and men. Actions are simulated and they include some
changes such as carrying/not carrying an object, light on/off, changes of position and direction relative
to the camera. Although it was publicly available sometime, it cannot be found anymore.

Zhang et al. [21] presented two datasets recorded with two Kinect cameras simultaneously from
two different points of view. The first dataset (EDF) ten subjects performed two falls for each of
eight directions in each point of view. They also recorded five more different actions that could be
similar to falling: picking up something, sitting in the floor, laying, tying shoe laces, do plank exercise.
The second dataset (OCCU) focused on collecting occluded falls also with two Kinect cameras. Five
subjects performed 60 occluded falls and similar different actions as in the first dataset.
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Charfi et al. [22] presented video sequences using a single RGB camera in four different locations
containing falls, normal activities. This dataset present sequences in four different locations and falls
in different directions. It also includes variances to provide examples of main issues: illumination
variances, occlusions, cluttered and textured background.

Mastorakis et al. [19] dataset was collected with a Microsoft Kinect placed at a height of 2014 cm
inclined to the floor plane. They captured information of eight subjects which performed 48 simulated
falls (backward, forward and sideways), 32 sitting, 48 laying, 32 picking up an item and other activities.
Two subjects performed the activities in slow motion imitating an elderly person.

Other interesting vision-based datasets have been reported in literature, but they are not publicly
available to our knowledge. Auvinet et al. [23] presented a dataset for fall detection built acquired
with an eight camera system simulating falls and normal activities by one subject. Different types of
falls were recorded namely: Forward fall, backwards fall, fall when sitting down, loss of balance. All of
these falls were identified with one class: falling. Walking, standing up, laying, crouching, moving
down, moving up, sitting, laying on a sofa, and moving horizontally are the daily living activities
recollected in this dataset. An extensive dataset recollected with Microsoft Kinect was presented in [24].
They collected data of 16 residents in homes for older people; gathering 454 falls (445 simulated and
9 real falls), standing, sitting, and laying down positions. Table 2 summarizes the vision-based datasets
for fall detection.
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Table 2. Vision-based datasets for fall detection.

Dataset Camera Type Camera
Viewpoints Subjects Fall Types Other Activities Trials Variants ML Method Performance

SDUFall [20] one Kinect one 10 falls in different
directions

falling down, bending,
squatting, sitting, laying,
walking

6 actions /10 times
carrying / not carrying, light
on/off, position / direction
changes

accuracy
79.91%,
sensitivity
81.91%
specificity
76.62%

EDF [21] two Kinect two 10 falls in eight different
directions

picking up something,
sitting on the floor, laying
down, tying shoelaces, doing
plank exercise

6 actions / 20 times different directions

OCCU [21] two Kinect two 5 falls in eight different
directions

picking up something,
sitting on the floor, laying
down, tying shoelaces, doing
plank exercise

6 occluded falls; 5
actions/20 times occluded falls

Charfi et al.
[22] one Kinect one falls in different

directions

walking, sitting down,
standing up, crouching
down, housekeeping,
moving a chair) and falls
(forward falls, falls when
sitting-down, loss of balance)

NaN

four different locations
(home, coffee room, office,
lecture room) illumination
variances and occlusions,
cluttered and textured
background

3D based real time
fall detection SVM;
eight inexpensive IP
cameras

accuracy
99.6%,
precision
94.2%, recall
98% specificity
99.6%

Mastorakis
et al. [19] one Kinect one height of

204 cm 8 backward, forward,
sideways

sitting, laying, picking up,
sweeping, dusting

6 trials fall; 4
activities

slow activities imitate
elderly person

human 3D bounding
box

Dovgan et al.
[25]

six infrared cameras
and infrared light
sources

3 tripping, fainting,
sliding from chair

walking, laying down,
laying, sitting down, sitting 10

markers attached to ankles,
knees, hips, shoulders,
elbows and wrists; Health
analysis

C4.5 and Support
Vector Machine
(SVM)

accuracy 95.7%

Auvinet et al.
[23] eight cameras eight

positions 1

forward fall,
backwards fall, fall
when sitting down,
loss of balance
(falling)

walking, standing up, laying,
crouching, moving down,
moving up, sitting, laying on
a sofa, moving horizontally

NaN occlusions, moving objects
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2.3. Multimodal Databases

The UR (University of Rzeszow) fall detection dataset [26] was generated recollecting data from
an IMU inertial device connected via Bluetooth and 2 Kinects connected via USB. Five volunteers
were recorded doing 70 sequences of falls and ADL. Some of these are fall-like activities in typical
rooms. There were two kinds of falls: falling from standing position and falling from sitting on a chair.
Each register contains sequences of depth and RGB images for two cameras and raw accelerometer
data. The authors used a threshold-based fall detection method.

Multimodal Human Action Database (MHAD) [27] presented by [28] contains 11 actions
performed by 12 volunteers (7 male and 5 female). Although the dataset registered very dynamic
actions, falls were not considered. Nevertheless, this dataset is important given that actions were
simultaneously captured with an optical motion capture system,four multi-view cameras arranged
in four clusters, one Kinect system, six wireless accelerometers, and four microphones. Table 3
summarizes these databases in comparison with our proposed database.

Dovgan et al. [25] presented a prototype system that detects falls and behavior changes for elderly
care. They performed three test and recollected data from normal activities, falling and imitations
of several health problems. The first experiment collects data from Smart sensor system at 10 Hz
with 12 tags attached to the wrists, elbows, shoulders, hips, knees and ankles. A comparison dataset
was created with Ubisense sensor system and with an Xsens accelerometer. Four Ubisense tags were
attached to the waist, chest ankles, and one accelerometer worn on the chest of 10 individuals. For the
third test four persons used only the Ubisense system. Four types of falls, four health problems, and
ADL were imitated in these experiments. We describe details of these datasets in Tables 2 and 3.

Table 3. Multimodal databases for fall detection.

Dataset Type of Sensors Camera
Type/Position Subjects Fall Types Other

Activities Trials ML Method Performance

UR [26] one IMU with
accelerometer two Kinect 5

falling from
standing
position,
falling down
sitting on a
chair

ADL 70 sequences

accuracy 94.99%,
precision 89.57%,
sensitivity 100%,
specificity 91.25%

MHAD
[27,28]

six accelerometers,
four microphones

one motion
capture system,
four multi-view
cameras
arranged in four
clusters, one
Kinect system

12 falls were not
considered ADL 5 repetitions

support vector
machines, k-nearest
neighbors

accuracy 98.24%

Dovgan et al.
[25]

Ubisense system and
with an Xsens
accelerometer

Ubisense tags
attached to
waist, chest and
both ankles

10

tripping,
fainting,
sliding from
chair

walking,
laying down,
laying, sitting
down, sitting

2 falling, 3
ADL

C4.5 and Support
Vector Machine
(SVM)

accuracy 95.58%
Ubisense; accuracy
57.96%
accelerometer

UP-Fall
Detection
(our proposal)

five IMU, one EEG
headset, six infrared
in grid

two
cameras/frontal
and lateral

17

falling
forward using
hands, falling
forward using
knees, falling
backwards,
falling sitting
in empty
chair, falling
sideward

walking,
standing,
sitting,
picking up an
object,
jumping,
laying

3 repetitions

random forest,
support vector
machines, neural
networks, k-nearest
neighbors

See resuts in
Section 5

3. UP-Fall Detection Dataset

This section presents the UP-Fall Detection dataset and describes the process of its acquisition,
pre-processing, consolidating and storaging. In addition, one possible feature extraction process is
also reported.

3.1. Description of the Dataset

We present a large dataset mainly for fall detection, namely UP-Fall Detection, that includes
11 activities and 3 trials per activity. Subjects performed six simple human daily activities as well as
five different types of human falls. These data were collected over 17 healthy young adults without
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impairment using a multimodal approach, i.e., wearable sensors, ambient sensors and vision devices.
The consolidated dataset (812 GB), as well as, the feature dataset (171 GB) are publicly available in
http://sites.google.com/up.edu.mx/har-up/.

The data were collected over a period of four weeks, from 18 June to 13 July 2018 in the third
floor of the Faculty of Engineering, Universidad Panamericana, Mexico City, Mexico. All the devices
and equipment for measurements were connected locally to a set of computers. These computers
centralized all the information and saved the data in hard drives. The details about the dataset
are following.

3.2. Subjects and Activities

During the collection of data, 17 young healthy subjects without any impairment (9 male and
8 female) ranging from 18–24 years old, mean height of 1.66 m and mean weight of 66.8 kg, were
invited to perform 11 different activities. Table 4 summarizes the statistics of the subjects.

The activities performed are related to six simple human daily activities (walking, standing,
picking up an object, sitting, jumping and laying) and five human falls (falling forward using hands,
falling forward using knees, falling backwards, falling sitting in an empty chair and falling sideward).
These types of activities and falls were chosen from the analysis of those reported in literature [4,29].
Falls occurs performing a great variety of circumstances and manners [30]. We tried to simulate
circumstances of falls when tripping, sitting and in different directions. We selected the most commonly
ADL and in particular, picking up an object was included given that it is common to mistake this
activity with a fall. All daily activities were performed during 60 s, except jumping that was performed
during 30 s and picking up an object which it is an action done once within a 10-s period. A single
fall was performed in each of the three ten seconds period trials. Time windows for daily activities
were selected to cover them in at least the duration time reported in similar studies [13,14,28]; while
window time for falls was selected based on the 6-s safe period after fall occurrence, as reported in [13].
For all these activities, a mattress was located in the falling area to prevent injuries. Each activity
was performed three times (trials) by each young healthy subject without any impairment. Table 5
summarizes the activities and the duration each trial takes in the final dataset.

Table 4. Statistics of the subjects.

Subject ID Age Height (m) Weight (kg) Gender Dominant-Side

1 18 1.70 99 Male Right handed
2 20 1.70 58 Male Right handed
3 19 1.57 54 Female Left handed
4 20 1.62 71 Female Right handed
5 21 1.71 69 Male Right handed
6 22 1.62 68 Male Right handed
7 24 1.74 70 Male Right handed
8 23 1.75 88 Male Right handed
9 23 1.68 70 Female Right handed
10 19 1.69 63 Male Right handed
11 20 1.65 73 Female Right handed
12 19 1.60 53 Female Right handed
13 20 1.64 55 Male Right handed
14 19 1.70 73 Female Right handed
15 21 1.57 56 Female Right handed
16 20 1.70 62 Male Right handed
17 20 1.66 54 Female Right handed

http://sites.google.com/up.edu.mx/har-up/
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Table 5. Activities performed by subjects.

Activity ID Description Duration (s)

1 Falling forward using hands 10
2 Falling forward using knees 10
3 Falling backwards 10
4 Falling sideward 10
5 Falling sitting in empty chair 10
6 Walking 60
7 Standing 60
8 Sitting 60
9 Picking up an object 10

10 Jumping 30
11 Laying 60

3.3. Ethical Approval and Consent to Participate

The Research Committee of Engineering Faculty of Universidad Panamericana approved all
the study procedures. All healthy young adults without impairment that participated in this study
previously filled out an agreement with the principal investigator and the Faculty of Engineering,
considering the regulations and data policies applicable. The decision to participate in these
experiments was voluntary.

3.4. Sensors and Distribution

In order to collect data from young healthy subjects without any impairment, we consider a
multimodal approach for sensing the activities in three different ways using wearables, context-aware
sensors and cameras, all at the same time. We used a controlled laboratory room in which light
intensity does not vary, and the context-aware and cameras remain in the same position during the
data collection process. However, we decided to maintain the windows visible, thus in some cases
there are recordings from cameras that show people moving in the background.

We use five Mbientlab MetaSensor wearable sensors collecting raw data from the 3-axis
accelerometer, the 3-axis gyroscope and the ambient light value. These wearables were located in the
left wrist, under the neck, at right pocket of pants, at the middle of waist (in the belt), and in the left
ankle. Also, one electroencephalograph (EEG) NeuroSky MindWave headset was occupied to measure
the raw brainwave signal from its unique EEG channel sensor located at the forehead. The sensor
position has always been a challenge in fall detection and human activity recognition. According
to [4,16], waist, thigh (pocket), wrist, chest, foot are the preferred locations for accelerometers and
accelerometers embedded in smart devices. We chose to position one IMU in the left wrist simulating
that the participant is wearing a smart watch. We placed another IMU in the right pocket simulating
the place for wearing a smart phone. The sensor positions were chosen considering a right-handed
person. A dominant versus non-dominant side position analysis is out of the scope of this work.
The dominant side of the subjects is shown in Table 4.

As context-aware sensors, we installed six infrared sensors as a grid 0.40 m above the floor of
the room, to measure the changes in interruption of the optical devices, where 0 means interruption
and 1 no interruption. Lastly, two Microsoft LifeCam Cinema cameras were located at 1.82 m above
the floor, one for a lateral view and the other for a frontal view. Figure 1a shows the location of the
wearables in the body and Figure 1b shows the layout of the context-aware sensors and cameras. A real
photography of the laboratory with the devices is shown in Figure 2. In addition, Table 6 summarizes
all the sensors occupied and the units of measurement for each channel.
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Table 6. List of devices for measurements.

Device ID Device Name Channel Name Units Sampling Rate Signal ID

1 Wearable Ankle

X-Axis Accelerometer g 100 Hz 1
Y-Axis Accelerometer g 100 Hz 2
Z-Axis Accelerometer g 100 Hz 3

Roll Gyroscope deg/s 100 Hz 4
Pitch Gyroscope deg/s 100 Hz 5
Yaw Gyroscope deg/s 100 Hz 6

Luminosity lux 50 Hz 7

2 Wearable Pocket

X-Axis Accelerometer g 100 Hz 8
Y-Axis Accelerometer g 100 Hz 9
Z-Axis Accelerometer g 100 Hz 10

Roll Gyroscope deg/s 100 Hz 11
Pitch Gyroscope deg/s 100 Hz 12
Yaw Gyroscope deg/s 100 Hz 13

Luminosity lux 50 Hz 14

3 Wearable Waist

X-Axis Accelerometer g 100 Hz 15
Y-Axis Accelerometer g 100 Hz 16
Z-Axis Accelerometer g 100 Hz 17

Roll Gyroscope deg/s 100 Hz 18
Pitch Gyroscope deg/s 100 Hz 19
Yaw Gyroscope deg/s 100 Hz 20

Luminosity lux 50 Hz 21

4 Wearable Neck

X-Axis Accelerometer g 100 Hz 22
Y-Axis Accelerometer g 100 Hz 23
Z-Axis Accelerometer g 100 Hz 24

Roll Gyroscope deg/s 100 Hz 25
Pitch Gyroscope deg/s 100 Hz 26
Yaw Gyroscope deg/s 100 Hz 27

Luminosity lux 50 Hz 28

5 Wearable Wrist

X-Axis Accelerometer g 100 Hz 29
Y-Axis Accelerometer g 100 Hz 30
Z-Axis Accelerometer g 100 Hz 31

Roll Gyroscope deg/s 100 Hz 32
Pitch Gyroscope deg/s 100 Hz 33
Yaw Gyroscope deg/s 100 Hz 34

Luminosity lux 50 Hz 35

6 EEG Headset Raw Brainwave Signal µV 512 Hz 36

7 Infrared 1 No Interruption false(0)/true(1) 4 Hz 37

8 Infrared 2 No Interruption false(0)/true(1) 4 Hz 38

9 Infrared 3 No Interruption false(0)/true(1) 4 Hz 39

10 Infrared 4 No Interruption false(0)/true(1) 4 Hz 40

11 Infrared 5 No Interruption false(0)/true(1) 4 Hz 41

12 Infrared 6 No Interruption false(0)/true(1) 4 Hz 42

13 Camera 1 Lateral View 640 × 480 px 18 Hz 43

14 Camera 2 Frontal View 640 × 480 px 18 Hz 44
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(a) (b)

Figure 1. Distribution of the sensors. (a) Wearable sensors and EEG headset located at the human body.
(b) Layout of the context-aware sensors and camera views.

Figure 2. Implementation of the laboratory room for data collection.

3.5. Hardware Implementation, Data Pre-Processing and Consolidation

To gather all raw sensor signals, a local system was implemented. In this regard, two computers
and three Raspberry Pi V3 were used as units of information. The wearable sensors and the EEG
headset were connected directly to the two computers via Bluetooth (three wearable sensors to one
computer, and two wearable sensors plus the EEG headset to another computer). In addition, each
camera was plugged into each computer via USB cable. Additionally, the infrared sensors were
connected in pairs to the Raspberry Pi modules. Before each subject started to perform the activities,
all the sensors and cameras started to gather the data. Later on, these devices stopped collecting data
much later than the ending of performance by the subject. All the data were saved as CSV-files in
the different units of information, containing the timestamp and the raw values associated with each
sensor. It is important to highlight that previously all units of information were set with the same time.

For consolidation purposes, all the data were pre-processed. Since the devices ran at different
sampling rates, we decided to homogenize the sampling rate in the consolidated dataset. In that
sense, we chose the camera with the fewest frames acquired (18 fps approx.), taking its time-stamps as
reference. Then, only raw values at these time-stamps were included in the consolidated dataset. Only
infrared sensors were too slow (4 Hz) for that sampling rate, thus upsampling was conducted using
drop-sampling interpolation [31]. This upsampling procedure consists of repeating the last sampled
value n-times (i.e., n = 4 for our dataset) until the next sampled value is acquired. This upsampling
data represents 10.3% of samples associated with infrared sensors. For data alignment, we recorded the
starting and ending time-stamps of trials, and then we extracted information from devices only in this
interval of time. That process was possible since all devices recorded time-stamps locally (previously
calibrated), thus no data wrapping were required. Further details on pre-processing and consolidation
processes of our dataset can be found in [32].

The final consolidated dataset contains 296,364 samples of raw sensor signals and images. These
samples were collected at ∼18.4 Hz, and saved in around 812 GB of digital information.
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3.6. Data Storage and Publishing

The UP-Fall Detection dataset comprises 11 activities, with three repetitions each, performed by
17 young healthy subjects without any impairment. All activities were measured using 14 devices and
44 multimodal sensor signals. This dataset aims to cover different human falls and simple activities for
further analysis, benchmarck and design of fall detection and/or HAR systems. After pre-processing,
the public UP-Fall Detection dataset considers two main components: (a) the consolidated dataset,
and (b) the feature dataset. It is remarkable to say that the dataset has missing values, and these are
reported in Table 7.

Table 7. Missing values in the UP-Fall Detection dataset.

Subject ID Activity ID Trial Device ID

2 5 all 6
5 all all 2
6 10 2 14
8 11 2, 3 all
9 all all 2

3.6.1. Consolidated Dataset

This is the core dataset. It comprises clean and synchronized information of the activities
performed by 17 young healthy subjects without any impairment. Due to formatting, the dataset is
separated in data from sensors and images from cameras.

The data is organized into CSV-files (data from sensors) and ZIP-files (images from cameras)
as follows. There are 17 folders, one per subject. Inside each folder, there are 11 sub-folder, one per
activity. At the inside of these sub-folders, there are other three sub-folders, one per trial. In each
sub-folder, there is one CSV-file containing the pre-processed sensor signals of that attempt and two
ZIP-files containing the images recorded of that attempt for the both cameras, one file per camera.
Figure 3 shows the organization of this dataset.

Figure 3. Organization of the consolidated dataset.

The name of each CSV-file is written as: SubjectXActivityYTrialZ, where X is the Subject
ID, Y is the Activity ID and Z is the number of trial (1 − 3); and the ZIP-files are named as:
SubjectXActivityYTrialZCameraW, where W is the number of camera (1 or 2).

Each CSV-file contains samples with: a column with the timestamp, 42 columns related to the
sensor signals, and three columns with the number of subject, activity and trial. Table 8 shows the
organization of this CSV-file related to the number of columns. It is important to highlight that falls
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consider three states in the activity: standing, falling and laying; while picking up an object considers
also three states: standing, picking up and standing. In those cases, the values in the activity column
of the files changes depending on the state. It is important to highlight that daily activity labels were
tagged automatically using the time-stamps, while fall trials were tagged manually by inspection on
the camera views. Just one expert tagged the samples and one person revised this task.

Table 8. Example of organization inside a CSV-file of the consolidated dataset. Each row represents
one sample.

Timestamp Sensor Signals Subject Activity Trial

YYYY-MM-DDTHH:MM:SS.SSSSSS data from Signal ID 1–42 Subject ID Activity ID no. trial

2018-07-04T12:04:17.734054 42-columns with numeric values 1 7 2
2018-07-04T11:22:48.920482 756-columns with numeric values 2 5 3
2018-07-04T15:49:23.302938 756-columns with numeric values 16 11 1

On the other hand, each ZIP-file contains a set of RGB images in PNG format. These images have
a file name exactly as the timestamp when they were taken, so that they can be related easily with the
data from sensors. Figure 4 shows a set of images that are collected in the dataset. It is important to
notice that although the dataset was collected from falls simulated by young healthy subjects without
any impairment, we incorporated non-fall activities and is highly imbalanced as suggested in [33] in
order to simulate sporadic falls of real-world conditions.

(a) (b) (c)

Figure 4. Examples of images inside a ZIP-file.

3.6.2. Feature Dataset

In most fall detection or HAR systems, feature extraction is part of the workflow. In this regard,
we decided to extract features from the consolidated dataset. For this purpose, we did three different
feature datasets depending on the window size: (a) one-second, (b) two-second and (c) three-second.
All the feature datasets consider 50% of overlapping. Due to formatting, all these datasets are separated
in features from sensors and image features from cameras.

The data is organized into CSV-files (features from sensors and divdided by window size) and
ZIP-files (image features from cameras) in the same way as in the consolidated datasets: 17-folders
(subjects), each one with 11 sub-folders (activities), with three sub-folders (trials) each. At each
sub-folder, there are three CSV-files containing the features extracted for each sensor signal of that trial,
with three window sizes, and two ZIP-files containing the image features extracted from the image
sequences at that attempt for the both cameras, one file per camera. Figure 5 shows the organization of
this dataset.
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Figure 5. Organization of the feature dataset.

The name of each CSV-file is written as: SubjectXActivityYTrialZFeaturesP&Q, where X
is the Subject ID, Y is the Activity ID, Z is the number of trial (1–3), P is the window size
(1–3 s), and Q is the size of the overlapping (0.5, 1 and 1.5 s). The ZIP-files are named as:
SubjectXActivityYTrialZCameraW_OF, where W is the number of camera (1 or 2).

Each CSV-file contains window samples, each one with: a column with the timestamp at the
beginning of the window, 756 columns related to 18 features extracted for each of the 42 sensor signals,
and three columns with the number of subject, activity and trial. Table 9 shows the organization of
these CSV-files. Activities such as falls and picking up an object were considered in the same way
as in the consolidated dataset. In addition, the value reported at the activity column was calculated
as the most frequent activity value over the entire window. To this end, the 18 features extracted are
summarized in Table 10 for temporal features and in Table 11 for frequency features.

Table 9. Example of organization inside a CSV-file of the feature dataset. Each row represents one sample.

Timestamp Features from Sensor Signals Subject Activity Trial

YYYY-MM-DDTHH:MM:SS.SSSSSS 756 features from Signal ID 1–42 Subject ID Activity ID no. trial

2018-07-04T12:04:17.734054 756-columns with numeric values 1 7 2
2018-07-04T11:22:48.920482 756-columns with numeric values 2 5 3
2018-07-04T15:49:23.302938 756-columns with numeric values 16 11 1

Table 10. Temporal features extracted from all wearable and ambient devices of the consolidated dataset.

Features References

mean [34–38]
standard deviation [36,37,39]
root mean square [35]

maximal amplitude [37,38]
minimal amplitude [37,38]

median [39,40]
number of zero-crossing [35,37]

skewness [38]
kurtosis [34,38]

first quartile [39,40]
third quartile [39,40]

autocorrelation [37,38]
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Table 11. Frequency features extracted from the consolidated dataset.

Features References

mean frequency [35,37]
median frequency [35]

entropy [36,40]
energy [34,36,40]

principal frequency [38–40]
spectral centroid [37,40]

One the other hand, each ZIP-file contains a set of compressed CSV-files that represents the
relative displacement of pixels in two consecutive images, computed by an optical flow method.
The latter approach is a methodology that allows calculating the apparent displacements of objects
in an image sequence, these displacements, in general, are associated with brightness variations and
can give correspondence information between the pixels of consecutive images [41]. For this dataset,
the Horn and Schunck optical flow method was computed [42]. Figure 6 shows a set of images that
can be interpreted from the information collected in the feature dataset. It is important to highlight
that feature extraction over the images are not windowed.

(a) (b) (c)

Figure 6. Examples of image features from cameras inside a ZIP-file.

4. Use Cases

In order to present examples of use cases in which our dataset can be useful, we propose two use
case scenarios: (i) modalities configuration and (ii) a benchmark of machine learning models. For each
use case, different goals were proposed.Seven experiments were designed to achieve these goals:

• Experiment 1 (IR). Fall detection using data only from infrared sensors.
• Experiment 2 (IMU). Fall detection using data only from wearable IMUs.
• Experiment 3 (IMU+EEG). Fall detection using data from all wearable IMUs and the EEG headset.
• Experiment 4 (IR+IMU+EEG). Fall detection using data from all infrared sensors, all wearable

IMUs and the EEG headset.
• Experiment 5 (CAM). Fall detection using only data from cameras.
• Experiment 6 (IR+CAM). Fall detection using data from all infrared sensors and cameras.
• Experiment 7 (IMU+EEG+CAM). Fall detection using data from all wearable IMUs, EEG headset

and cameras.

The above combinations are not exhaustive. Experiments with all sort of combinations using only
some sensors with different locations and/or modalities can be designed depending of the purpose of
the experiments. Different and new algorithms can also be used.

4.1. Case 1: Modalities Configuration

Given the availability and affordability of wearable sensors, ambient and vision sensors and
devices, it is more common to use different modalities for fall detection. Nevertheless, as discussed
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before, it is important to choose the right combination of modalities and location of sensors. In this
case scenario, we exemplify how a comparative analysis can be done for the purpose of selecting the
combination of sensors and devices with the best predictive capability.

4.2. Case 2: Benchmark of Machine Learning Models

Another important use of our dataset is the possibility to fairly compare different algorithms,
systems and configurations. In this case scenario, we propose a comparative analysis of different
machine learning algorithms. In this example we compare the performance of four well-known
methods typically use in fall detection and human activity recognition systems [9,13,27,28,34,43]:

• Random Forest (RF). This is an ensemble method made of decision trees, in which an input is
processed through the forest of decision trees and computes the output class as the mode of the
response class given by the trees. This technique is employed in many fall detection and activity
recognition systems [43].

• Support Vector Machine (SVM). This method maps the inputs to a different space in which a
hyper-plane, optimized by training, separates the output classes. It occupies a kernel for suitable
hyper-plane separation. It is a very popular classification method in fall detection systems [9].

• Multi-Layer Perceptron (MLP). This is a neural network with perceptron (i.e., threshold activation
function) units, employed as a general nonlinear classification [44].

• k-Nearest Neighbors (kNN). This is an instance-based method that compares an input with the
k-nearest neighbor training points and determines the output response based on the most frequent
class observed in the k neighbors [44].

5. Experiments and Results

We adopted the activity recognition chain (ARC) approach [34] to develop the workflow of the
fall detection system aiming to test the case scenarios described below. This methodology considers
five main steps: (i) data acquisition, (ii) windowing, (iii) feature extraction, (iv) feature selection and
(v) activity models and classification. A detailed description of each step are presented following.
Figure 7 shows the ARC methodology adopted for the experiments.

Data

Acquisition
Windowing

Feature

Extraction

Feature

Selection

Activity

Models & 

Classification

sensor

signals

recognized

activity

Figure 7. Activity recognition chain methodology adopted in the fall detection system.

5.1. Data Acquisition

The first step of the ARC approach is to acquire data from the sources. This was already
explained in Section 3.6.1. In summary, we collected data from 14 sources (e.g., wearables, ambient
sensors, cameras) all connected to two computers that stored the information locally. These data were
consolidated in a clean and synchronized dataset of the 11 activities, three attempts each, performed
by 17 young healthy subjects without any impairment.

5.2. Windowing and Feature Extraction

The second step in the methodology considers to divide the raw signals in windows in order to
extract relevant features, as described in Section 3.6.2. We tested the fall detection system using three
different window sizes: (a) one-second, (b) two-second and (c) three-second. An overlapping of 50%
were considered in all the cases. Then, at each window, we extracted 12 temporal and six frequency
features (see Tables 10 and 11). Windowing and feature extraction processes are fully described in
Section 3.6.2.
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For images, feature extraction was computed as follows. First, for each camera, we retrieved all
image features inside a window. These features are the horizontal and vertical relative movements
in the scenes, known as u and v respectively. These u and v components are two numeric matrices
with the same size of the original images. For interpretability, we combined these two components
resulting in the magnitude of the relative movement as shown in (1), where d is the resultant matrix of
size equals to the original image.

di,j =
√

u2
i,j + v2

i,j (1)

To minimize computational effort in following steps, we resized the resultant matrix d from
640 × 480 to 20 × 20 size. After that, we reshaped matrix d in a row vector of 400 elements. Lastly,
all these row vectors from image features inside a window were averaged. Thus, a 400-row vector was
obtained for each window, representing the features for images.

To this end, we obtained 756 features from sensors (wearables and ambient ones) and 800 features
from the two cameras, getting 1556 features in total for each window size setting.

5.3. Feature Selection

The third step of the ARC methodology is to select a subset of features in order to reduce the
dimensionality and simplify the development of the models. Feature selection was applied to each
consolidated dataset resulting from the process of feature extraction described in Section 5.2. For each
of the seven experiments described in the use cases (see Section 4), feature selection was done using
the following techniques: (i) a scheme-independent attribute subset evaluator using correlation-based
feature selection (Weka.CfsSubsetEval), and (ii) three ranker methods based on attribute correlation,
attribute relief and attribute classification (Weka.CorrelationAttributeEval, Weka.ReliefAttributeEval
and Weka.ClassifierAttribute) [45].

In [45], Witten and Frank state that there are attribute selection is normally done with two
methods: searching the space of attribute subsets and evaluating each one or evaluating the attributes
individually, sort them and discarding attributes that fall below a cutoff point. We combined these two
methods using one attribute subset evaluator method and three ranker methods for feature selection.
The scheme-independent technique considers the individual predictive ability of each feature and the
degree of redundancy of a given subset of features. Two search methods were considered inside this
technique: best-first and greedy step-wise. In terms of the rankers, the first one evaluates the worth of
a feature measuring Pearson’s correlation between the given attribute and the class, the second one
alleviates the evaluation of correlation from attributes, and the third one use classification for select
the most appropriate attributes. In the latter, two classifiers were proven for attribute ranking: ZeroR
and Decision Table.

In summary, the most relevant attributes were selected for each case. The following steps were
used for feature selection:

1. Revise features with missing values and select those features with consistent information.
2. Evaluate the worth of each attribute using the five techniques described above.
3. Select subsets of one hundred of the best attributes determined by each of five feature

selection methods.
4. Calculate the frequency of appearance of each feature in all the selected subsets.
5. If a feature appears more than one time in these subsets, the feature was selected.
6. Sort features according to frequency of appearance.
7. Perform an incremental analysis of predictive power of features using Random Forest

classification and accuracy metric.
8. Select a subset of the most relevant features for subsequent classification.

This process was implemented for each experiment in the three different window sizes.
Figures 8–14 show the incremental analysis of predictive power of features in terms of the accuracy.
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From left to right, each graph shows the accuracy obtained when using 1-s, 2-s and 3-s windowing.
In addition, each vertical dashed line represents the number of features finally selected for building
the machine learning models, as reported below.
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Figure 8. Accuracy performance on training using cumulative features for Experiment 1: IR. From left
to right, it presents the performance using: 1-second length windowing, 2-second length windowing
and 3-second length windowing. The dash line reports the number of cumulative features employed
for the next steps.
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Figure 9. Accuracy performance on training using cumulative features for Experiment 2: IMU. From left
to right, it presents the performance using: 1-second length windowing, 2-second length windowing
and 3-second length windowing. The dash line reports the number of cumulative features employed
for the next steps.

0 20 40 60 80

cumulative features

60

70

80

90

100

a
c
c
u

ra
c
y

1-sec window

0 20 40 60 80

cumulative features

60

70

80

90

100

a
c
c
u

ra
c
y

2-sec window

0 20 40 60 80

cumulative features

60

70

80

90

100

a
c
c
u

ra
c
y

3-sec window

Figure 10. Accuracy performance on training using cumulative features for Experiment 3: IMU + EEG.
From left to right, it presents the performance using: 1-second length windowing, 2-second length
windowing and 3-second length windowing. The dash line reports the number of cumulative features
employed for the next steps.
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Figure 11. Accuracy performance on training using cumulative features for Experiment 4: IR + IMU
+ EEG. From left to right, it presents the performance using: 1-second length windowing, 2-second
length windowing and 3-second length windowing. The dash line reports the number of cumulative
features employed for the next steps.
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Figure 12. Accuracy performance on training using cumulative features for Experiment 5: CAM. From
left to right, it presents the performance using: 1-second length windowing, 2-second length windowing
and 3-second length windowing. The dash line reports the number of cumulative features employed
for the next steps.
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Figure 13. Accuracy performance on training using cumulative features for Experiment 6: IR + CAM.
From left to right, it presents the performance using: 1-second length windowing, 2-second length
windowing and 3-second length windowing. The dash line reports the number of cumulative features
employed for the next steps.
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Figure 14. Accuracy performance on training using cumulative features for Experiment 7: IMU + EEG
+ CAM. From left to right, it presents the performance using: 1-second length windowing, 2-second
length windowing and 3-second length windowing. The dash line reports the number of cumulative
features employed for the next steps.

5.4. Activity Models and Classification

Building machine learning models for classification is the next step in the workflow. In this
work, four classification methods were applied to each subset of features extracted in each experiment.
Table 12 summarizes the parameter settings of these models. Experiments were performed using
70% of the dataset for training and 30% for testing. Ten rounds of cross-validation were performed
using different random partitions done by samples over each of the selected classification methods.
In machine learning literature [46,47], it is suggested the determination of k-fold configuration as
follows: (i) the value of k is chosen such as each trained group of data is large enough to be statistically
representative and typically is performed with exhaustive experimentation [46], or (ii) if not exhaustive
experimentation is done, the most common k chosen is 5- or 10-folds as these values have shown
empirically to yield test error rate estimates that suffer neither from excessively high bias nor from high
variance [47]. In addition, related works in fall detection commonly report using 10-fold configuration
although it is difficult to compare works given the great variety of datasets, classification tasks,
prediction techniques and evaluation metrics (c.f. [12,13,15,28]). Thus, we considered that exhaustive
approach is computational expensive and was not necessary as we are only presenting an example
of use of our dataset; we therefore decided to choose a 10-fold configuration based on the related
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work and the common practices reported in machine learning [46,47]. It is important to notice that for
each size of window, experiments with seven combinations of modalities were performed using four
classification methods.

Table 12. Parameter settings for ML-models of the benchmark.

ML-Model Parameters

Random Forest

estimators = 10
min. samples split = 2
min. samples leaf = 1

bootstrap = true

Support Vector Machines

c = 1.0
kernel = radialbasis f unction

kernel coefficient = 1/ f eatures
shrinking = true
tolerance = 0.001

Multi-Layer Perceptron

hidden layer size = 100
activation function = ReLU
solver = stochasticgradient
penalty parameter = 0.0001

batch size = min(200, samples)
initial learning rate = 0.001

shuffle = true
tolerance = 0.0001

exponential decay (first moment) = 0.9
exponential decay (second moment) = 0.999

regularization coefficient = 1e−8

max. epochs = 10

k-Nearest Neighbors
neighbors = 5
leaf size = 30

metric = Euclidean

For the experiments, we measure the performance of the classification models using five
metrics [48]: accuracy, precision, sensitivity, specificity and F1-score, as shown in (2)–(6); where TP and
TN are the true positives and true negatives, and FP and FN are the false positives and false negatives.

accuracy =
TP + TN

TP + TN + FP + FN
(2)

precision =
TP

TP + FP
(3)

sensitivity =
TP

TP + FN
(4)

speci f icity =
TN

TN + FP
(5)

F1-score = 2 · precision × sensitivity
precision + sensitivity

(6)

5.5. Results

After completing the ARC workflow for all the experiments, we obtained the performance
evaluation of each multimodal approach in the different window sizes, as summarized in Table 13.
It reports the best performance based on the F1-score (and in parenthesis the machine learning model
that produces the best result) obtained from the combination modality-window size. The mean of the
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ten fold-cross validation for each method was compared, and the best result is reported in addition
with its standard deviation. This was done for each of the different experiments.

The following analysis is based on F1-score. As shown in Table 13, simple modalities for IR
and CAM got bad performance, 32.16% and 15.19% respectively, except with IMUs-only sensors that
reached 70.31%. When combining simple modes, such as IR + CAM, results were not better (29.81%).
Following IMU + EEG, it obtained slightly less results (69.03%) than IMUs-only. However, adding
more devices in modalities promotes better results. It can be seen at IR + IMU + EEG that reached
69.38% in contrast to IR-only (32.16%) or IMU + EEG (69.03%). In the same way, IMU + EEG + CAM
obtained 70.44% in comparison with CAM-only (15.19%) or IMU+EEG (69.03%). Figure 15 shows
a graphical representation of the different modalities and the performance (mean F1-score), already
discussed above. To this end, Case 1 shows that having multimodal devices using IMUs and EEG
headset wearables in combination with cameras, the performance is better than using only one type
of devices. This validates that multimodal approach has better predictive capability than the other
combinations considered.

Table 13. The best performance (mean ± standard deviation) obtained for each modality, based on the
F1-score, depending on the window size. The best model is written in parenthesis.

Modality Window Accuracy (%) Precision (%) Sensibility (%) Specificity (%) F1-Score (%)

IR
1 s (RF) 63.03 ± 0.48 31.21 ± 1.25 26.26 ± 0.52 96.11 ± 0.05 26.70 ± 0.73
2 s (RF) 65.51 ± 0.69 32.95 ± 2.43 29.15 ± 1.22 96.42 ± 0.07 29.87 ± 1.47
3 s (RF) 67.38 ± 0.65 36.45 ± 2.46 31.26 ± 0.90 96.63 ± 0.07 32.16 ± 0.99

IMU
1 s (MLP) 95.49 ± 0.26 73.05 ± 1.90 69.40 ± 1.47 99.56 ± 0.02 70.31 ± 1.48
2 s (RF) 94.23 ± 0.30 71.99 ± 3.09 60.81 ± 1.47 99.42 ± 0.03 64.06 ± 1.74
3 s (RF) 95.39 ± 0.45 69.36 ± 3.61 60.29 ± 2.10 99.54 ± 0.05 62.48 ± 2.33

IMU + EEG
1 s (RF) 95.93 ± 0.30 74.15 ± 1.29 66.29 ± 1.67 99.60 ± 0.03 69.03 ± 1.48
2 s (RF) 95.16 ± 0.23 73.06 ± 2.27 65.16 ± 2.01 99.52 ± 0.02 67.80 ± 1.71
3 s (RF) 95.60 ± 0.35 72.39 ± 2.92 62.34 ± 2.76 99.56 ± 0.03 65.03 ± 2.31

IR + IMU + EEG
1 s (RF) 95.88 ± 0.16 74.17 ± 1.08 66.73 ± 0.72 99.59 ± 0.02 69.36 ± 0.58
2 s (RF) 95.12 ± 0.37 74.64 ± 1.65 66.71 ± 1.99 99.51 ± 0.04 69.38 ± 1.72
3 s (RF) 95.58 ± 0.49 70.10 ± 3.04 60.88 ± 3.93 99.56 ± 0.05 62.96 ± 3.28

CAM
1 s (kNN) 32.51 ± 0.42 14.40 ± 0.65 15.06 ± 0.49 92.93 ± 0.04 14.56 ± 0.54
2 s (kNN) 34.01 ± 0.69 14.65 ± 0.70 15.30 ± 0.52 93.10 ± 0.07 14.82 ± 0.60
3 s (kNN) 34.03 ± 1.12 15.33 ± 0.73 15.54 ± 0.57 93.09 ± 0.12 15.19 ± 0.53

IR + CAM
1 s (RF) 56.73 ± 0.33 25.90 ± 1.25 23.25 ± 0.27 95.48 ± 0.03 22.06 ± 0.43
2 s (RF) 60.00 ± 0.44 27.90 ± 1.44 25.86 ± 0.68 95.84 ± 0.05 24.35 ± 0.83
3 s (RF) 65.00 ± 0.66 33.94 ± 2.82 29.03 ± 0.90 96.35 ± 0.07 29.81 ± 1.16

IMU + EEG + CAM
1 s (MLP) 94.32 ± 0.31 76.79 ± 1.59 67.30 ± 1.42 99.43 ± 0.03 70.44 ± 1.25
2 s (RF) 95.06 ± 0.22 74.08 ± 1.87 65.65 ± 1.02 99.51 ± 0.03 68.50 ± 1.13
3 s (RF) 95.19 ± 0.22 70.33 ± 3.09 58.69 ± 1.81 99.52 ± 0.02 61.69 ± 1.97

On the other hand, we obtained the performance evaluation of each modality in the different
machine learning models. Table 14 shows the best performance based on F1-score (and in parenthesis
the window size that produces the best result) obtained from the combination modality-model. These
results correspond to Case 2 on benchmark of machine learning models. In terms of the ML models,
RF seems to be the best predictive model in the whole experiment. However, we can identify that
RF and MLP are the two related classifiers to multimodal approach (see Figure 15). From Table 14,
IR+IMU+EEG reached a performance of 69.38% (RF) and 68.19% (MLP), in contrast to 53.94% (SVM)
and 60.36% (kNN). The same behavior is shown in IMU+EEG+CAM with the highest performance
got from RF (69.36%) and MLP (70.44%). In CAM, kNN was the most useful among the others, and
we consider this happened because vision features were selected to be pixels representing the relative
motion between frames. In that sense, an instance-based ML model would be better in this case than
the others. Surprisingly, SVM was not be selected in any well-performed combination. Thus, this
experiment shows the usefulness of having different modalities to fairly compare ML-models in the
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same circumstances. To this end, Figure 16 shows the confusion matrix of the best ML-model found
using IMU + EEG + CAM modality with MLP and 1-second window size.

Figure 15. Graphical description of the different modalities. Information comprises: window size/best
ML-model/mean F1-score. Bold text represents the best performance.

Table 14. The best performance (mean ± standard deviation) obtained for each modality depending
on the ML-model. The best window size is written in parenthesis.

Modality Model Accuracy (%) Precision (%) Sensibility (%) Specificity (%) F1-Score (%)

IR

RF (3 s) 67.38 ± 0.65 36.45 ± 2.46 31.26 ± 0.89 96.63 ± 0.07 32.16 ± 0.99
SVM (3 s) 65.16 ± 0.90 26.77 ± 0.58 25.16 ± 0.29 96.31 ± 0.09 23.89 ± 0.41
MLP (3 s) 65.69 ± 0.89 28.19 ± 3.56 26.40 ± 0.71 96.41 ± 0.08 25.13 ± 1.09
kNN (3 s) 61.79 ± 1.47 30.04 ± 1.44 27.55 ± 0.97 96.05 ± 0.16 27.89 ± 1.13

IMU

RF (1 s) 95.76 ± 0.18 70.78 ± 1.53 66.91 ± 1.28 99.59 ± 0.02 68.35 ± 1.25
SVM (1 s) 93.32 ± 0.23 66.16 ± 3.33 58.82 ± 1.53 99.32 ± 0.02 60.00 ± 1.34
MLP (1 s) 95.48 ± 0.25 73.04 ± 1.89 69.39 ± 1.47 99.56 ± 0.02 70.31 ± 1.48
kNN (1 s) 94.90 ± 0.18 69.05 ± 1.63 64.28 ± 1.57 99.50 ± 0.02 66.03 ± 1.52

IMU + EEG

RF (1 s) 95.92 ± 0.29 74.14 ± 1.29 66.29 ± 1.66 99.59 ± 0.03 69.03 ± 1.48
SVM (1 s) 90.77 ± 0.36 62.51 ± 3.34 52.46 ± 1.19 99.03 ± 0.03 53.91 ± 1.16
MLP (1 s) 93.33 ± 0.55 74.10 ± 1.61 65.32 ± 1.15 99.32 ± 0.05 68.13 ± 1.16
kNN (1 s) 92.12 ± 0.31 66.86 ± 1.32 58.30 ± 1.20 98.89 ± 0.05 60.56 ± 1.02

IR + IMU + EEG

RF (2 s) 95.12 ± 0.36 74.63 ± 1.65 66.71 ± 1.98 99.51 ± 0.03 69.38 ± 1.72
SVM (1 s) 90.59 ± 0.27 64.75 ± 3.89 52.63 ± 1.42 99.01 ± 0.02 53.94 ± 1.47
MLP (1 s) 93.26 ± 0.69 73.51 ± 1.59 66.05 ± 1.11 99.31 ± 0.07 68.19 ± 1.02
kNN (1 s) 92.24 ± 0.25 67.33 ± 1.94 58.11 ± 1.61 99.21 ± 0.02 60.36 ± 1.71

CAM

RF (3 s) 32.33 ± 0.90 14.45 ± 1.07 14.48 ± 0.82 92.91 ± 0.09 14.38 ± 0.89
SVM (2 s) 34.40 ± 0.67 13.81 ± 0.22 14.30 ± 0.31 92.97 ± 0.06 13.83 ± 0.27
MLP (3 s) 27.08 ± 2.03 8.59 ± 1.69 10.59 ± 0.38 92.21 ± 0.09 7.31 ± 0.82
kNN (3 s) 34.03 ± 1.11 15.32 ± 0.73 15.54 ± 0.57 93.09 ± 0.11 15.19 ± 0.52

IR + CAM

RF (3 s) 65.00 ± 0.65 33.93 ± 2.81 29.02 ± 0.89 96.34 ± 0.07 29.81 ± 1.16
SVM (3 s) 64.07 ± 0.79 24.10 ± 0.98 24.18 ± 0.17 96.17 ± 0.07 22.38 ± 0.23
MLP (3 s) 65.05 ± 0.66 28.25 ± 3.20 25.40 ± 0.51 96.29 ± 0.06 24.39 ± 0.88
kNN (3 s) 60.75 ± 1.29 29.91 ± 3.95 26.25 ± 0.90 95.95 ± 0.11 26.54 ± 1.42

IMU + EEG + CAM

RF (1 s) 95.09 ± 0.23 75.52 ± 2.31 66.23 ± 1.11 99.50 ± 0.02 69.36 ± 1.35
SVM (1 s) 91.16 ± 0.25 66.79 ± 2.79 53.82 ± 0.70 99.07 ± 0.02 55.82 ± 0.77
MLP (1 s) 94.32 ± 0.31 76.78 ± 1.59 67.29 ± 1.41 99.42 ± 0.03 70.44 ± 1.25
kNN (1 s) 92.06 ± 0.24 68.82 ± 1.61 58.49 ± 1.14 99.19 ± 0.02 60.51 ± 0.85
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Figure 16. Confusion matrix in testing using MLP with 1-second window size in IMU + EEG +
CAM. Numbers in diagonal represent the times a target class is estimated correctly. Performance:
accuracy = 95.0%, precision = 77.7%, sensitivity = 69.9%, speci f icity = 99.5% and F1-score = 72.8%.

5.6. CNN for Vision

As shown before, ML-models cannot predict falls and activities when using vision features
only (CAM). Thus, we conducted a small experiment with convolutional neural networks (CNN) to
determine the feasibility of our database to predict falls/activities using only vision.

For this experiment, we use a CNN adapted for our raw video recordings. CNN is a type of deep
learning neural network inspired on the biological process of connectivity pattern in neurons of animal
visual cortex. CNN have shown to be versatile in automatic feature extraction procedures, using a
suitable amount of samples in training phase. For instance, Núñez-Marcos et al. [49] showed that
CNN with optical flow can lead in fall detection systems.

In our experiment, the proposed CNN receives as input a frame from the video recordings and
estimates the fall/activity performed by the present subject. Figure 17 shows the architecture of the
employed CNN with the following layers: a convolutional layer with 8 filters of size 3 × 3 with a
rectified linear unit (ReLU) and a max-pooling of size 2 × 2 layers; then, a convolutional layer with
16 filters of size 3 × 3 with a ReLU and a max-pooling of size 2 × 2 layers; after that, a convolutional
layer with 32 filters of size 3 × 3 with a ReLU and a max-pooling of size 2 × 2 layers; and, finally, there
is a fully-connected layer with output size 12 and soft-max function. We trained the CNN using the
stochastic gradient descent algorithm with initial learning rate of 0.001, regularization coefficient 0.004,
maximum number of epochs 5, and mini-batch size of 100.

Figure 17. CNN topology using raw video recordings.
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The training data for CNN consisted on 140,451 samples and the testing data on 70,145 samples.
Only camera 1 was used for training and testing, and images were re-sized to 28 × 28 pixels. We ran
5-fold cross-validation for training process, based on the procedure reported in [49] and the common
practices considered in machine learning [46,47], and we selected the best CNN classifier using
the accuracy metric over the training set. After that, we validated our CNN over the testing data,
performing: accuracy = 95.1%, precision = 71.8%, sensitivity = 71.3%, speci f icity = 99.5% and
F1-score = 71.2%. This is also shown in the confusion matrix depicted in Figure 18. In this case, class
12 represents an unknown activity.
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Figure 18. Confusion matrix in testing using video recordings. Numbers in diagonal represent
the times a target class is estimated correctly. Performance: accuracy = 95.1%, precision = 71.8%,
sensitivity = 71.3%, speci f icity = 99.5% and F1-score = 71.2%.

The above CNN demonstrated that our video recordings can be used for falls/activities detection.
In addition, it is important to consider the combinations of ML-models and features for classification.

6. Discussion

To the best of our knowledge, there are limited multimodal datasets with different human
activities including falls that are publicly available, as shown in Table 3. On the other hand, there is a
need for new multimodal datasets to fairly compare fall detection solutions. It is also important for
research communities to assess new machine learning algorithms. Our proposed multimodal UP-Fall
Detection Dataset provides a useful resource for conducting experiments with various goals. With this
in mind, we presented two use cases whose results are discussed below.

Regarding the first use case of modalities configuration, we can observe that results (Table 13) are
better when IMUs were included [10]. Although new sensors and modalities are being used in related
work, accelerometer is proven to be a good choice for fall detection. Comparing IMU + EEG and
IR + IMU + EEG, we can observe that although IMUs have the most predictive power regarding fall
detection, ambient sensors in this case infrared sensors, contribute to slightly improve the classification
results. With respect to CAM modality in which only cameras were considered, results show poor fall
detection with the selected features and classifiers. Results are improved when IMUs are combined
with cameras as expected (IMU + EEG + CAM). Furthermore, our experiment with CNN using raw
video recording shows that this approach highly improves the performance of fall detection.
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From the benchmark of machine learning models experiments shown in Table 14, we can observe
that RF algorithm presents the best results in almost all experiments. These results can be bias given
that feature selection was assessed with RF model. The performance of MLP and SVM are not very
consistent as seen in Figure 15 and Table 14. In addition, standard deviation of these techniques shows
more variability. Surprisingly, SVM did not perform in the top of ML-models tested in this work.

On one hand, in neither the experiments, different window lengths represent significant
improvement among the others. As observed, the 2-s window size less supports the performance
of the classifiers. For instance, looking at Table 13 or Figure 15, 1-s window length promotes better
performance in devices with more information, e.g., IMU (5 devices with 7 channels); while 3-s window
size supports better performance in devices with less information, e.g., IR (6 devices, 1 channel). On the
other hand, the sampling rate (18 Hz) of the consolidated dataset can confirmed to be useful since
classification reported well performance. This sampling rate was obtained by a trade-off between
the highest frequency rate of devices (IMUs) and the lowest one (infrared sensor). Even though this
sampling rate is not high enough, literature reports that having a larger sampling rate values does not
improve the performance of classifier methods [9].

With regards to performance, it is very difficult to compare our results with the ones reported in
literature. First of all, the machine learning task is not always the same. Some related works use a class
that only specifies fall/not fall and other works try to classify each of the different activities or types of
fall. The latter is the machine learning task performed in our approach. The difference in types of data
and types of evaluation metric used is also very diverse as we can see in Tables 1–3. It can be said that
in general terms, our results are competitive with respect to the reported works.

It is important to consider improvements to machine learning strategies, so falls and activities
detection can be improved significantly due to the results observed, for instance, in Figures 16 and 18.
For example, hierarchical classification, deep learning and transfer learning approaches would be
adopted. To this end, other experiments in multimedia and human activity recognition use cases could
be designed in which our dataset will be valuable.

6.1. Limitations

This study has some limitations. In data collection, all activities were performed in the same order
and trials were performed consecutively. Falls were self-initiated and subjects fell onto a protective
mattress that damped the impact of the simulation. This is a difference between real falls which
generally occur towards hard materials and no intuitive reaction trying not to fall was recorded,
limitation considered also in [50]. Also, the sensor positions were chosen considering a right-handed
person. A dominant versus non-dominant side position analysis is out of the scope of this work,
but dominant side of the subjects is shown in Table 4. It is important to notice that this dataset was
thought for simple and non-overlapping activities, so down-sampling rates in IMUs (18 Hz) do not
affect stationary fall predictions. This might be a limitation if the dataset would be used for real life
predictions during dynamic situations (e.g., concurrent falls-and-activities).

In addition, falls were simulated by young healthy subjects without any impairment for safety
reasons, nevertheless we are aware that some differences can be found with real falls in elderly people.
We cannot guarantee that fall prediction for older or impaired adults can be done with a model build
directly using our dataset. Hence, this dataset can be used for transfer learning experiments for
prediction in elderly people or adults with impairments.

7. Conclusions

In this paper, we present a publicly available UP-Fall Detection Dataset to address the lack
of multimodal datasets for human activity recognition and fall detection. Execution of activities
was done by 17 healthy young subjects without any impairment. This dataset provides a wide
range of experimental possibilities among multimedia, human activity recognition, and machine
learning communities.
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We aim to contribute particularly to motivate the research communities to develop various and
robust fall detection systems that can reduce the consequences of falls. The dataset is a valuable
experimental resource that can leverage the development of online detection technologies and physical
devices for fall detection. We encourage the aforementioned communities to use our dataset.

We presented two use case scenarios to demonstrate examples of experimental possibilities:
modalities configuration and benchmark of machine learning models. Another use case scenario
could be identifying the best location and position of accelerometers and/or cameras. Our results
demonstrated that fall detection models can be trained and tested with UP-Fall Detection Dataset.

For future work and as part of our on-going project, we are developing a multimodal fall detection
system that can detect falls and emit an alert in real-time.
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