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Abstract: Background: Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive,
and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to
validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate
a specific BIA equation for this population. Methods: A total of 396 males, Brazilian Army cadets,
aged 17–24 years were included. The study used eight published predictive BIA equations, a specific
equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method.
Student’s t-test (for paired sample), linear regression analysis, and Bland–Altman method were
used to test the validity of the BIA equations. Results: Predictive BIA equations showed significant
differences in FFM compared to DXA (p < 0.05) and large limits of agreement by Bland–Altman.
Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed
no significant differences in FFM, compared to DXA values. Conclusion: Published BIA predictive
equations showed poor accuracy in this sample. The specific BIA equations, developed in this study,
demonstrated validity for this sample, although should be used with caution in samples with a large
range of FFM.
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1. Introduction

Adequate assessment of body composition is very important for the identification of possible
health risks related to the excess or lack of different body components. It also helps in monitoring
the processes of growth and aging and of some diseases, providing important evaluation data of
nutritional interventions and physical exercise programs [1,2].

Many changes occur in body composition throughout life, mainly in the fat mass (FM) to fat-free
mass (FFM) ratio [3]. Increased body fat is associated with the increased risk of various diseases,
such as obesity, cardiovascular disease, type 2 diabetes, hypertension, and others [4]. FFM is comprised
mostly by muscle mass and is related to the prevention of the fall risk in the elderly, as well as
having significant influence on physical performance [5]. The evaluation of this body component
can contribute to the development, monitoring, and improvement of physical training programs [6],
as well as in the reduction of body fat [7].

A military career demands adequate levels of physical fitness and body composition. Due to
this, young military members (cadets), undergo rigorous physical training programs when they join
the military service [8,9], with the objective to efficiently perform the tasks of the proposed military
routines. As a result, the FFM of these individuals increases, improving their physical performance [10]
and reducing the FM percentage [11].
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Body composition assessment is usually obtained by laboratory methods, such as dual-energy
X-ray absorptiometry (DXA), plethysmography, hydrostatic weighing, and multi-compartmental
models (four, five, or six compartments) [12,13]. Due to their complexity, they require specially-trained
users for application [7]. The assessment is made only in laboratory or clinical facilities due to the
impossibility to perform repeated measures in a small amount of time, and the high cost, making
it difficult to use with large samples. On the other hand, bioelectrical impedance analysis (BIA)
is a non-invasive, relatively simple, and widely used technique to estimate body composition in
larger groups with individuals of different characteristics, such as gender, age, ethnicity, presence of
diseases [7,13–20], and also in military [21,22].

BIA is a recommended method for field studies because it facilitates evaluation of a large number
of individuals in a short period of time [23]. It can be used inside or outside the laboratory or clinical
facilities [24]. Estimation of body composition by BIA is based on predictive equations developed in
different populations with specific characteristics (e.g., gender, age, ethnicity, and anthropometry).
It shows high predictive errors when applied to a population with diverse characteristics from those of
the population in which the predictor was developed [25].

Therefore, the aims of this study were to verify the accuracy of predictive equations of BIA,
already published for the estimation of FFM, in male Army cadets, aged 17 to 24 years, and to develop
and cross-validate a specific BIA equation for this population, using DXA with a reference method.
We believe that, despite the specific characteristics observed in our sample (young adults with low
fat and high physical activity), this predictive model may be used for other subjects of the same age,
such as military personnel, and in physically-active individuals (not athletes), as there is are lack of
equations for this population.

2. Methods

2.1. Subjects

Data was collected during the beginning of the school year (March) of 2013 and 2014, when the
annually “Preparatory School of Army Cadets” (EsPCEx), Campinas-SP, receive 500 students coming
from all regions of Brazil. All cadets that entered in both years (2013 and 2014) were invited to
participate in this study (approximately 1000 subjects); 946 showed an interest to participate and were
included. From this total, participants were excluded if: (a) they did not have conditions or availability
to participate in all procedures of the study protocol (n = 507) or (b) did not return a signed Terms of
Informed Consent Form (n = 43). Thus, the final sample consisted of 396 volunteers.

2.2. Study Design and Ethics

It is a cross-sectional study, in which individual collections of anthropometry, BIA, and DXA data
were done in the same day. This research was approved by the Ethics Committee of the School of
Medical Sciences, University of Campinas (UNICAMP). All procedures were conducted according to
the declaration of Helsinki [26] for studies with human subjects.

2.3. Measurements

Body weight (kg) was determined by a digital scale to nearest 0.1 kg and height (cm) by a
vertical stadiometer to nearest 0.1 cm, following the recommended protocols [27]. Body mass index
(BMI kg/m2) was calculated.

Body composition was determined by an iDXA (GE Healthcare Lunar, Madison, WI, USA) and
version 13.6 enCore™ 2011 software (GE Healthcare Lunar). Total body measurements were performed
to determine FM, bone mineral content (BMC), and lean soft tissue (LST). The FFM was obtained by the
sum of the BMC and LST (FFM = BMC + LST) values. The reproducibility of the variables estimated
by DXA was determined by the coefficient variation (CV%) and technical error of measurement (TEM),
based on the test-retest realized with 23 subjects out of the population of this study. The formula for
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TEM is “

c

D2

n
, where D is the difference between the two measurements, and n is the sample size.

The CV% were 0.74%, 0.28%, and 0.26% to FM, BMC, and LST, respectively, and TEM were 0.25 kg,
0.02 kg, and 0.25 kg to FM, BMC, and LST, respectively.

BIA measurements were performed according to the protocol recommended by Kyle [24]. We used
a tetrapolar device, single frequency (50 kHz), and model Quantum II (RJL Systems, Detroit, MI, USA).
BIA provides resistance (R) and reactance (Xc) values in Ohms (Ω). Reproducibility was calculated for
a subgroup of this study population (23 subjects); CV of 0.35% and 0.33%, for R and Xc, respectively;
TEM of 3.54 Ω and 0.49 Ω, for R and Xc, respectively; and impedance (Z) was calculated by the formula:
Z “

?
R` Xc.

2.4. Selection of Predictive Equations of BIA

BIA predictive equations were selected adopting these criteria: (a) subjects with age compatible
with the sample of the present study; (b) sample involving male subjects; and (c) BIA equipment
from the same manufacturer and same frequency (50 kHz). We selected eight equation, previously
published in the literature. The characteristics are shown in Table 1.

2.5. Statistical Analysis

Data were analyzed using IBM SPSS Statistics version 16.0 (IBM, Chicago, IL, USA). With the
exception of FFM of DXA and Equation (3) [15] values, other equations did not show normal
distribution; for this reason the logarithmic transformation (log10) was used. The paired Student’s
t-test for paired samples was used to verify the differences between the estimated values by BIA
predictive equations and the values determined by DXA. The adjusted coefficient of determination
(R2) and the standard error of estimated SEE were obtained using simple linear regression. The pure
error (PE) was assessing using the following equation [28]:

PE “

d

ř
`

Ÿ´Y
˘2

n

where variable Ÿ is estimated FFM of predictive equations of BIA, Y is FFM of DXA, and n is the total
number of subjects in the sample. Lin’s approach [29] for the concordance correlation coefficient (CCC)
was calculated using MedCalc Statistical Software v.11.1.0, 2009 (Mariakerke, Belgium), to verify the
accuracy (Cb) and precision (ρ) between the estimated FFM values by BIA and determined by DXA.
The Bland–Altman [30] method was used to verify the agreement between the estimated FFM values
by BIA and determined by DXA, and bivariate Pearson’s correlation (r) were conducted to determine
whether the difference between each predictive equation and the reference method was related to the
mean of the two measurements (trends). For development and cross-validation of the specific BIA
equation, we followed the proposed recommendations by Sun and Chumlea [28], in which the total
sample (n = 396) was randomly distributed by a statistical program into two groups: development
group (DG) (n = 264) and cross-validation group (VG) (n = 132). Multiple linear regression analysis
(stepwise method) was used for the development of the new model. The adequacy of the final
prediction model was assessed by testing the normality of the residuals by a Shapiro–Wilk test. All of
this parameters (paired Student’s t-test, R2, SEE, PE, and Bland–Altman) were considered to evaluate
the accuracy of the eight predictive equations of BIA and the specific equation developed in this study.
p < 0.05 was considered statistically significant.
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Table 1. Characteristics of predictive equations of BIA selected for the estimation of FFM.

Initials Reference Sex (n)
M/F

Age
(Years) Criterion Prediction Equation of Fat-Free Mass R2 SEE

Equation (1) Lukaski, et al. [13] 321 b 18–73 UW 0.734 ˆ (S2/R) + 0.116 ˆ Wt + 0.096 ˆ Xc + 0.878 ˆ Sex c ´ 4.03 0.99 2.2
Equation (2) Chumlea, et al. [14] 77/96 18–62 UW 0.87 ˆ (S2/Z) + 3.50 0.81 3.0
Equation (3) Segal, et al. [15] 1069/498 17–62 UW 0.00132 ˆ S2 ´ 0.04394 ˆ R + 0.3052 ˆ Wt ´ 0.1676 ˆ Age + 22.66827 0.9 d 3.6

Equation (4) a Deurenberg, et al. [16] 130/116 7–25 UW 0.438 ˆ (S2/Z) + 0.308 ˆ Wt + 1.6 ˆ Sex + 7.04 ˆ S) ´ 8.50 0.99 2.4
Equation (5) a Deurenberg, et al. [17] 361/466 16–83 UW 0.34 ˆ (S2/Z) ´ 0.127 ˆ Age + 0.273 ˆ Wt + 4.56 ˆ Sex c + 15.34 ˆ S ´ 12.44 0.93 2.6
Equation (6) Lohman [18] 153/153 18–30 UW 0.485 ˆ (S2/R) + 0.338 ˆ Wt + 5.32 NR 2.9
Equation (7) Kotler, et al. [19] 206/126 18–40 DXA 0.50 ˆ (S1.48/Z0.55) ˆ (1.0/1.21) + 0.42 ˆ Wt + 0.49 0.9 d 5.0 e

Equation (8) Sun, et al. [20] 734/1095 12–94 4C 0.65 ˆ (S2/R) + 0.26 ˆ Wt + 0.02 ˆ R ´ 10.68 0.90 3.9

Abbreviations: n, number of subjects; M, male; F, female; UW, underwater weighing; DXA, dual-energy X-ray absorptiometry; 4C, model four compartments; S, stature (cm);
R, resistance (Ω); Xc, reactance (Ω); Z, impedance (Ω); Wt, weight (kg); R2, coefficient of determination; NR, not reported; SEE, standard error of estimated in kilograms; a equations
that used the value of the height in meters (m); b male and female subjects; c 0 if female and 1 if male; d correlation coefficient value (r); e value in percentage (%).
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3. Results

Table 2 presents the general characteristics of the total sample and groups (development and
cross-validation) for the specific BIA equations. No significant differences were found between
development and cross-validation groups.

Table 2. Characteristics of the total sample and the groups (development and cross-validation) of
specific BIA equations.

Variables
Total (n = 396) Development (n = 264) Cross-Validation (n = 132)

Mean ˘ SD Mean ˘ SD Min–Max Mean ˘ SD Min–Max

Age (years) 19.2 ˘ 1.8 19.3 ˘ 1.2 17.0–24.0 19.1 ˘ 1.1 17.0–24.0
Weight (kg) 70.0 ˘ 8.5 69.9 ˘ 8.5 45.9–94.8 70.3 ˘ 8.7 50.9–99.4
Stature (cm) 175.8 ˘ 6.4 176.0 ˘ 6.7 159.6–192.7 175.3 ˘ 5.9 160.2–190.8
BMI (kg/m2) 22.6 ˘ 2.3 22.5 ˘ 2.2 16.0–29.7 22.8 ˘ 2.4 17.1–32.3

FM (%) 17.2 ˘ 3.9 17.1 ˘ 3.7 9.0–27.6 17.3 ˘ 4.2 10.2–27.8
BMC (kg) 3.0 ˘ 0.4 3.0 ˘ 0.4 2.0–4.2 3.0 ˘ 0.4 2.2–4.2
LST (kg) 55.2 ˘ 6.2 55.2 ˘ 6.2 38.5–75.4 55.2 ˘ 6.0 41.6–75.5
FFM (kg) 58.2 ˘ 6.5 58.2 ˘ 6.5 40.6–79.5 58.3 ˘ 6.4 44.0–79.3

Resistance (Ω) 479.5 ˘ 48.8 483.8 ˘ 48.4 345.0–669.0 470.8 ˘ 48.7 349.0–665.0
Reactance (Ω) 62.4 ˘ 7.0 63.0 ˘ 6.7 40.0–86.0 61.3 ˘ 7.7 27.0–80.0
Impedance (Ω) 483.6 ˘ 48.9 487.9 ˘ 48.5 349.5–673.4 474.9 ˘ 48.8 353.8–668.9

Abbreviations: BMI, body mass index; FM, fat mass; BMC, bone mineral content; LST, lean soft tissue.
FFM, Fat-free mass.

The independent variables age, height, BMI, R, Xc, and impedance on the development group
showed significant correlations (p < 0.01) with FFM determined by DXA, however, of low or moderate
intensity, with r values ranging from 0.16 to 0.66. The variables with higher correlation were: body
weight (kg) (r = 0.92) and stature2/R (cm2/Ω) (r = 0.84) (p < 0.001). The second variable was
transformed into a base-10 logarithm (log10). The resulting specific BIA equation by stepwise regression
analysis was:

FFM “ 0.508ˆWt ` 39.234ˆpstature2{RqLog10´ 48.263

The FFM values determined by DXA showed significant difference (p < 0.05) compared to FFM
values of the eight BIA predictive equations. Two equations (Equations (4) and (5)) showed lower
values and six equations (Equations (1)–(3) and (6)–(8)) showed higher values of FFM. The FFM
average estimated by the specific equation developed in this study showed no significant difference
compared to the value determined by DXA, to both development and cross-validation groups, as in
the total sample. It was observed that the value of CCC above 0.80 existed between the predictive
equations and the reference method, while in the development and cross-validation group, as well as
in the total sample, the CCC values were above 0.92 (Table 3).

Figure 1 shows the agreement of methods (DXA and BIA) using the Bland–Altman analysis.
All BIA equations showed large limits of agreement. In addition, Equations (2)–(5) and (7) showed
significant trends (p < 0.05) between the differences and mean of methods, as observed from the r value.
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Figure 1. Bland–Altman plots of the agreement between values of FFM determined by the reference
method (DXA) and estimated by BIA equations in the sample of cadets (n = 396): (A) Equation (1) [13];
(B) Equation (2) [14]; (C) Equation (3) [15]; (D) Equation (4) [16]; (E) Equation (5) [17];
(F) Equation (6) [18]; (G) Equation (7) [19]; (H) Equation (8) [20]. Solid black line: mean of the
differences; dashed line: limits of agreement of 95%; continuous gray line: correlation (r) between the
average and the differences of the methods.
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Table 3. Values of fat-free mass estimated by BIA equations and determined by DXA.

Fat-Free Mass Difference CCC Analysis
R2 SEE

(kg)
PE

(kg)Mean ˘ SD Min–Max Mean ˘ SD % CCC ρ Cb

Equation (1) 58.8 ˘ 6.5 a 44.1–79.9 0.6 ˘ 3.2 1.0 0.87 0.8762 0.9957 0.77 3.1 3.3
Equation (2) 59.7 ˘ 7.0 a 42.9–82.7 1.5 ˘ 4.0 2.6 0.80 0.8271 0.9724 0.68 3.6 4.3
Equation (3) 60.6 ˘ 5.8 a 45.0–75.6 2.4 ˘ 2.5 4.1 0.85 0.9219 0.9259 0.85 2.5 3.5
Equation (4) 55.2 ˘ 6.1 a 40.3–72.5 ´3.0 ˘ 2.5 5.2 0.83 0.9225 0.8945 0.85 2.5 3.9
Equation (5) 57.7 ˘ 5.4 a 44.1–72.7 ´0.5 ˘ 2.5 0.8 0.91 0.9242 0.9805 0.85 2.5 2.6
Equation (6) 60.6 ˘ 6.4 a 44.5–79.8 2.4 ˘ 2.6 4.1 0.86 0.9181 0.9355 0.84 2.6 3.6
Equation (7) 59.0 ˘ 5.5 a 44.3–74.7 0.8 ˘ 2.3 1.4 0.92 0.9371 0.9781 0.88 2.3 2.5
Equation (8) 59.5 ˘ 6.4 a 44.1–78.9 1.3 ˘ 2.7 2.2 0.90 0.9138 0.9808 0.84 2.6 3.0

Equation Specific
DG 58.2 ˘ 6.1 41.3–75.0 0.0 ˘ 2.2 0.0 0.94 0.9392 0.9980 0.88 2.2 2.2

CVG 58.7 ˘ 6.0 44.8–76.7 0.4 ˘ 2.5 0.7 0.92 0.9228 0.9959 0.85 2.5 2.5
Total 58.4 ˘ 6.1 41.3–76.7 0.1 ˘ 2.3 0.2 0.93 0.9334 0.9979 0.87 2.3 2.3

Abbreviations: CCC, concordance correlation coefficient; ρ, precision; Cb, accuracy; SEE, standard error of
estimated; PE, pure error; DG, development group; CVG, cross-validation group. a significant difference of
DXA (58.2 ˘ 6.5), paired Student’s t test (p < 0.05).

Figure 2 shows the agreement of methods (DXA and BIA) using the Bland–Altman analysis.
The two groups (development and cross-validation) showed wide limits of agreement, but only
development group (a) showed a significant trends (p < 0.05) between the differences and mean of
methods, as observed from the r value.
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Figure 2. Bland–Altman plots of the agreement between values of FFM determined by the reference
method (DXA) and estimated by BIA-specific equations: development group (1); and cross-validation
group (2). Solid black line: mean of the differences; dashed line: limits of agreement of 95%; continuous
gray line: correlation (r) between the average and the differences of the methods.
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4. Discussion

The aim of this study was to test the accuracy of eight predictive equations, available in the
literature, based on the BIA to estimate FFM in young males, Brazilian Army cadets, using DXA as a
reference method. The values estimated by these eight predictive BIA equations correlated strongly
with the DXA values. We observed significant differences between the FFM values of all equations
when compared to the reference method. Furthermore, they did not show good agreement with DXA.
Several authors reported strong correlation between FFM estimated by BIA and DXA [19,31,32], and as
observed in our study (Figure 1), they also found great individual variability confirmed by large limits
of agreement [32].

Body composition assessment by BIA is based on the relative stability of hydration of the FFM
(ratio of body water per FFM). However, BIA was not developed for FFM assessment, as it measures
water that is extrapolated for an amount of FFM. The electrical conduction of the body water depends
on the amount of electrolytes [23]; the amount of body water varies with each age range [33]. In healthy
adults this ratio is considered stable at a value of 0.73, and may vary between 0.69 and 0.77 [34].
Although this small variability, it can increase the error of predicting body composition, especially
in children and young adults [35], elderly [33], and in subjects with diseases, according to the state
of hydration [36]. Thus, it is very important to carefully select the equation to be used, making sure
that they have been developed from similar samples considering age, gender, ethnicity, and health
status [36,37].

Our sample was composed only of young and healthy male adults; the admission process to these
individuals be accepted in EsPCEx consisted of three phases: the first was comprised of an intellectual
test; the second by a medical inspection in which the candidate must submit an “Authorization
for realization of health inspection”, signed by the responsible party, with the report of various
medical exams (exercise testing, complete blood count, electroencephalogram, radiography of the
lungs, etc.); and the third physical test (muscular strength and endurance, and of aerobic fitness) to
check the level of general physical fitness. Based on these facts, we considered our sample to be
homogeneous in relation to age, health, and level of physical activity, factors that can interfere with the
FFM estimated using the BIA in heterogeneous samples [37]. Although homogeneous, our sample
exhibited great individual variability, confirmed by the large limits of agreement obtained in the
Bland–Altman [30] analysis and due to differences to be dependent on the amount of FFM of these
individuals. We observed a lower agreement between the methods that assess the FFM of predictive
equations and DXA (ranged between CCC = 0.80 and CCC = 0.90); for the specific equation developed
in this study, we observed a strong agreement between the methods (CCC = 0.93).

As well as in the present study, several previous studies have developed FFM prediction models
using the BIA [13,15–20], with body weight and index of stature2/resistance variables. These variables
presented the best predictive ability for the development of the specific equation of our sample.
One of the BIA’s assumptions is that the human body has a format similar to a perfect cylindrical
conductor [38]; however, the human body shape resembles a shape comprise more of a series of
five connected cylinders (two arms, two legs and trunk, head excluded) [24]. Body segments are
not uniform (different shapes and sizes), so the resistance to current flow in the body segments are
different [24]. One of the factors that may have influenced the wide variation in the results estimated
by BIA predictive equations is that, in our sample, individuals came from all regions of the country
(north, northeast, midwest, southeast, and south) and presented different characteristics relative to the
body segments. This heterogeneity observed in previous studies seems to contribute to the lack of
applicability of BIA equations from one population to the other [24,37].

The greatest problem found in the prediction FFM by BIA equations in our sample was the wide
variability among individuals observed in the Bland–Altman plots, with 95% limits of agreement
ranging from ´5.8 kg to 5.8 kg. These results indicates that some individuals can have their FFM
values overestimated by more than nine kilograms (Equation (2)) and underestimated by more than
eight kilograms (Equation (4)), which is an error of 16% and 14% for more and less, respectively,
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when comparing the average of the FFM values determined by DXA. This wide variation between
individuals was also observed in other studies that have developed new equations of BIA using DXA
as a reference in children and adolescents [31], obese children and adolescents [39], and 12–19 years
old boys of different ethnicities [37]; these models should be considered when using BIA equations.

With the exception of the Equations (1), (6), and (8), the differences observed were significantly
correlated with the average of the two methods, although these correlations are low (Equations (2)–(4)
and this study’s specific equation) or moderate (Equations (5) and (7)), indicating that the observed
bias is dependent on the quantity of FFM and results different to individuals with diverse levels of
FFM, overestimating with higher amounts of FFM (Equations (2)), or underestimating these same
individuals (Equations (3)–(5), (7) and this study’s specific equation). Predictive BIA equations should
be used with caution in groups with wide variation in FFM [36]. In this sense, despite the results that
the specific BIA equation did not show significant bias with DXA, they showed a significant trend in
observed differences, which in practice means that these differences are dependent on the amount of
FFM of the individuals.

Various factors can affect the results of BIA: no standardization of body position, previous exercise,
and food intake [36,38]; in this study all of these factors were controlled. Another source of error can be
the reference method used in the development of the BIA equations [36]. The recommendation is that
the validation BIA equations are performed against reference using methods incorporating the model
4C [40,41], densitometry (hydrostatic weighing and plethysmography), DXA, and isotope dilution of
body [40]. Each of these reference methods is not without error and have their limitations [41]. In the
present study, the majority of the tested BIA equations used densitometry by hydrostatic weighing
(Equation (1) to (6)); only Equation (7) used DXA and Equation (8) used the 4C model. The variation
may be related to greater or lesser validity of the reference method. The BIA equations have been
developed for a specific population and that may or not be comparable to other reference methods [36].

Several studies have demonstrated the potential of DXA for assessing total and regional body
composition due to the relative speed of scanning, low radiation exposure, and good accuracy and
reproducibility of the measurements [42,43]. However, although the DXA is considered as a reference
method for the estimation of bone mass [44], it may have limitations in the determination of FFM and
FM [45]; studies that compared the ratings for multi-compartmental methods observed that both the
FM and the %FM were overestimated in the assessment with DXA [46].

As well as this study, several other studies, especially in recent decades, have used DXA as
the reference method to develop new equations of BIA in healthy children and adolescents [47],
and obese [39] subjects of different ethnic groups [31,32,37] and, some with diseases [31]. The 4C
model would be the reference method of choice, but due to its complexity [12] it has rarely been
applied to develop equations based on the BIA [20]. Methods based on the division of the body in
two compartments (hydrostatic weighing and isotope dilution) do not consider the changes in the
hydration of the FFM, influenced by gender, age, and maturity [16,17,24]. In this context, the DXA
provides estimation of body composition relatively independently of body hydration [40].

A limiting factor of this study is the miscegenation in Brazil, which is a very heterogeneous
country as a result of more than five centuries of miscegenation of people from different ethnic
groups coming from various continents (Europe, Africa, and Asia) in addition to near 2.5 million
American Indians who already lived in the country. With this, from the very beginning of the
1990s, the country has officially adopted the proposal that these data must be collected based on
self-declaration, i.e., each individual choose between five categories of color skin—white, black,
“mulato”, yellow, and indigenous—what he or she feels appropriate [48]; but as this classification is
different from the ones used in other countries, it is very difficult to establish comparisons relating the
influence of ethnicity on our results. This also explains, in part, the need for specific regression models
to the characteristics of the population evaluated, due to the differences in body proportions related to
age, gender, and ethnicity [36]. Another limitation of this study is that the subjects were studied on a
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single occasion; it would be interesting the assessment at two time-points, to see if these results have
the same behavior on changes in FFM over time.

5. Conclusions

BIA it is a non-invasive, portable, and relatively inexpensive method, and can be used
in individuals with different characteristics, provided that specific equations are validated and
appropriate with respect to age, sex, and ethnicity. The eight BIA prediction equations, already
published in the literature, were not valid to this Brazilian Army cadets sample. Due to the lack of
specific BIA equations in the literature for this population, we suggested new longitudinal studies
assessing the validity of the BIA to verify the changes in the quantity of FFM. Although the specific
equation developed in this study did not show significant differences with the reference method,
wide limits of agreement and bias, dependently on the quantity of FFM, were observed, and it should
be used with caution, especially if it is used on samples with different characteristics of the subjects in
this study.
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